
SOVIET PHYSICS JETP VOLUME 23, NUMBER 6 DECEMBER, 1966 

CONTRIBUTION TO THE THEORY OF DIFFRACTION SCATTERING OF PARTICLES BY 

NUCLEI, BASED ON THE METHOD OF COMPLEX ANGULAR MOMENTA 

B. I. TISHCHENKO and A. V. SHEBEKO 

Physico-technical Institute, Academy of Sciences, Ukrainian S.S.R. 

Submitted to JETP editor January 28, 1966 

J. Exptl. Theoret. Phys. (U.S.S.R.) 50, 1674-1681 (June, 1966) 

Expressions for elastic and inelastic diffraction scattering of particles by nuclei, involving 
the excitation of collective states, are derived by the technique of complex angular momenta. 
It is assumed that the modulus as well as phase shift of the S matrix may possess poles in 
the complex angular momentum plane. It is shown that the presence of poles in the S-matrix 
phase shift near the poles of its modulus and Coulomb interaction permit one to explain a 
number of interesting features of the behavior of the differential scattering cross sections, 
such as the decrease of the oscillation amplitudes of the cross sections with growth of the 
nuclear charge, the possible presence of inelastic-scattering cross-section oscillations in 
the case when the oscillations are absent in elastic scattering, and decrease of the oscilla
tion amplitude with growth of the scattering angle. It is shown that "competition" between 
the Coulomb and nuclear phases can explain the "cross section drop" (presence of one or 
two cross section minima which are much lower than the neighboring ones). It is noted in 
this connection that the quantity 6 ( l 0 ) (where l 0 is the limiting nuclear angular momentum) 
can readily be estimated. 

1. INTRODUCTION where B is the Coulomb barrier and E the c.m.s. 
energy of the incident particle. 

THE theory of diffraction scattering of particles 
by nuclei has been intensively developed in recent 
years. Thus, in a recent paper by Inopin [1], the 
method of complex angular momenta was proposed 
to obtain the cross sections for elastic diffraction 
scattering of particles by nuclei. Subsequently this 
method was employed [2] to calculate the cross 
sections for inelastic scattering with excitation of 
collective states of the nuclei. 

In the earlier papersC1•2] no account was taken 
of the fact that the phase o( l) can have singulari
ties near the poles of the function A( l ). One can 
advance arguments, however, in favor of the fact 
that such singularities can exist. Indeed, in the 
presence of a finite interaction radius R, and if 

In [1, 2] the scattering matrix was written in the 
form 

'11 (l) =.A ( l) e2iacz> (1) 

and it was assumed that in the plane of the com
plex angular momenta the function A( l) has poles. 
Thus, for example, at the points ln = l0 ± imr 
(n = 1, 3, ... ) there are poles of the function 

r ( lo -l )]-1 
A(l)= 1+·exp -~.- , (2) 

which is frequently used in the analysis of the ex
perimental data. The limiting momentum is 

l0 = kR(1- B I E)'l•, (3) 

kR » 1 in the region l ..... l 0, one can expect rapid 
variation not only of the absorption function A( l) 
from zero to unity, but also of the scattering phase 
6 ( l ) from a certain value 60 to 0. Such a behavior 
of 6(l) can be described by a system of poles lo
cated near the poles of A ( l ) . We note in this con
nection that m3J!y authors (see [ 3•4 ] and others), 
in a numerical analysis of the diffraction scatter
ing, take besides the function A( l) in the form (2) 
also the function o ( l ) in the form 

[ ( l l )]-1 
b{l)=bo 1+exp l.t 0 

with values of the parameters l 0 and 1J. ·close to 
l0 and A., respectively. 

(4) 

By virtue of the foregoing it is of interest to 
consider diffraction scattering of particles by nu-
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clei under the assumption that the functions A( l) 
and 6 ( l) can have closely -lying poles in the plane 
of the complex angular momenta. 

2. CROSS SECTIONS FOR ELASTIC AND INELAS
TIC SCATTERING 

We assume that both A(Z) and 6(1) can have 
poles in complex-conjugate points of the complex 
l plane. The poles of these functions generate sin
gularities of the S matrix. 

We assume further that the main contribution to 
the cross section is made by one pair of singulari
ties of the S matrix at the points l = l 0 ± i{3. Of 
great significance in this case is the relative ar
rangement of the poles of the functions A( l) and 
6(l ). In the case when two poles of the functions 
A(l) at complex-conjugate points (we are refer
ring to poles closest to the real axis) are located 
close to the corresponding poles of the function 
6(l ), we shall assume that the positions of these 
poles coincide. On the other hand, if these poles 
are located at essentially different distances from 
the real axis, the singularities of the S-matrix are 
determined by the poles of only one of the functions, 
A ( l ) or 6 ( l). 

Under these assumptions, we consider the dif
fraction scattering of spinless particles by zero
spin nuclei. Au stern and Blair [s] have shown that 
in this case the amplitude of inelastic scattering 
with excitation of n-phonon state of the nucleus 
can be represented in the form 

kn-1 
j}~,oo('fr) = i(-i)n-1 2 (n!) (21 + i)'I•Cn(l)(l:M] 

X~ (2l+1)'he2ia(l)an;l~) Yz-M('fr,O), 
l=J.\f 

(5) 

where J. is the scattering angle in the c.m.s., I and 
M are the spin and the spin projection of the nu
cleus in the excited state, and Cn (I) is the spec
troscopic factor. The coefficients [ I:M) are of 
the form 

[I: M] = i-M(4n/ (21 + 1))'"Y1M(n I 2, 0), (6) 

hence 

(7) 
M 

We note that the coefficients (6) vanish if I and M 
have different parity. When n = 0 formula (5) de
scribes elastic scattering. 

We expand the S-matrix in a series: 

S (l) ='I] (l) e2(a(l) =A (l) e2ia(l) ~ Eill ~l) )". (8) 
h=O k. 

If j6(l)J « 1, then, naturally, we can confine our
selves to a small number of expansion terms. 

The Coulomb phase a( l) in the plane of the 
complex angular momenta will be defined by the 
formula 

cr(l) = x ln (l + 1), (9) 

which follows from the relation 

ex [2icr(l)]= f(Z+ 1 +ix) 
p r ( l + 1 - ix) ' 

when the following conditions are satisfied 

Ill ~1, 'frc = 2x/lo ~ B/E < 1. (10) 

Using these relations we obtain, with the aid of 
the procedure developed in [t, 2], the following ex
pression for the amplitude of the diffraction scat
tering: 

( ) kn-1 
h~.oo('fr) = i(-1)M+1 2 (n!)(2(2l + i')lor"Cn(I)[I:M] 

x e2ix In !o (sin '(}) -'/, e-~\t 

(11) 

where 
QnM = (lo + 1/2)'fr + YnM, 

n+M n 
YnM = - 2- Jt + 4 + i~'frc, (12) 

e± = '(} + 'frc. (13) 

The polynomials F ( x) and G ( x) are of the form 

00 ·p 

G(x)=~~Qp*(x), (14) 
p=O p. 

where 

The quantity 

P (ix)• 
Qp(x) = ~ - 1-qps· 

s=O S. 

(15) 

(16) 

is the sum of different products of p + 1 coeffi
cients of the expansion of the functions A ( l ) and 
6 ( l ) in a Laurent series: 

00 "" 
k=-1 k=-1 

near the poles of these functions at the point Z1 

= l 0 + i{3. The summation in (16) is carried out 
under conditions 

ko+k1+ ... +kp = -(s+ 1), 

-1 ::::;;; k; ::::;;; p - s - 1. (18) 

If some of the terms of the sum (16) repeat, they all 
must be taken into account. 
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We now write an expression for the cross sec- where 
tions for elastic and inelastic scattering of particles 
by nuclei with excitation of states of the n-phonon 
type: 

a/nl(t}) = ~·~~;~, oo(t}) 12 
M 

= Bn(l) IF(8+)G(8-) 111'}2- t}c2ln(sint})-1 e-2~~ 

X {cos2 [ (lo + 1/2) t}+ Yni(t})] + sh2 z,}, 

where 

(19) 

k2n-2 
Bn(l) = 2(2/ + 1) (n!)2loiCn(l) 12, (20) 

n+I n 1' [ 8_nG(8-) J ; 
Ynr(t})=~2-n+;r-z-arg 8+"F(8+) , i (21) 

n 18-l 1 I G ( 8-) I 
Zn = ~t}c +~ln--+-ln---. I (22) 

. 2 8+ 2 IF(8+)1 

The series (14) and (15) in the cross section 
(19) converge rapidly and their structure does not 
depend on the form of the functions A ( l ) and i5 ( l ) . 
This allows us to draw definite conclusions con
cerning the influence of the presence of poles of 
the function i5 ( l ) near the poles of the function 
A ( l) on the diffraction scattering, without the need 
for stipulating a specified form of these functions, 
and to confine ourselves in concrete calculations 
to a small number of terms of the expansion (8). 

It must be noted that Inopin presented in a recent 
paper [G J a more consistent derivation of the ampli
tude of the scattering than given by Austern and 
Blair [SJ. If one uses in lieu of formula (5) the re
lation obtained in [G], then the cross section (19) 
retains its form, but acquires an additional com
mon factor ~ ( 1 + PI( cos J. )). 

3. DISCUSSION OF RESULTS 

We stop first to investigate the influence of the 
Coulomb field on the diffraction scattering in the 
particular case when the poles of the function 6 ( l) 
are much farther from the real axis than the poles 
of the function A(Z ), so that we can assume that 
the S-matrix singularities are determined only 
by the poles of the function A(l ). Then b_1 = 0 and 

~ (2ib0)P . 
F(8+) =a_, LJ-~,- =a_, e2•6(1,J, 

p=O p. 
(23) 

whence 

a/"l(t}) = Bn(I) la-d2ltJ2- t}c2ln(sint})-1e-2~tt 

· {cos2 [(lo + 1/2)1'} + Ynr] + sh2 Zn}, (24)* 

*sh =o sinh. 

n +I n ( 9_n) 
Ynr = --2-n + 4 + arg . a_, 8+", , (25) 

Zn = ~t}c + 2 lm6(l1)+ ~ln~. 
2 8+ 

(26) 

Formula (24) is the analog of the corresponding ex
pressions obtained in. [l, 2J 

We see that if the phase 6 ( l) has no poles, then 
the period and the amplitude of the oscillations of 
the cross section of elastic scattering do not de
pend on the scattering angle. With increasing 
charge of the target nucleus, the magnitude of the 
amplitude of the oscillations should decrease, this 
being connected with the increase in J.c, and con
sequently, as a rule, also of the quantity sinh2 z0• 

This phenomenon is noted in the paper by Inopin 
and Kresnin [ 7], who have analyzed the experimen
tal data on elastic scattering of a particles with 
energy E "' 40 MeV by different nuclei, and indi
cate that the oscillations of the cross section for 
scattering by lead are already practically non
existent. 

More complicated is the influence of the Cou
lomb interaction on inelastic scattering. Mathe
matically this is connected with the fact that when 
account is taken of the Coulomb interaction, the 
contributions to the amplitude of the scattering 
(11) from the two poles at the points z1 and zt are 
not of equal sign, and the closer the scattering 
angle J. is located near the region of angles "'J.c 
the larger the difference. Formula (24) can be 
rewritten in the form 

or<nJ(t}) = 1/JJn(I) la-1l28+2n(sint})-1 

X exp {-2~8+- 4 Im ~(l1)} 

x{(11-;.cn)2+4xncos2 [(lo+ 1/z)t} +Ynr]}, (27) 

where 

18-ln 
Xn = -8-exp[2~t}c + 4 lm6(l1)]. (28) 

+n 

When J. » J.c, we have I (}_jj(}+ r.::::: 1 and for
mula (27) gives an oscillating picture with a con
stant oscillation amplitude. As J. - J.c we get 
Xn- 0 ( n :::-: 1 ), that is, the Coulomb interaction 
may result in a sharp decrease or even total ab
sence of oscillations when scattering is through 
angles "'J.c. When a particles with energy E 
"' 40 MeV are scattered by nuclei of medium 
atomic weight we have Jc"' 15-30°. As is well 
known, a regular variation of the oscillations of 
the diffraction cross section is observed starting 
with somewhat larger scattering angles. Account 
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must be taken, however, of the fact that if the en
ergy of the incoming particle is much higher than 
the Coulomb barrier, so that ~c « 1, then formu
las (24) and (27) are not applicable in the region 
~- ~c• since our analysis includes the region of 
very small scattering angles. 

We have already noted that, owing to the strong 
Coulomb interaction, the cross sections for elas
tic scattering of particles by heavy elements do 
not experience oscillations. However, the cross 
sections for inelastic scattering can in this case 
have a diffraction character. Indeed, in (26) the 
term %n ln(l e_l/e+) is negative for all scattering 
angles, and therefore sinh2 zn < sinh2 z0 (for n ~ 1 ). 
This phenomenon was observed in experiments [B] 

on the scattering of a particles by Pb207•208 and 
Bi209 • 

All the foregoing results are valid also when 
the phase o ( l) has poles, but 60 is close to zero. 

Let us see now how the diffraction scattering 
picture changes if the functions A ( l ) and o ( l ) 
have closely-lying poles. As already noted, some 
deductions can be drawn without resorting to con
cretization of the form of these functions. By com
paring (24) with (19) we see that the presence of 
poles of o(Z) does not violate the most important 
conclusion in [l, 2] that the cross section decreases 
exponentially with decreasing angle e. The dif
fraction character of the differential cross sec
tion is likewise retained, but its form may change 
appreciably. Indeed, if the phase o(Z) has poles, 
then the quantities 'Yni< ~) and Zn (formulas (21)
(22)) depend now on the scattering angle, that is, 
the period and amplitude of the oscillations of the 
differential cross section change with the scatter
ing angle. 

The dependence of the period and of the ampli
tude of the oscillations on the scattering angle was 
observed experimentally in several cases. Thus, 
for example, in experiments on elastic and inelas
tic scattering of 43-MeV a particles by Ni58 nu
clei it was noted that the period increased and the 
oscillation amplitude decreased with increasing 
scattering angle [B]. In some cases the interesting 
phenomenon of "cross-section drop," was ob
served, consisting in the fact that one or two min
ima of the diffraction cross section were much 
deeper (by one order of magnitude or more) than 
the neighboring minima, for both larger and 
smaller scattering angles. This phenomenon was 
observed, for example, in experiments [4] on the 
scattering of 42-MeV a particles by Sr88 and y89 

nuclei, where the "drop angle" is ~0 "" 58-59°. 
It should be noted that the presence of poles of 

the phase o ( l ) and the associated change in the 

period of the amplitude of the oscillations does not 
change the Blair phase rule[loJ, which can be for
mulated here as follows: the cross section for in
elastic scattering with excitation of the n-phonon 
state with spin I is in phase with the cross section 
for elastic scattering if n +I is even, and ;in coun
terphase if n +I is odd. To be sure, owing to the 
presence of the factor ~2ne -2{3~ in the cross sec
tion, this correspondence may be somewhat vio
lated. 

As seen from (19), the cross sections for elas
tic and inelastic scattering are determined by the 
same parameters, if we disregard the matrix ele
ments Cn(I). The number of these parameters 
will not be very large even if the functions A( l) 
and o ( l) are not concretely specified, since, as a 
rule, we can confine ourselves to a small number 
of terms in the expansion (8). One can expect, how
ever, that the obtained results will not change ap
preciably even when the form of these functions 
changes in a sufficiently wide range. This allows 
us to limit the problem, by specifying a definite 
form of the functions A ( l ) and o ( l ) . In this case 
the number of parameters will not depend on the 
number N. Many authors used the functions (2) 
and (4) in their numerical calculations of the cross 
sections. If it is assumed here that 1-L = A. and 
lo = l 0, then the number of parameters entering in 
the theory will be equal to three: l0, {3 = 7rA., and 
60• Let us consider the particular case of formula 
(19), taking the functions A ( l ) and o ( l ) and the 
form (2) and (4), and confining ourselves to quad
ratic terms in o ( l ) in the expansion (8). Then 

crinl,('fr) = Bn(I)A.2 1{12- tl'l·ln(sin tl')-1e-211'1t 

X [ (1 + 2Mo-()) 2 - 2A.26rf({l2- 'frc2)] 

X {cos2 Hlo + 1/z)tl' + '\'nd + sh2 Zn}, (29) 

where 

'\'ni =, 1/z(n + l):rt + :rt/4 + Mo2tl', (30) 

Zn = fltl'c- 2Mo'fr + ~2 ln I S-1' + 2A.21V'fr'frc. (31) 
e+ 

Formulas (29)-(31) enable us to trace the 
"competition" between the nuclear and Coulomb 
phases and to explain some characteristic features 
of the differential cross sections. It becomes pos
sible here to leave out the terms quadratic in 60, 

since the effects of interest to us are due already 
to linear terms of the expansion (8). An exception 
is the effect of the change of the period of the os
cillations, which apparently is an effect of higher 
order and will not be considered here. We confine 
ourselves also to examination of elastic scattering 
only, since we have already ascertained the changes 



THEORY OF DIFFRACTION SCATTERING OF PARTICLES BY NUCLEI 1117 

that result from allowance for the term 
%n ln{/8_//8+) in the formula. 

We express z0 in the form 

(32) 

We see that z0, and consequently also the ampli
tude of the oscillations of the scattering cross sec
tion, will depend on the angle J. The character of 
this dependence is determined by the sign of 60 and 
by the relation between the quantity 60 and Jc, that 
is, the relation between the jump in phase at l ~ 10 

and the magnitude of the Coulomb interaction. 
Let 60 > 0. If x « 1, that is, the Coulomb inter

action is large, and the phase jump is small, then 
the amplitude of the oscillations of the cross sec
tion is practically independent of the scattering 
angle. In the case of weak Coulomb interaction and 
a large phase jump ( x » 1 ) the amplitude of the 
oscillations of the cross section decreases with in
creasing scattering angle. 

Of greatest interest is the case when the jump in 
phase and in Jc are comparable in magnitude 
(x ~ 1 ). This case is apparently frequently encoun
tered in experiments on the scattering of a parti
cles by nuclei with medium atomic weights. 

If x ~ 1, then for the angles J = J 0, where 

(33) 

z0 vanishes. If for J "'" J 0 the diffraction cross 
section has a minimum, that is, the cosine in for
mula (29) vanishes, then this minimum will be 
much deeper than the neighboring minima; we ob
serve the "cross section drop" phenomenon. In the 
already mentioned experiments [4], the minima of 
the elastic scattering of alpha particles by Sr88 and 
Y89 nuclei at angles 58-59° lie 10-20 times lower 
than the neighboring minima. An analogous phe
nomenon can be observed in many other cases. It 
is obvious that the collapse should not greatly 
change the magnitude of the maxima of the cross 
section, as is indeed observed in the experiments. 

Measurement of the collapse angle makes it 
possible to estimate very simply the value of the 
constant 60• Let us estimate, for example, this 
quantity for the nuclei Sr88 and Y89 using the re
sults of Alster et al. [ 4 J on the scattering of 42-
MeV a particles. We have J 0 "' 58-59°. Thera-

dius of interaction of the a particles with the Sr88 

nuclei is assumed equal to 7. 93 F, as follows from 
an analysis given in [2]. Then Jc "'" 0.33 and we 
obtain from (33) 60 "'" 0.5. A similar value will be 
obtained also for Y89 • Alster et al. [4] assumed in 
their calculations value 0.40 and 0.44 respectively 
for 60• 

If 60 < 0, then the amplitude of the oscillations 
of the cross section will decrease monotonically 
with increasing scattering angle. The drop in the 
cross section will, of course, not occur here. This 
circumstance enables us to draw conclusions con
cerning the sign of 60 from the general form of the 
cross section, since the relatively strong Coulomb 
interaction for nuclei with medium atomic weights 
makes it possible to exclude the case x » 1 when 
60 > o. 

In conclusion the authors consider it their pleas
ant duty to express deep gratitude to E. V. Inopin 
for interest in the work and for valuable discus
sions. 
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