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Infrared absorption by local oscillations in H-and D- ions in alkali halide crystals is consid
ered. It is shown that the largest contribution to the line width is from scattering of the oscil
lation of the fundamental lattice by impurity atoms. The conclusions regarding the tempera
ture dependence of the line width are in satisfactory agreement with the experimental data 
now available. 

THE introduction of even a small number of im
purities into a crystal changes radically the spec
trum of its lattice vibrations. In particular, for 
light impurities, with mass M' much smaller than 
the mass M of the atom of the host lattice, local 
vibrations occur in the lattice spectrum, with fre
quency wloc larger than the maximum frequency 
of the pure lattice wL [1- 3]. These oscillations · 
produce in the crystal a first-order electric mo
ment, which leads to resonant absorption of light 
at the frequency Wloc· 

Such absorption was first observed experimen
tally by Schaefer [4], who introduced H- and D- ions 
in alkali-halide crystals. A detailed study of the 
temperature dependence of the line width of this 
resonance absorption was carried out by Mirlin 
and Reshina [5] for KCl and KBr and by Hayes et 
al. [6] for CaF2• They found that the temperature 
dependence of the line width is intermediate be
tween linear and quadratic, that is, it is of the 
same type as the temperature dependence of the 
line width of the fundamental absorption by the 
pure latticeD]. It can therefore be assumed that 
in this case, too, the braodening can be attributed 
to anharmonicity of the lattice vibrations. 

The H- ion produced in the investigated case 
is a local level with frequency WH > 2wL. It is 
obvious that the width of this level 'YH can be de
termed only by the fourth -order anharmonic term. 
The D- ion gives a local frequency WL < w n 
< 2wv The width of this level Yn can be governed 
by anharmonic terms of either third or fourth or
der. It would be natural here to expect that YH 
< Yn· Experiment shows, however, that this rela
tion is true only for temperatures T much lower 
than the Debye temperature ®. At high tempera-

tures the width 'YH turns out to be larger than 'YD· 
Another curious fact is that the line widths depend 
in marked fashion on the temperature when T < ®. 

A theoretical analysis of the local-peak width 
connected with third-order anharmonic terms was 
carried out by a number of authorsC8- 13J. The in
fluence of fourth-order anharmonicity, which leads 
to decay of local oscillations into three phonons of 
the host lattice, was investigated by Zavt et al.C14J 
Hayes et al. [ 6] were first to note that due allow
ance for the anharmonic fourth-order terms leads 
to processes corresponding to anharmonic inter
action between the local oscillations themselves. 
There is a process that describes "scattering" of 
the oscillation of the host lattice by the impurity 
atom. The corresponding energy conservation law 
is of the form Wloc + w1 = Wloc + w2• It was indi
cated in [6 J that observed experimental relations 
can be attributed to a process of this type. Re
cently Krivoglaz et al. [ 15] obtained an explicit ex
pression for the probability of such a process. A 
general theory of the width of the local level, de
veloped by Maradudin [16], contains in principle 
all the processes connected with allowance for 
the anharmonic terms of third and fourth order. 

In none of the foregoing investigations, how
ever, were attempts made to show that in alkali
halide crystals the process considered in [6] 

makes the greatest contribution to the width of 
the local level at high temperatures. The present 
paper is devoted to establishment of the fact that 
this process is decisive for the width of the local 
levels of H- and D- ions in alkali-halide crystals. 
We use a coordinate representation, in which one 
can readily see at each stage all the physical pa
rameters that permit various simplifications in 
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the theory. The developed theory confirms quali
tatively the experimentally observed resularities. 
Namely, at high temperatures the relative widths 
satisfy the relation YHIYD,:::; (MD/MH) 1/ 2 > 1 for 
the isotopic defect considered in nearest-neighbor 
approximation. At low temperatures, the afore
mentioned "scattering" process is insignificant, 
and then the width ratio is reversed: YHIYD < 1. 
Under certain assumptions it is also possible to 
attribute to this scattering the dependence of the 
line width on the temperature when T < ®. 

1. ABSORPTION COEFFICIENT IN THE ANHAR
MONIC APPROXIMATION 

For small impurity concentrations we can con
sider absorption by a single impurity atom lo
cated at the origin, and multiply the result by the 
number of impurities in the volume under consid
eration. In this case the coefficient of absorption 
of infrared light at frequencies w ,:::; Wloc > WL can 
be represented in the form [10 • 17 , 18] 

e2 
K(w) =- cd-fi ImDetpR(O, 0; w)eetep, (1) 

Vo 

where 
co 

DetpR(lx, l'x'; w) = ~ dt eirot <{uw(lx; t), up(l'x'; 0)]> 
(2) 

is the single-particle retarded Green's function of 
the lattice containing the impurities. Here ua ( lK; t) 
is the a -component of the displacement of the K -th 
atom in the Z-th unit cell at the instant of time t; 
the angle brackets denote the averaging ( ... ) 
= Sp ( e -{3H . •• ) ; cd is the impurity concentration, 
e the effective charge of the impurity atom, b0 the 
unit-cell volume, and ea the unit vector of light 
polarization. 

An essential factor in the derivation of (1), as 
shown by Kagan and Iosilevskil [B], is that when a 
light impurity with mass M' much smaller than the 
mass of the host-lattice atom M is introduced, the 
maximum amplitude at the frequency wloc is pos
sessed by the oscillation of the impurity atom, 
whereas the displacements of the atoms of the host 
lattice are small. This result was also obtained by 
Montroll and Potts [20 ] for a one dimensional model 
of the lattice and by Maradudin [21 ] for a single
atom lattice. The latter has shown that terms of 
the type D~f3(0, l; w ), which depend on the host
lattice atom positions, l "' 0, contain small ex
ponential factors of the type 

exp{-{2(w~oc- WL2)/L12]'1•Roz/a}, 

where Ll. is the dispersion of the WL branch, R0z 
is the distance from the impurity atom to the Z-th 

atom, and a is the lattice constant. This small
ness will be all the more pronounced the lighter 
the mass of the impurity atom. Obviously, this 
approximation is more suitable for H- as an im
purity ion than for D-. 

The Green's function D~f3 ( 0, 0; w) in (1) dif
fers from the Green's function of an ideal lattice 

D (o)R(l l' '· )= fi ~"' '~"(xjkj)Sp*(x'jkj) 
Ctjl X, X ' (J) (M M ) '/ N LJ 2 2 ,____ 

" "' ' kj w - .w ki + iti sign·w 

X exp{ik(R1 - Rl')} (3) 

even in the harmonic approximation, owing to the 
mass difference between the impurity and host 
atoms, and owing to the change in the force con
stants. In (3) MK is the mass of the host-lattice 
atom located at site K, ~a(Kjkj) is the a-com
ponent of the polarization vector of the phonon of 
branch j with wave vector k, and N is the num
ber of unit cells in the crystal volume under con
sideration. 

For the mass defect in a cubic crystal, the 
function D~/1 = DRo{3a is equal to [10•21J 

R . _ D<OJR(O, 0; w) 6a:p 
Detll (O,O,w}-1-6L(O,O;w)D<0lR(O,O;w) 

0 M-M' 2 M 2 
6L (0, ; to) tia:p = 1i w 6etll =hew 6etll· (4) 

It follows from (1) and (4) that K( w) has a 6-
type peak at frequency wloc• with wloc the solu
tion of the equation 

1 = tiL(O, 0; w)D<o>R(O, 0; w). (5) 

Allowance for the anharmonic terms in the 
Hamiltonian of the lattice leads, naturally, to the 
appearance of a finite width of this peak and to a 
shift of the resonant frequency. The problem of 
calculating the finite line width at the frequency 
w ,:::; wloc reduces to a _9alculation of the Green's 
function of the lattice D~f3 ( 0, 0; w) with allowance 
for the anharmonic terms of third and fourth or
ders. It is convenient to use for the calculations 
the method of temperature Green's functions, for 
which a diagram technique exists [22]. The tern
perature Green's function Daf3(0, 0; iwn) (where 
wn = 2rrnT/n) satisfies the Dyson equation: 

lJa:p (0, 0; iwn} = Da:p (0, 0; iwn} + 
+Dety(O, lx; iwn}ITyo (lx, l'x'; iwn) lhp(l'x', 0; iwn); (6) 

here Ily0 (ZK, l'K'; iwn) is the polarization opera
tor connected with the presence of the anharmonic 
terms; summation over all the repeated indices is 
implied. This equation differs from that obtained 
by Maradudin [ 16] in that it is written in the coor
dinate representation. 
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The function i5~13 (lK, l'K'; w) is an analytic 
continuation, in terms of w, of the temperature 
Green's function Daf3(lK, l'K'; iwn ). Using the 
same small parameter as in the derivation of (1), 
we neglect in the expression for DR( 0, 0; Wloc) 
the terms with D~f3(lK, 0; wloc) and 
D~13(lK, l'K'; Wioc ), compared with the terms 
containing ~{3( 0, 0; WJ.oc ). Taking also into ac
count the fact that for crystals with cubic sym
metry 

we obtain 

DIZjiR(O, 0; ro) = DR(O, 0; w)6a;p, 

ILzp(O, 0; w) :- lla;p(O, 0; w)6a;p, 

B • _ DB(O,O;w) 
1J (O, 0• w) -t 1- DB (0, 0; w) ll.....:..-(0-, O_;_w_) 

(7) 

(8) 

Or, introducing II= 6 - ir and using (4), we get 
ultimately 
/JB(O, 0; ro) = fl(OJB(O, O; w) {1- D<0)B(0, 0; ro) [liL(O, 0; ro) 

+ ~(0,0; w)] + Wl0lR(O,O; w)f(O,O; w)}-1• (9) 

The new shifted position Wloc = Wloc + ow should 
be obtained from the equation 

1- D<OJR,(O, 0; w) [6L(O, 0; w) + A(O, 0; w)] = 0. (10) 

From (9) and (4) we see that the quantity 
n<o>R(o,o; w)r(o,o; w)/2(1-e:) plays the role of 
the relative width of the local peak y( wloc ). Using 
(1), (9) and (10), we obtain an expression for the 
absorption coefficient at the maximum: 

e2 1 
K(ooloc) = cd--.;- f(O O· ) . (11) 

uVo , , ronoK 

3. CALCULATION OF r(O, 0; w) AND DISCUS
SION OF RESULTS 

For the calculation of r ( 0, 0; w) = - Im II ( 0, 0; w) 
it is convenient, just as in [23 ], to express 
Da{3(lK, l'K'; iwn) in terms of the spectral density 
Paf3(lK, l'K'; w ): 

"" dol 
Da;p (lx, l'x'; iron)= ) ~ pa;p (lx, l'x'; ro') 

-oo 

[ 1 1 ] 
X . I -. I ' 

~Wn - (J) l'<vn + ·ro 
(12) 

pa;p(lx, l'x'; ro) = -ImDa;pR(lx, l'x'; (J)). (13) 

The contribution to the width of the local peak is 
made by diagrams of the same type as in the case 
of a pure latticeC7J. Now, however, the lines cor
respond to the Green's function of the impurity lat-

tice. Calculations in accordance with the usual 
rules [ 22 ] yield 

f ""<3>(0, 0; (J) loc) = 32(3- 1)! ~ <l>a;pv (O,ltXt, l2x2) 

00~ dolt dw2 (l l I I ) (l l I I • ) X ---PliO tXt, 1 Xt ; rot PvP 2X2, 2 X2 , wz -
:rt2 

0 

X {6((J)loc- rot- wz)[1 + Nt + Nz] 

+ 26(~ loc- Wt +roz)[Nz- Nt]}, (14) 

xp'l"t ( ~xz, lz1xz'; (J)z) P~>v(laxs, ls1Xs1 ; (J)s) 

x{6(rotoc- (J)t- (J)z- wa) 

{(1 + Nt) (1 + Nz) (1 + Ns)- NtNzNa] 

+ 36(roloc +rot+ Wz- ws){NtNz(1 + Ns) 

-(1 +Nt) (1 +Nz)Ns] + 

36((J) loc +rot- roz- wa)[Nt(1 + Nz) (1 + Na) 

-(1 +Nt)NzNa]}, (15) 

where 

Ni = 1/ (exp {-hwi IT}- 1). 

Summation over l1Kto Z2K 2, l3K 3, etc. is carried out 
here over all lattice sites, including the position 
of the impurity atom lK = 0. The numerical fac
tors are of combinatorial origin; for anharmonic
ity of n-th order the corresponding factor is 
n2(n- 1) !. 

Expressions (14) and (15) can be noticeably sim
plified in each concrete case by taking into account 
the fact that for light impurities the local frequen
cies correspond to larger impurity-atom displace
ment amplitudes exceeding the total amplitude of 
the atom oscillations at the frequencies of the con
tinuous spectrumC12 •18•19J. Therefore the maximal 
terms in (14) and (15) will be those containing 
Paf3(0,0; Wloc> and Paf3(lK, l'K'; wi), where 
Wi ~ WL and lK, l'K' ¢ 0. 

Let us consider the concrete case of the ions 
H- and D- in alkali-halide crystals. Since for H
we have Wloc > 2wL, the width of the local peak is 
determined only by r (oi). It is obvious here that 
the conservation laws for the typical spectrum of 
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an alkali-halide crystal admit of two processes 
for y<4 >: the decay of the local oscillations into 
oscillations of the continuous spectrum ( Wloc = w1 

+ W2 + wa ), and "scattering" of the oscillations of 
the continuous spectrum by the impurity atom 
( Wloc + Wt = Wloc + w2 ). Here Wi are frequencies 
of the continuous spectrum. Picking out the terms 
of (18) that are the largest in this sense, we should 
retain for the decay process only summations over 
the nonvanishing values of l 1Kto l 2K2, l 3K3, etc. For 
the "scattering" process it is necessary to take 
one of the ZiKi and liKi equal to zero, and two 
others not equal to zero. Then at temperatures 
T < fiwloc we have 

r ""(4) = 42 ( 4 - 1) ! ~ <Dapy,. ( {), l1X1, l2X2, laxa} 

xp,.v(laxa, l/xa'; wa)c5(w10c- w1- w2- wa) 

x P~<,. (0, 0; wa} 1\ ( wloc + W1- W2 -Ol3)[NI ( 1 + N2}]. 

(16) 

In accordance with the definition (13), when 
ZK, l' K' "' 0 the spectral density p a{3 (lK, l' K'; w) 
contains amplitudes of the displacements of the 
host-lattice atoms (fi/2MKw )112 and (fi/2MK'W )112• 

The spectral density p a a ( 0, 0; w), which differs 
essentially from zero only when w = wloc• con
tains the square of the amplitude of the impurity 
atom fi/2M'wloc· For an order-of-magnitude es
timate we can assume that summation over K in
cludes only the nearest neighbors. Then the ratio 
of the second term in (16) to the first is 

M,. WL 
a~--;~--. 

M Wtoc 
(17) 

Since wloc ~ (M/M')112 (w2 ) 1/ 2 [ 2J, the final esti
mate will be 

(18) 

For a KCl crystal containing H- in place of Cl 
we have a ~ 10; for KBr containing H- in lieu of 
Br-, a~ 7. 

We can also estimate qualitatively the phase 

volumes corresponding to the "scattering" and 
decay processes. To this end we neglect the in
fluence of the impurities on the continuous spec
trum of the oscillations of the atoms of the host 
lattice and replace Paf3(lK, l'K'; w) by 

pap0 (lx, l'x'; w) =- ImD~~R(lx, l'x', w). 

Then 

ro(4) = 42(4- 2)! 3 ( __!!_ __ )z: (-li-) [~]2 

a2 , 2Mxa. 2M' a (2n) 3 

(19) 

(20) 

Here E(O, tq, t'q')/a4 and E(O, tq, t'q', t"q")/a4 

are the Fourier components of the corresponding 
<I> from (16). 

It is obvious that for vibrational spectra of 
typical alkali-halide crystals, the energy conser
vation law in r f4 > allows only a small region of 
the phase space near wv whereas the contribu
tion to r0<4l is made by the entire region of fre
quencies. Thus, the ratio of the phase volume can 
strengthen the inequality (18). Consequently we 
have 

(21) 

up to a temperature ®eff which is so low, that 
owing to Ntq « 1 the value of r J4> becomes com
parable with rf4>. We note that ®eff is lower than 
the Debye temperature ®. It is obvious that when 
T « ® the value of r 14> varies with temperature 
approximately like exp (- fiwLIT ), whereas r J4> 

is proportional to ( T/ ®) 7 at the same tempera
tures. 

Thus, the temperature dependence of the line 
width of the ion H- at temperatures T > ®eff is 
determined by the value of r J4>. In the limit when 
T > ®, this dependence becomes quadratic. When 
T < ®eff• the width is determined by r1 4> and does 
not depend on the temperature. 

For the D- ion, the frequency of the local oscil
lation lies in the range WL < Wloc < 2wL. The 
local peak can in this case become broadened as 
a result of the third-order anharmonic terms. It 
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is seen from (14) that the energy conservation law 
allows in this case only decay into two oscillations 
of the continuous spectrum. All processes become 
possible in r ~~ (15). By reasoning similar to that 
used for the H- ion, it can be verified that in this 
case r~4 > makes the largest contribution to an(w). 
The experimentally observed temperature depen
dence of the width of the n- peak, intermediate 
between T and T2, offers evidence that r<3> and 
r <4 > make a comparable contribution to the line 
width. As shown in [7], such a situation takes 
place for the line width of the fundamental absorp
tion by the lattice of pure crystals. However, in 
order to explain the presence of a temperature 
dependence of the width of the D- peak in the tern
perature interval ®eff < T < ®, it must be assumed 
that the quantity r ~4 > is not only comparable with 
but even somewhat larger than r <3>. 

Let us estimate now the ratio of the line widths 
for H- and n- ions. As already noted in Sec. 1, 
the relative line width is 

1 
y(roloc)= 2(1 -E) D<OlR(O,O;roloc)f.(O,O;roloc)·· 

We then have from (16) or from (20) and (3) 

'YH(@n) Moron2 (fo<4>)n 
yo(ron) ~ Mn@n2 (fo<4>)o · (22) 

Taking into account the approximate relation 
Wloc = ( ( w2) M/M')11Z, we obtain finally for the 
relative widths at temperatures T > ®eff: 

yn(ron~ ~ (fo<4>)n ~ Moron ~ ( Mo )''• > 1 
YD((J)n) (ro<4>)o Mn ron Mn · 

(23) 

At a temperature T < ®eff• when r~4> is negli
gibly small, the ratio of the widths is determined 
by the ratio of the quantities (f f4> )H and 
(r<3> + rf4> >n· In this case the inequality (23) 
should be reversed. 

The authors are grateful to Yu. Kagan for a 
useful discussion of the work. 

Note added in proof (May 3, 1966). A recent paper by M. A. 
Ivanov et al. (FTT, 8, 192, 1966, Soviet Phys. Solid State 8, 
150, 1966) is devoted to the investigation of the line width of 
local oscillations. Our results coincide in part with the re
sults of this paper. 
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