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A theory is developed for "resistive" effects in superconductors of the second kind near the 
upper critical field Hc2· The analysis is based on an application of time-dependent Ginzburg­
Landau equations; these equations are derived phenomenologically. If the normal (nonsuper­
conductive) current is neglected, the equations permit the existence of quasiequilibrium super­
conducting states in crossed electric and magnetic fields; these states correspond to the mo­
tion of Abrikosov flux lines in a direction perpendicular to both E and H. The upper critical 
field H02 is a function of the electric field strength; however, for superconducting metals and 
alloys the effect of the variation of Hc2 with E is very small. It is shown that the resistive 
effects in superconductors should be accompanied by the emission of radiofrequency energy 
(due to the motion of the periodic line structure). Irradiation of a superconductor in the mixed 
state with external rf power should change the shape of the volt-ampere characteristic when 
H < Hc2· 

1. INTRODUCTION 

THE present paper is an attempt to account for 
the so-called "resistive" effects due to the exist­
ence of a finite resistance) in superconductors. 
These effects are observed in superconducting al­
loys (superconductors of the second kind) that are 
in a mixed state when an applied magnetic field 
has a component perpendicular to the transmitted 
current ([ 1• 2l etc.). To account for the observed 
potential difference (or the electric field) it is usu­
ally considered that magnetic flux lines penetrating 
the superconductor are set into motion by the Lo­
rentz force in a direction perpendicular to both the 
current and the magnetic field. The velocity of 
this motion depends on defects-inhomogeneities, 
internal strains, etc., in a given sample, which 
impede the motion of the lines. In the case of 
small currents (and therefore a small Lorentz 
force) the lines remain motionless (pinned). A 
completely superconducting current can then flow, 
having a critical value that increases with the con­
centration of defects. Supercritical currents are 
accompanied by resistance, but when j « jcr this 
resistance is independent of the defect ·concentra­
tion. [ 2l 

The present work examines the causes of re­
sistance in homogeneous superconductors of the 
second kind that contain no macroscopic defects 
obstructing the motion of lines; in this case re-

sistance is always found. [ Sl 1) The mechanism of 
energy dissipation that is manifested by the resist­
ance is associated with the motion of normal elec­
trons in an electric field against the background of 
completely "superfluid" motion of Abrikosov lines. 
The resistance of the superconductor in the mixed 
state is then expressed in terms of the normal me­
tallic resistance. We note that a similar energy­
dissipation mechanism exists in connection with 
the Josephson effect[ 51 in superconductors at 
V -=1= 0. [ Sl This effect is very similar physically to 
the investigated dissipative processes in bulk 
superconductors, and many qualitative results can 
be derived from an analogy with the Josephson ef­
fect, particularly the conclusion that dissipative 
phenomena in superconductors should be accom­
panied by radio-frequency emission (Sec. 3). 

The method of solution used here is based on 
modified, time-dependent, Ginzburg-Landau equa­
tions. The equations are "derived" phenomeno­
logically in Sec. 2, and are applied in Sec. 3 to the 
motion of Abrikosov lines in an electric field with-

1 )The existence of resistance in the mixed state when 
j ...L H can also be derived from the hydrodynamic equations 
given in[•], In [•], however, these equations pertain to the 
case in which the characteristic dimension of the inhomogen­
eities is much greater than the distance between the flux 
lines. The present work investigates the situation near Hc2 

when these quantities are of the same order of magnitude. 
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out dissipation (a= 0). Finally, in Sec. 4 the dis­
sipative current in the mixed state and the resist­
ance of a superconductor in fields near the critical 
field He2 are calculated. 

2. PHENOMENOLOGICAL DERIVATION OF 
TIME-DEPENDENT GINZBURG-LANDAU 
EQUATIONS 

Anderson and Dayem[ 11 have suggested an 
"other" Ginzburg-Landau equation to describe 
nonsteady-state processes in superconductors: 

ih ("'· 8'~'-"' a'ljl·)- 2e!l>j'ljlj 2 ~ 0 (2.1) 
, at -at 

with 4> denoting the scalar potential. 2> 
The left-hand term is proportional to the fourth 

component of the 4-current, i.e., to the charge. 
Anderson et al. showed in [Bl that this equation is 
the direct consequence of the fact that, according 
to Gor'kov,[ 91 the wave fun.ctioft of a Cooper pair 
contains a phase factor e-2 ~p.t/ , where J.L is the 
chemical potential, which equals J.Lo(T, N) + e4>. In 
[ 101 and [ 111 equations were derived which govern 
the complex energy gap of superconductors for 
slow processes; however, these results apply only 
near absolute zero, and the gap equation is very 
complicated. It is also evident physically that at 
temperatures near Tc (or in other cases governed 
by the Ginzburg-Landau equation) slow nonsteady­
state processes should be governed by an equation 
that becomes the ordinary Ginzburg- Landau equa­
tion in the steady state; an equation of this kind is 
derived phenomenologically in the present section. 

We have derived a complete system of non­
steady-state Ginzburg-Landau equations by means 
of the variational principle for a quantity 

G = ~ drdtL(r,t). 

The validity of this variational procedure and the 
form of L(r, t) that will be given are, of course, 
phenomenological postulates. However, these ideas 
possess physical likelihood, since a superconduct­
ing condensate bears some resemblance to a me­
chanical system whose behavior is governed by the 
principle of least action, with the temperature T 
appearing in L(r, t) only as a parameter. 3> This 

2)More accurately, in accordance with [•], in this equation 
and all succeeding equations Cooper pairs should be repre­
sented by twice the charge and mass of an electron. For the 
sake of simplicity, however, we shall retain the notation e 
and m to denote twice the electronic charge and mass. 

3 )A similar approach based on the extremizing of a func­
tional, has been used in[u] to derive an equation for slow 
processes from a microscopic theory. I am grateful to the au­
thors of this paper for making their results available before 
publication. 

approach generalizes the derivation by Ginzburg 
and Landau, [ 121 who also suggested that the 
equilibrium-state equation could be derived by 
minimizing the energy (the free energy at T -:1= 0) of 
a superconductor in the presence of a magnetic 
field. 

We now proceed to determine the form of L(r, t), 
which contains, first of all, the customary term for 
the theory of phase transformations: 

(2.2) 

Since very rapid change of the order parameter !/! 
cannot occur, Ginzburg and Landau added the term 

_1 l(~v -~A)'Ijll2 
2m t c ' 

(2.3) 

to L; [ 131 the presence of the vector potential A in 
this formula follows from gauge invariance. 

It is reasonable to assume that in the nonsteady­
state case, since !/! cannot vary too rapidly in 
time, we must add to L a term similar to (2. 3) 
containing the derivative of l/J with respect to time 
instead of with respect to the coordinates. This 
gauge invariant expression is 

~I(~~+ e!l>)'ljll2 
8o t at ' 

(2.4) 

where Eo is a phenomenological parameter having 
the dimensions of energy. It is also evident that 
Eo must be a characteristic of the normal metal 
[like m in (2.3)] and should therefore be of the 
order of the Fermi energy J.L • 

The terms (2.2) and (2. 3) represent the "poten­
tial" energy of the given system. The added non­
stationary term (2.4) corresponds to the "kinetic" 
energy; its sign is therefore probably opposite to 
that of (2.3), so that Eo should be a negative quan­
tity. 4> We shall see that this leads to hyperbolic 
equations for !/! in agreement with [ 101 . (See the 
analogous equations for the Josephson effect in [ 61.) 

Finally, L must contain terms representing 
the energies of the external electric and magnetic 
fields; we can obviously add 

(IP - E2)' /8n. (2.5) 

We note that the value of Eo in (2.4) can be cal­
culated as follows. The thermodynamic potential 
of a metal in an external field is 

(2.6) 

where rlo(J.L) = E- J.LN and E is the energy. In a 

4 )Roughly speaking, L equals V- K, where K is kinetic 
energy and Vis potential energy, and is therefore the "Lag­
rangian" with reversed sign. 
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weak field ell we can use the expansion 

fJQo 1 fJ2Qo 
Q = Qo(J..tQ) + ...,.- eCI> + -2 ----;---z ( eC1>)2 +... (2. 7) 

vJ..to vJ..to 

The linear term of this expansion must be dropped. 
We have 8Q0 /oJJ. 0 = -N, where N is the total con­
centration of (normal and superconducting) elec­
trons. Since the metal is electrically neutral this 
must be the constant concentration Ni of positive 
charge in the lattice. In reality, (2.6) should in­
clude an additional term that represents the en­
ergy of ion cores in the external field ell and that 
is canceled by -Neell. Calculation of the next, 
quadratic, term of the expansion, utilizing the ex­
pression E = 3/ 5 NJJ. for the energy of a free elec­
tron gas and v0 to represent the Fermi velocity, 
we obtain 

Consequently the change of energy per particle is 
3e2ell2 /2mv2• rvv e note that the small corrections to 
all thermodynamic potentials, expressed in terms 
of the corresponding variables, coincide.) A com­
parison of this expression with (2.4) shows that 
E0 = - 2/ 3 mv5. We can also write this negative 
quantity as 

eo= -2m,v2, 

where 

v = vo;-y3 

(2.8) 

(2.9) 

is the velocity of collective excitations in an ideal 
Fermi gas[ 14 l (see also [B, 10 l ). In the purely phe­
nomenological approach v must be regarded as a 
parameter equal to the Fermi velocity in order of 
magnitude. 

By hypothesis the equations describing the 
state of a superconductor can be derived from 
oG = 0, where 

-_1_, ~ fJ¢ + eCI>¢ 12 + __!_ (H2- E2) }· 
2mv2 i ot S:rt 

(2.10) 

Taking A, ell, l/J, and l/J* as the independent dynam­
ic variables, we obtain 

1 ( li e )2 
- 7 V--A ¢ 
2m L c 

1 li f) ) 2 
- --(-:--+ eCI> ¢-a¢+ ~l¢12¢ = 0, 

2mv2 L fJt 

1 f) . 
Act>+-- d1v A= -4:rtp, 

c at 

(2.11) 

(2.12) 

1 fJ2A rf f) 4:rt 
AA- V divA------- Vet>= --j, (2.13) 

c2 at2 c f}t c 

where j and p are the superconductive current 
and charge, defined by 

(2.14) 

=__!_[ieli (.a¢_ fJ¢*)-~ct>l 121. (2.15) 
p v2 2m "' at "' at m "' 

With the Lorentz gauge of the potentials (2.12) and 
(2.13) become Dell= -47rp and DA = -41fc-1 j, 
where 0 is the d'Alembertian operator. However, 
we shall also make use of another gauge (Sec. 4). 

With regard to the foregoing ''derivation'' it 
must, of course, be mentioned that Eqs. (2.11), 
(2.14), and (2.15) are actually postulates, which in 
the steady-state case follow from the microscopic 
theory. [ 15 l We can hope to derive these equations 
also from the microscopic theory of superconduc­
tivity. The properties of (2.11) -(2.15) that prove 
their internal consistency are, first, their obvious 
gauge invariance and, second, the fact that the 
equation of continuity div j + op /ot = 0 follows 
automatically from (2.11) for l/J. We note that the 
foregoing generalization of the Ginzburg-Landau 
equations to apply to the nonsteady-state case is 
accomplished by introducing only one additional 
parameter (v). With this limitation the form of the 
nonsteady-state equations satisfying the aforesaid 
properties is essentially unique. However, the 
phenomenological theory cannot determine the 
sign of the second term in (2.11). It has been 
shown in [ 10 l that at T = 0 the equation for D. is 
hyperbolic and can assume the same for non-
zero T. 

3. MOTION OF ABRIKOSOV LINES IN AN 
ELECTRIC FIELD WITHOUT ENERGY 
DISSIPATION 

We shall here use (2.11) -(2.15) to describe the 
properties of the Abrikosov mixed state in an ex­
ternal electric field E 1 H. In the simplest case 
the magnetic field H is close to the upper critical 
value Hc2. At the same time l/!- 0; consequently, 
we can substitute j = 0 and p = 0 in the zeroth ap­
proximation in (2.12) and (2.13). We then chose the 
potentials A and ell in the forms 

Ao = (0, Hx, 0), Cl>o =-Ex (3.1) 

where H is the magnetic field in the z direction 
and E is the electric field in the x direction. 

Because of the assumption 1jJ- 0 in this case, 
the nonlinear term {3 11/! 12 1/! in (2.11) can also be 
dropped, permitting the solution 
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'iJ = const· eihy+irotqi(x), (3.2) 

for this equation; k and w are constants and cp (x) 
satisfies the equation 

d2cp ( eH )2 ( ro eE )2 2ma 
- dx2 + k- hex cp- v- ltv x cp = fi2CJl· (3·3> 

This becomes the equation of a linear harmonic 
oscillator with the solution 

[( kao-2- ~0-2 ro/v ) J cp(x)=q>n x- (ao-'-~o-4)'1• , 
, ao-4- ~o-4 

n = 0, 1',2, ... 

in which cpn(z) are Hermite functions and 

a=}!__{ (2n + 1) ( ao-4- ~o-4) 'i• 
2m 

(k~o-2 - ao-2 ro/v) 2 } 

+ ao-4- ~o-& · 

We have here introduced the notation 

ao2 =he I eH, ·~o2 =ltv I eE. 

(3.4) 

(3.5) 

(3.6) 

The quantity a0 is the smallest quantum­
mechanical radius of an electron trajectory in the 
magnetic field; [ 161 {30 is an analogous quantum 
length for the electric field when crossed fields 
are present. 

The highest magnetic field permitting super­
conductivity corresponds to n = 0 in ( 3. 5). [ 17 1 
Since the electric and magnetic field are taken as 
fixed, Eq. (3.5) provides a relationship between 
k and w: 

'00 = kv(aol ~o)2, 

which in conjunction with (3.6) yields 

ro =ekE/H. 

(3.7) 

(3.8) 

It is important to note that v drops out of this re­
lationship, which thus holds true independently of 
the model. 

The solution (3. 4) corresponds to decrease of 
the order parameter with increasing distance from 
the point x = Xo = ka~ and vanishing for x - ±co. 
Since this point is not actually distinguished in any 
way, we must, as in the case E = 0, [ 171 superpose 
solutions such as (3. 2): 

Furthermore, ll/J I must be a periodic function 
of x. It follows[ 171 that Cn+N = Cn, where N is 
a number. With N = 1 we obtain an Abrikosov line 
structure possessing the symmetry of a square lat­
tice;[171 with N = 2 the symmetry is triangular.Usl 

In both cases we obtain the same qualitative pic­
ture of all effects that interest us. However, N = 1 
is simpler mathematically and will be the case 
considered in the present work. For l/J we then 
have the form[ 171 

"" . (x-nxo) 'IJl = c LJ e•nh(y+vot) q>o 0 ' 

n=-co 'V 
(3.10) 

where 
Vo = eE I H, 'Vo = (ao-4- ~o-4)-'i•, <po(z) = n-'l•e-z'l•. 

(3.11) 
Here v0 is the electron drift velocity in the 
crossed electric and magnetic fields. We shall 
now consider some consequences of the derived 
formulas. 

1. It follows, first of all, that in the presence of 
an electric field superconductivity disappears as 
H increases while differing from the upper criti­
cal field for E = 0. In other words, Hcz is a func­
tion of E; Hc2(E) is determined from (3. 5) for 
n = 0 [the second term in the curly brackets van­
ishes by virtue of (3. 7)1. We obtain 

(3.12) 

The presence of an electric field perpendicular 
to the magnetic field thus elevates Hcz , the upper 
critical field for superconductivity. 5> However, in 
practically all hitherto investigated cases the sec­
ond term on the right-hand side of (3.12), which 
represents the increase of Hcz as a function of E, 
is negligibly small when compared with the first 
term. For example, in the experiments of [ 11 we 
have Hcz = 3.5 x 103 Oe and E = 1.3 x 10-3 V/cm, 
yielding cE/vH ~ 0.5 x 10-6 « 1. 

Elevation of the upper critical field is thus 
found to be practically nonexistent in the described 
experiments, but we can expect an observable de­
pendence of Hcz on E in some cases. A possi­
bility of this kind is presented by superconducting 
semiconductors,[ 191 where v can be much smal­
ler than the Fermi velocity in metals. At the same 
time, because of the small concentration of car­
riers, i.e., the poor conductivity, considerably 
higher field strengths E can be obtained. In addi­
tion, with E = 0 we also find small values of Hcz 
for these materials, thus increasing the relative 
contribution of the second term in (3.12). 

The value of the constant C in (3.10) should be 
obtainable by taking into account the nonlinear 
terms in (2.11). However, for cE « Hv, i.e., 

S)We note that Hc2 will be a decreasing function of the 
electric field for elliptic equations. The other conclusions do 
not depend on the type of equation. 
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f3o » ao (which case will be considered hereafter) 
C should coincide with the value obtained by 
Abrikosov in the absence of an electric field. [ 17 J 

Using l""iF = C2/&, where the bars denote aver­
ages, we obtain, on the basis of [ 17 J, 

{)li = me Hc2- H 
eli ~ -y2Jl(2x2- 1) ' 

00 2 1 
~ = ( ~ e-"n') = 1.18, X> 2 , 

n=-oo l 
(3.13) 

where the Ginzburg- Landau parameter K equals 
the ratio of Hc2 to -12 Hem (Hem is the thermo­
dynamic critical field). 

2. The most important difference between the 
presently considered case and that of E = 0 is the 
time dependence of the order parameter 1/J. Equa­
tion (3.10) describes the motion of the Abrikosov 
line structure in the direction perpendicular to E 
and H with the velocity v0 = CE/H; this agrees 
formally with the electron drift velocity in crossed 
fields. However, this is only a "wave" motion that 
does not result in charge transport, as can easily 
be proved by calculating the mean density (in space 
and time) of the current j. Substituting (3.10) into 
(2.14), we easily obtain r = o. 

Equation (3.10) shows that at every point in 
space 1/! is an oscillating function of time with the 
frequency given by (3.8): 

e E 
v=-­

xo H' 
(3.14) 

where Xo is the period of the Abrikosov structure. 
When E- 0 the value of Xo is derived subject to 
the condition that the period ka~ of 11/! I in the x 
direction coincides with the period in the y direc­
tion, which is 27!/k according to (3.10). Then 
k = ko = -&;a0, or 

Xo =! (he I eHc2) '''· (3.15) 

The frequency is easily computed by means of 
(3.14) and (3.15). Using the aforementioned experi­
mental data/ 1J we obtain Xo ~ 1.1 x 10 -s em and 
v,:.., 3 x 106 cps. A very wide range of v is asso­
ciated with variation of E. 

The oscillations of 1/J (which are oscillations in 
the density of the "superconductive electrons" and 
superconductive current at each point in space) re­
semble the oscillations of the Josephson tunneling 
current [ SJ in the presence of a potential differ­
ence between metals. In the absence of energy dis­
sipation these are only "virtual" oscillations in 
the sense that they do not lead to the emission of 
real photons. However, when the oscillating cur­
rent interacts with a field of electromagnetic oscil-

lations so that energy is dissipated, electromag­
netic energy can be emitted with the frequency 
given by (3.14) or (3.8). In this case we obtain the 
Josephson frequency relation[ sJ 

2eV = liw (3.16) 

where V is the potential difference between the 
metalsY 

4. ENERGY DISSIPATION IN A SUPERCONDUC­
TOR FOR H ± E NEAR THE UPPER 
CRITICAL FIELD 

We assume in this section that dissipative proc­
esses in a superconductor can be accounted for by 
adding to the right-hand side of (2.13) the "dis­
sipative" current 

j diss = aE = a (- _! oA- V <D ) ' 
\ c at 

where a = Nne2T /m is the effective conductivity. 7> 

This method of considering relaxation effects in 
type II superconductors can be justified by the 
fact that there are few superconductive electrons 
near the upper critical field and their influence on 
normal conductivity can be neglected. (Specifically, 
a can be regarded as coinciding with the conduc­
tivity C1N of a normal metal.) Under these condi­
tions the superconducting and normal systems ex­
ist independently of each other. The influence of 
the first system on the second can be neglected 
because for H- He2 we have 1/J -0. The influ­
ence of the normal system on the superconducting 
system will also be weak in the case of small 
damping. It will be shown here that this situation 
is realized when the product a w is much smaller 
than a certain quantity: 

aw ~ &-ko2 I 4n. (4.1) 

This inequality is ordinarily satisfied in a very 
wide range of field strengths far from Hc2 [see [ 1] 

and Eq. (4.22)], but the condition Ns « Nn holds 

6 >From a rigorous point of view, our analysis thus far, 
which pertains to an unbounded metal, shows only that energy 
loss occurs through rf radiation accompanying the motion of 
flux lines. This radiation is absorbed within the metal, where­
as in reality the radiation would be observed only outside of 
the metal. To evaluate the radiated power we require an analy­
sis that allows for the existence of boundaries; this would go 
beyond the present paper. 

7>Moreover, Eq. (2.12) should also include an analogous 
additional term pdiss = p'derived from the condition 
ap'/at + div jdiss = 0. This term, which represents an addi­
tion to normal electron density, is ordinarily very small in me­
tals, since in all sufficiently slow variable processes practi­
cally complete charge compensation exists. 
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true only near Hc2• Rigorous inclusion of relaxa­
tion effects for arbitrary H is extremely compli­
cated and requires a separate discussion. 

On the basis of the foregoing hypotheses the 
calculation of the dissipative processes is reduced 
to the following. The oscillating current and 
charge, expressed in terms of 1/J = lf!o through 
(2.14) and (2.15) (in which we can assume A = A0 

and <I> = <I> 0) produce oscillating additions to the 
vector and scalar potentials A and <I>. We denote 
these additions by A1 and <I>2• Choosing the gauge 
of the potentials such that <I>1 = 0, we obtain from 
(2. 3) the following equation for A1 (the term 
-c-282Atf8t2 being negligible): 

~At - V div At - 4na i.IAt = - 4n J'o ( 
e2 at e ' 4' 2) 

where j is defined by 

. ieli • ez 
Jo = -2-(¢oV'\jlo - '¢o*V'Ijlo)- -Aol¢ol 2, 

m me 

and where, in accordance with (3.10) and cE « Hv, 
00 

'\jlo = C n~:inho(y+vot) c:po (X : nxo) • ( 4, 3) 

Substituting into (2.11) the expression for A1 
derived from (4.2), we obtain an addition to lf!. Ac­
cording to (2.11) the equation for 1/!1 is (with 
cE « Hv) 

[ 1 r 1i e \2 J 
2m~ TV - c Ao) - a ¢ 1 

e [ (!i e ) 1i J = - At --:- V --Ao +--:- div A1 '¢o. 
me .I e ~ 

(4.4) 

Finally, 1/!1 is used to calculate the correction 
to h, which has a nonvanishing average (j1 1- 0): 

:-- 2eli - • ( V e ) e2 ---
J1=--Re¢1 -;---!i-Ao ¢o+-Atl'¢ol 2 (4.5) 

m 1 e me 

representing a current that in the presence of a 
potential difference leads to energy emission in 
the given sample. In the first step of the calcula­
tion we obtain the addition to the vector potential 
A1 from (4.2). Using (4.3), we easily obtain8> 

jox =- jo ~ exp {ipkox + iqko(Y + Vot)} iqC(p, q), 
p, q=-oo 

joy= jo ~ exp {ipkox + iqko(Y + v0t)} ipC(p, q), 
p, q=-oo 

joz = 0, 
_ 2n 
!;0 = -, 

Xo 

enk jo = __ o_ C2, 

m 
(4.6) 

S)It follows from the given equations that div j 0 = 0 as an 
approximation when cE << Hv. 

where 

C(p, q) = ~ ~ e-2rripz c:p0 (z12n)c:po( (z- q)12n)dz. (4.7) 
-00 

Elementary integration yields 

1 . 
C (p, q) = -=e-~<P'+q')/2 e-ntpq. (4.8) 

212n 

The solution of ( 4. 2) is 

4njo ~~ . . iqC (p, q) 
A1x =- --;- L! exp {tpkox + lqko(Y + vot)} . 

cko2 p2 + q2 -+- 1qe 
p, q=-00 ' 

4njo ~ . . ipC(p, q) 
A 1y = -- L! exp {tpkox + lqko(Y + vot)} -----. -, 

cko2 - p2 + q2 + tqe 
p, q---00 

(4.9) 

(showing that div A1 = 0), where we have intro­
duced the notation 

(4.10) 

The Fourier component of A1 with p = q = 0 
cannot be derived from (4.2), but we can assume 
that this component vanishes because it clearly is 
not essential for determining E1 and H1 and can­
not alter the value of h-

Equations (4.9) enable us to obtain the alterna­
ting parts of the electric and magnetic fields asso­
ciated with the motion of flux lines in superconduc­
tors: 

4njovo ~' 
E1x =-2;-:- .L.J exp {ipkox + iqk0 (y + v0t)} 

C !CO 
p, q=-00 

X q2C(p, q) 
pz + qz + iqe' 

4 . 00 

E 1y = __ n]oVo 2,;' exp {ipk0x + iqko(Y + vot)} 
c2lco 

p, q=-oo 

4:rtjo ~' . . 
H1z = - -- .L.J exp { tpkox + tqko (y + l'ot)} 

cko 
]J, q=-00 

(4.11) 

(4.12) 

(4.13) 

where the primed summations denote, as hence­
forth, that the terms with p = q = 0 have been 
dropped. 

We calculate the correction to lf! by substituting 
the derived expression for A1 into (4.4), which can 
be solved as a series: 
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'!lt = n~:inko(y+vot~~o amCf!m( X ~o nxo ) ' (4.14) 

where fPm (z) = (2mm 1-v";) -i/2 Hm(z) e -z2/ 2 are 
normalized Hermite functions and Hm(z) are Her­
mite polynomials. It will become evident that a 
contribution to the mean current comes only from 
the coefficient a1 in this expansion. Substituting 
(4.14) into (4.4), we obtain 

4eao3 fnjo c ~' (q- ip)C(p, q) D( ) (4 15) 
at = ftc2 LJ p2 + q2 + iqe p, q ' • 

p, q=-oo 

where 

D(p, q)= !Ie2"irzcpt(zi2n)cpt((z+q)y2n)dz. (4.16) 

Comparing ( 4.16) with ( 4. 7), we obtain (with the 
substitutions p for - Pz and q for - q) 

D(p, q) = -~ a2~(:, q) = [1- n(pz+ qz)]C(p, q). 
m p q 

(4.17) 

The substitution of ( 4. 9) and ( 4.14) into ( 4. 5) yields 

_ C ehk0 8ne2jo ~, iqC2(p, q) 
j1x =--= -- Im at+--- C2 LJ 

ni2 m mc2k02 p2 + q2 + iqe p, q=-00 

(4.18) 

]ty =- : ehko Reat- 8ne2jo C2 ~' ipC2(p, q) 

n1'2 m mc2k02 p2 + q2 + iqe 
p, q=-oo 

(4.19) 

Finally, the expression for a1 in (4.15) must be 
substituted here. It is easily verified that the 
mean value of h y in the given approximation van­
ishes, while hx is given by 

8nex0j02 00 00 (p2 + q2) q2 
]tx= ftc2k2 e ~ ~ ( 2+ 2)2+ 2r:,2C2(p,q),(4.20) 

0 q=! p=-00 p q q 

and h is obtained from (4.6): 

jo =· C2ehko I m, 

where C is given by (3.13) when H- He2. 

(4.21) 

We note that the mean current l1x represented 
by (4.20) vanishes in the two limiting cases €- 0 
(the absence of dissipation) and € - oo (infinitely 
large dissipation). The Josephson current exhibits 
similar behavior as a function of the single-parti­
cle resistance. [ 201 

The parameter € is found to be very small in 
actual experiments. [ 1• 21 Thus for the already 
cited experiment in [ 11 we have a"' 2 x 1017 sec -i 

and v0 "' 40 em/sec, yielding €"' 2 x 10-7. The 
condition € « 1 is equivalent to the inequality (4.1) 
postulated at the beginning of the present section 
(with w = kov0). This condition can be rewritten as 

(4.22) 

where o = (c2/47raw)1/ 2 is the skin depth for a 
normal metal; we thus have the condition for a 
weak skin effect. 

Assuming € « 1, we obtain from (4. 20) 

(4.23) 

where 

00 00 2 

'\' = ~· ~ Ae-"<P'+q') = 0.046, (4.25) 
q=t p=-oc,P + q 

and A-0 is obtained from 

f..o2 = mc2 I 4ne2C2. (4.26) 
The quantities h and A.o have the qualitative 

meanings of the "critical current" and the "Lon­
don penetration depth. " Far from HC2 they actu­
ally are of the same order of magnitude as the 
critical current density in a superconductor and 
the London penetration depth, although for 
H- H02 we have j 0 « j 0r and A-0 » Lv 

Our result shows that a1 « aN near H02, i.e., 
the resistance of a superconducting metal then 
differs insignificantly from its normal resistance. 
On the other hand, far from the upper critical 
field a1 can become of the same order or substan­
tially larger than UN· so that the resistance of the 
metal will be substantially smaller than RN. This 
agrees qualitatively with the experimental depend­
ence of R/RN on H that was observed in [i, 21 

and elsewhere. The theory also leads to a linear 
relationship, agreeing with experiment, between 
the potential difference and the transmitted cur­
rent [see Eq. (4.23)]. A more detailed calculation 
of the function R(H) for magnetic field strengths 
not limited to the vicinity of H02 and a comparison 
with experiment will be published later. 

In conclusion, we shall discuss the rf power 
radiated when the flux lines move in an electric 
field (see Sec. 3). Unfortunately, it is difficult to 
calculate the intensity of this radiation because 
the conditions for its observation are not fully un­
derstood. As a general rule, the power of interest 
here is determined from a tot - aN= a1, i.e., 
w"' wo(RN- R)/RN, where wo = V2/RN· However, 
this determines only the energy absorbed inside 
the sample. For radiation into exterior space the 
energy is obtained from (3.11)-(3.13), in which we 
can assume € = 0, for the time-dependent portions 
of the fields E1 and H1. s> The energy also depends 

9>From (4.11)-(4.13) we easily derive E1/H 1 "' E/H « 1, 
i.e., the variable fraction of the electric field is considerably 
smaller than the variable fraction of the magnetic field. 
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on the parameters of the device (resonator) with 
which it is registered. Moreover, boundary effects 
are important in this calculation (see footnote 6>). 

We note, finally, that in principle there are ad­
ditional effects inverse to rf emission when a 
dissipative current flows through a semiconductor. 
Indeed, the irradiation of a semiconductor with rf 
power should alter the form of its current-voltage 
characteristic; singularities of the function I(E) 
are associated with values of E that are related to 
the irradiating frequency v by (3.14). This effect 
is entirely analogous to the Shapiro effect for the 
Josephson tunneling current. [ 21l 

The observation of the aforesaid effects-the 
emission of electromagnetic energy and the reac­
tion of the irradiation on the de resistance-is ren­
dered difficult by the additional circumstance that 
under real conditions the structure of the mixed 
state is not a completely regular system of Abriko­
sov lines. The irregularities result in "smearing" 
of the emitted frequency bands and in a diminished 
influence of irradiation on resistance. 
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