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The process of the emission of two photons of arbitrary energy into a given angle in electron 
collisions is considered. The cross section daw1w2 has the form of a power series in w1 and 
w2. In the case in which the angular dimension of the detectors J 0 is of the order of 1/y, the 
coefficients of the powers of w1,2 were calculated numerically. In the case J 0 » 1/y, an 
analytic expression was obtained for the cross section. 

J. The process of emission of two photons of arbi
trary energy in electron collisions has been studied 
by Galitskir and one of the authors. [1-3] This pro
cess is of great interest for current colliding-beam 
experiments for two reasons: 1) it can be used as 
a monitor in the recording of collisions of beams; 
2) in the case of electron-positron collisions, the 
process of double bremsstrahlung competes with 
the process of two-quantum annihilations; this is 
connected with the fact that the cross section of the 
double bremsstrahlung, in contrast with the cross 
section of the double bremsstrahlung, in contrast 
with the cross section of the two-quantum annihila
tion, does not fall off with increase in the energy of 
the colliding particles. 

The cross section of double bremsstrahlung 1> 

daw w had previously [1-3] been found with an ac-
1 2 -2 < I . curacy up to terms of order y y == E m, E 1s 

the energy of the initial electrons in the center-of
mass system). This cross section was integrated 
over the final states of the electrons (inasmuch as 
electrons are not recorded) and over all angles of 
flight of the photons (thus assuming that the angu
lar dimensions of the detectors of the photons are 
much larger than the characteristic angle of emis
sion 1/y). However, in real experiments on the 
study of double bremsstrahlung, which take place 
at relatively low energies, the angular dimensions 
of the detectors 2J0 are comparable with the quan
tity 1/y (for example in the VEP-1 installation at 
NovosibirskF4J E = 43 MeV, J"' 3/y). In this con
nection, the cross section of emission of two pho
tons into a given angle is of interest. For sim
plicity we assume that the angles of the two de-
tectors are identical: J 10 = J 20 = J 0, although, as 
is shown at the end of the article, it is easy to 

l)Tbe notation used in this paper will be that of[•-•]. 

~~ 

1.00 

generalize the approach to include the case of de
tectors of different dimensions. 

2. For a qualitative understanding of the situa
tion arising in the given problem, let us consider 
the emission of classical photons. [ 1] In this case, 
it is easy to obtain the cross section of emission 
into a given angle, inasmuch as the contribution of 
each of the classical currents is integrated inde
pendently. We consider the integral over the 
square of the momentum transfer .l2/m2 = 4x2 

[Eq. (53) of the earlier paperC2J]. The integrand 
f ( x) is shown in the drawing for the cases 1) all 
angles of emission of the photons are permissible 
(f(x) = q,2(x2)/x3) -curve a; 2) the angle of emis
sion of the photons is not larger than Jo = 1/y -
curve b. It is seen that the principal contribution 
to the integral is made by the region x "' 1. In as
much as the characteristic angle of emission of the 
photons is Jk- 1/y, we cut off for J = 1/y, the 
significant part of the region of integration over 
the angle of emission of the photon, which appreci
ably decreases the integrand in the integration over 
x, all the more since this applies to each of the two 
photons. Moreover, for x > 1, the probability of 
emission of the photon is small for small Jk and 
reaches a maximum only for Jk- 1/y, which leads 
to an additional suppression of the integrand when 
J 0 = 1/y, which thus falls off more rapidly when 
x>l. 
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As a result, the cross section of emission into 
the angle J 0 = 1/y amounts to only a small fraction 
of the emission cross section integrated over all 
photon-emission angles. 

3. We now proceed to a consideration of the 
emission of photons of any energy into a given 
angle. With this aim, we transform Eq. (3) of [3] 
to the following form: 2> 

dcr = -~~:__ d~1 d62 I dts.2 dR1 dR2 (1) 
(2n)3 ~~ ~2 J t.• ' 

where 

dRI = r _ _!_ + !}.2[1 + (1- s~):J + 4(1- ;~> 
~ Xa2 2x1 Xa 

d3pa 
X tJ (PI + t1 - Pa- k1) ;~-- dx1 dxa diJl~, 

ea 

dR2 = dR1 (PI--+ P2, Pa--+ p,., 

kj--+k2, !1--+-!1, 1Jl1--+1Jl2); (2) 

Here Pi• P2 (p3, P4) are the momenta of the initial 
(final) electrons, kt. k2 the momenta of the pho
tons, 

~; = w; I e, X1 = - ( ktPt), X2 = - ( k2P2), 
Xa = -(k!Pa), X4 = -(k2P4), 

and cp 1, 2 are the azimuthal angles of flight of pho
tons in the center-of-mass system under the con
dition that the respective directions of the vectors 
Pt. p2 are taken for the polar axes. Inasmuch as 
integration over the angles of flight of the photons 
(variables Kt. K2) is within specified limits, it is 
expedient to change the previously used order of 
integration [2•3] and carry out the integration over 
the variables K3 and K4 first. 

Carrying out integration over d3p3 dcp 1> we obtain 

S . d3pa 2 
tJ (PI + t1 - k1 - Pa) --dljl1 = --:---, 

Ea g Slllljl! 
(3) 

where g sin CfJ1 = .fU;; U1 is a quadratic form of 

(4) 

The limits of integration with respect to K3 are 
determined by the zeroes of the function U1. This 
fact is easily understood from simple kinematic 
considerations. The fact is that cp 1 is the angle 
between the planes (Pt. ~) and ( p1, k1), while the 
angle between the vectors p1 and k1 is a constant 
[inasmuch as the quantity K1 = - (p1k1) is fixed]. 
When CfJi changes from zero to 271", the function K3 

= K3 (cos cp 1) takes on all values inside the inter
val of integration; therefore the limits of integra
tion over K3 are determined by the condition 

2 >Here and in what follows, m = 1. 

dK3 /dcp 1 = 0, from which follows sin cp 1 = 0. Here, 
all four vectors p1, p3, kt. and ~. lie in the same 
plane. 

In accord with the statement of the problem, we 
shall compute the principal term in the expansion 
of the cross section in powers of E-2 [2•3J. Inas
much as we shall carry out the integration over K1 

to the upper limit K1 max « E2, we discard terms 
of order K1/E2 in the expression for U1 (the co
efficients a, b, c in Eq. (4)). Furthermore, in the 
case of arbitrary angles of photon emission, the 
upper limit of integration over K 1 is proportional 
to t::2 and therefore, in view of the convergence of 
the integral we can set the upper limit equal to in
finity within the assumed accuracy. In view of this 
fact, the main contribution to the integral over K1 

is made by small K 1 ( K 1 ~ 1 ) , so that one can al
ways discard terms of the order K1/ t:: 2.C2J As a 
consequence of the fact that at the upper boundary 
of the region of integration over the variables K3 

and K4, these quantities are of the order of Kt. K2, 

1::12 (but not t::2 ), and with account of the fact that 
the fundamental contribution to the integral cross 
section is made by K1, K2 ...... 1 (see above) and 1::12 
~ 1, [2•3] we also neglect terms ...... K4 I E2. Making 
the approximations shown above, we obtain 

C = - ( f - ~1)2, b = 2 (1 - ~!) [ x 1 + ~~:2 
] , 

( ~~/}.2 )2 
a=- X!- -2- - ~~2!12. (5) 

It is seen that the function U 1 does not contain the 
quantity K4• Thus, with the specified accuracy, it 
has been shown to be possible to carry out the in
tegration over variables that pertain to each of the 
photons independently. [2,3] 

Integrating R1 with respect to K3, we get 

We also have 

We now proceed to integration over K 1• The 
lower limit of integration is determined by the 
condition Jk = 0, whence, with accuracy up to 
terms in c 2, we get K 1 min = ~ 1 /2. The upper 
limit of integration in K1 is determined by the 
limiting angle of emission of the photon J 0: 

Xtmax == ~1e2{1- ~cos ~o) = ~tXo. 

If we put J 0 = n/E, then K0 = n2/2 for n «E. 
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Carrying out the elementary integration with re
spect to K1 (and correspondingly K2 ), we obtain 
the following expression for the cross section of 
the double bremsstrahlung: 

dcr = 8ro2a2 d6t d62 S dx 
:rt 6t62 x3 

{ X -x (1-6t)<l>(x2)+6t2 ln(x+l'1+x2) 
1'1 + x2 

- F(x, xo, 6t)} { (1- t2)<l> (x2) 

(8) 

where 

F( r: )-1 ~(1-.st)+[2(1-6t)+st2]x2 
x,xo,<ot --

4 xy1 +xz 

Xln (2x(1- x2)- xxo + "Y (1 + x2)Ro) 

' Xo[l'1 + x2 - x] 

(9) 

(10) 

It is clear that as Ko ~co, the function F(x, K0, ~ 1 ) 

- 0, so that Eq. (8) transforms to Eq. (4) of [3]. 

It is easy to see that as x - 0, the component 
F ( x, K 0, ~ 1 ) , similar to the remaining part of the 
expression lying in the curly brackets, is propor
tional to x2, so that the lower limit of integration 
over x can be set equal to zero as before. Simi
larly, the upper limit of integration over x can be 
set equal to infinity. 

4. The single integrals entering into Eq. (8) can
not be computed in analytic form; therefore they 
were calculated by means of an M-20 electronic 
computer. 

The cross section of the double bremsstrahlung 
into a given angle is represented in the form 

(11) 

Numerical values of the function 11m ( n) are given 
in Table I. 

5. In the range of values 1 « n « E, it is pos
sible to obtain an analytic expression for the de
sired cross section. In this case the asymptotic 
expressions for the coefficient 11m ( n) in Eq. (11) 

Table I. Values of the coefficient 11m ( n) 
in Eq. (11) 

1h (n) 11o (n) 1la (n) 
n 

{&o=~) Elect., Eq. Elect., Eq. Elect, I Eq. com• (12) com- (12) com• (12) _puter puter puter 

1 0,081 - 0.065 - 0.053 -
2 0.406 - 0.311 - 0,237 -
3 0.743 - 0.,555 - 0.412 -
4 1,02 1.07 0.744 0.748 0.543 0.534 
5 1,23 1.24 0,885 0.881 0,638 0.631 

10 1. 77 1.77 1.23 1.23 0.863 o:s62 

have the form 

5 7 1' [ :rt2 11] TJt(n)=-+-t(3)-- 10ln2n--+-
4 8 n2 2 2 ' 

1 7 1 [ :rt2 9] TJ2(n)=-+-t(3)-- 10ln2 n+5Inn--+- , 
2 8 2n2 2 2 

TJa(n) = 2.t(3)- _!_[5ln2 n + 5ln n- :rt
2 + ~] 

8 2n2 4 2 · 
(12) 

As is seen from Table I, beginning with n = 4 the 
results obtained with the help of Eq. (12) are in 
excellent agreement with the results of the numeri
cal calculation. 

6. We have considered the case of symmetric 
detectors. In the case of nonsymmetric detectors, 
one can use Eq. (8) directly, but each function 
F(x, Koi• ~i> will depend on its own limiting angle. 
Chief interest centers on the case when the angu
lar dimensions of one of the counters are very 
large ( J-20 » 1/ E ) , and those of the second are 
small ( J-10 ""' 1/ E ) ; then for one of the photons, one 
can carry out integration over all the angles of 
flight of the photon (as in [1- 3] ), and for the emis
sion of the second photon we can make use of the 
approach of the present paper. The cross section 
of the process is represented in the form 

(13) 

The values of the functions 1-lm ( n) are shown in 
Table II. For the case 1 « n « E it is easy to ob
tain the asymptotic expressions for these functions: 

5 7 3 
Jl.t(n) = 4' + 8 t(3)- n2 [2ln2 n + 1], 

1' 7 1[ 3] JA.z(n)="2+gt(3)- nZ 3ln2n+Inn+ 2 , 
1 7 1 

Jl.a(n) = -+ -t(3)--{3ln2n + 2lnn + 1], 
2 8 n2 

J.L4 (n) = ~t(3)-~[ln2 n+ Inn +.!..2]. 
8 2n2 

(14) 
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Table U. Values of coefficients ~-tm(n) in Eq. (13) 

"'' (n) IL• (n) 
n 

(&.=i) Elect., Eq. Elect. I Eq. 
com- (U) com• (14) 
puter puter 

1 0.299 - 0,281 -
2 0.805 - 0.628 -
3 U6 - 0.859 -
4 1.40 1.40 1.01 1.01 
5 1.56 1;56 1.12 1,12 

10 1.95 1.95 1.35 1.35 

These expressions, as also Eq. (12), beginning with 
n = 4, are in excellent agreement with the results 
of numerical calculation (see Table II). 

The authors express their gratitude to A. P. 
Onuchin for discussion of the problems associated 
with the experiment and G. I. Rusov and E. Z. Bo
rovskil' for help in the numerical calculations. 
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