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A method is proposed for solving the problem of inelastic scattering of particles by nuclei with 
excitation of collective states. The method is based on the possibility of separating the varia
bles in a central field when the scattering involves large angular momenta. It is shown that as 
a result the inelastic scattering cross section can be expressed in terms of the elastic scatter
ing phase shifts. The results obtained by Blair and Au stern [ 11 are made more precise and gen
eralized to nuclei with arbitrary spin and to any approximation in the nonsphericity parameter. 

1. INTRODUCTION 

IN a recent paper by Blair and Austern[ 1l it was 
shown that the cross section for inelastic scatter
ing (kR » 1) with excitation of collective nuclear 
states can be expressed in terms of the S matrix 
elements for elastic scattering. This result is 
very attractive, since it shows that the inelastic 
scattering problem can essentially be reduced to 
the much simpler elastic scattering problem. 

At the same time, there are a number of points 
in the Blair-Austern theory which require a fur
ther development of the theory of inelastic scat
tering. The authors of this paper employ anum
ber of approximations whose accuracy is very dif
ficult to estimate, i.e., is essentially beyond con
trol. This refers in particular to the higher ap
proximations in the nonsphericity parameter, for 
new, additional assumptions about the smallness 
of certain quantities are made, whose correctness 
is very difficult to ascertain, already in second 
order in this parameter. Moreover, the principal 
reason why the problem can be reduced to the 
elastic scattering problem remains unclear. 

In the present paper it is shown that the princi
pal reason for the possibility of reducing the prob
lem under consideration to the elastic scattering 
problem is the circumstance that for large angular 
momenta which play the dominant role in diffrac
tion, the problem of the motion of a particle in a 
noncentral field reduces to the problem of the mo-

amplitude in a noncentral field: 

V(r) =< V(r, R(~, <p) ), (1) 

where 

R(~,cp)=Ro+~ ;v14"YvJL(~,cp), (2) 
"~' 

and the quantities ~ tf.L are dynamical variables of 
the target nucleus. 

The general expression for the elastic scatter
ing amplitude in an arbitrary coordinate system is 
given by the expression 

2n ~ • , 
/(n,n0)=-. LJ Yz•m•(n)(l'm'IS-i!Zm)Yzm(no), (3) 

~k ll'mm' 

where § is the scattering operator, and no and n 
are unit vectors defining the direction of motion of 
the particle before and after the scattering, re
spectively. 

In the diffraction scattering of a particle by a 
strongly absorbing nucleus all partial waves with 
l, l' < Lo ~ kR » 1 are completely absorbed, i.e., 

(l'm'fSilm) =,0, l, l' < Lo~;i, (4) 

Thus the problem consists in the determination 
of the S matrix elements for large values of l 
and l '. We show that this problem can to a certain 
extent be reduced to the problem of scattering in a 
central field. 

Let us consider the coordinate function 
uz(r, "· cp) defined by the equation 

tion in a central field. _!~ (r2 duz) _ l(l + i) Uz + (k2 _ V(r, R(~. cp) )] uz = 0 
r2 dr dr r2 

2. APPROXIMATE SEPARATION OF VARIABLES (5) 
IN THE CASE OF A NONCENTRAL and the boundary condition 
POTENTIAL 

In the adiabatic approximation[ 21 it is first of 
all necessary to calculate the elastic scattering 

r-+0. 

It is easy to see that the function 

'l'zm = uz(r, 'l't, cp) Yzm('l't, <p) 

1061 

(6) 

(7) 
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is for z-oo asymptotically equal to a particular 
solution of the Schrodinger equation 

~'¥ + [k2- V(r, R('fr, <p)) ]\f = 0. 

Indeed, writing the Laplace operator in the form 

(8) 

(9) 

we see that the separation of variables is pre
vented only by the term with the operator 12 which 
differentiates the function u z , as it depends on the 
angular variables. However, for large quantum 
numbers, i.e., in our case for large l, the opera
tor can be replaced by a c number, as is well 
known; in this way one effects the separation of 
variables. Since the function uz satisfies Eq. (5), 
we thus obtain a proof that for large l the function 
'ltzm is a particular solution of the Schrodinger 
equation. 

It is useful to investigate directly how in our 
case the possibility of replacing the operator by a 
c number, l ( l + 1), is realized. To this end we 
note that the following asymptotic expression for 
Yzm(J.,cp) holds for large l: 

Yzm"' (-1)m cos[(z+__!_){t-!_1l.1C -~]eimcp. (10) 
n)'sin'fr 2 2 4 

For 12 we have 

A ~ a 1 ~ 

- 12 = 8-fr2 +cot 'it 8-fr + sin2 'it 8rp2 . ( 11) 

In applying (11) to the function (7) the leading 
term in l will be 

82 1' 2 
-uz(r,'fr,<p) a{t2 Yzm('lt,<p)= (z+2) 'l'zm~ l(l+1)'¥zm. 

(12) 
Indeed, the differentiation of uz with respect to 

the angle J. reduces to a variation of u z with re
spect to the potential multiplied by the derivative 
of the potential with respect to the angle. This 
quantity is of order unity, since the potential, by 
assumption, depends strongly only on the spheri
cal harmonics of low order. The relation (12) ex
presses the reduction of the operator 12 to the 
number l(l + 1). 

The particular solution obtained for r - co has 
the form 

\fzm "' :: { exp [ -i ( kr- z; ) J 

- Sz exp [i ( kr- z;)]} Y1m('lt, rp). (13) 

The quantities Sz = Sz (R(J., cp)) are evidently 
obtained from the S matrix elements Sz(R0) of the 
corresponding scattering problem in a central 

field V(r, R0) by making, in the latter the replace
ment Ro- R(J., cp). 

Let us now write 

Sz(R(-lt,rp))Yzm('it,<p)= ~ (Yz•m•,SzYzm)Yz•m•('fr,<p) (14) 
l'm' 

and substitute this in (13). Then we obtain 

'l'zm"' ~; { exp [ -i( kr- ~f) J Yzm('lt, <p) 

- ~ il'-l(Yz•m•,SzYzm)exp [i( kr- 1~ )]Yz•m•(-fr,rp). 
!'m' · (15) 

According to the definition of the S matrix, we 
find from (15) 

(l'm'jSjlm) = i1'-l(Yz'm', SzYzm) (16) 

and the approximate expression for the scattering 
amplitude will be 

f(n,no)= ~n ~ Yz,;;.,(n)i1'-I(Yz,w,SzYzm)Yzm(no). (17) 
~k ll'mm' 

Let us now consider the amplitude for the time 
reversed process, i.e., for the scattering -n 
- -n 0• According to (17), this amplitude is equal 
to 

f(-no, -n) = ~n ~ Yz~m~(-no)il'-l(Yl'm', SzYzm) Yzm(-n). 
~k ll'mm' (18) 

After simple manipulations we obtain from this 

f(-no, -n) = ~n ~ Yz;m,(n)il'-l(Yz,w, Sz,Yzm) Yzm(no). 
~k ll' , 

mm (19) 

For an exact solution, invariance under time re
reversal [ 31 requires 

f(n, no) = f( -no, -n). (20) 

Our approximate expression for the amplitude 
does not satisfy this requirement, as is seen from 
(17) and (19). Evidently we obtain a betterapprox
imation, if we take for the scattering amplitude the 
quantity 

F(n, n0) = 1/df(n, no)+ f(-no, -n)] 

= ~ ~ Yz~m'(n) i1'-1(Yz•w, [Sz + Sz,] Yzm) Yzm(no), (21) 
~k ll'mm' 

which has the required symmetry. 
The meaning of this symmetrization is that it 

removes the non-equivalence of the ingoing (lm) 
and outgoing (l'm') channels, which existed in our 
original approach. 

3. AMPLITUDES AND CROSS SECTIONS FOR 
INELASTIC SCATTERING 

The amplitude for inelastic scattering with ex
citation of the nucleus from the state Io, M0 to the 
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state I, M is equal to 
1M 

FioMo(n, no)= (IM!F(n, no) lloMo). (22) 

In the calculation the quantization axis is con
veniently aligned with n 0• Denoting the angles of 
n in this system by J, ffJ, we obtain 

ff.~.(~.cp)= 2
1k. ~l'n(2Z+1)i1'-l 

~ Zl'm' 

X(Yz'm'• (IMISz+Sz,lloMo)Yz,)Yz,"''(~,cp). (23) 

For the further calculations we must make 
soine assumptions about the properties of the quan
titie s S z. Following Blair and Austern, [ 11 we as
sume that for scattering from a noncentral field 

(24) 

where az is the Coulomb phase shift, and Z0 = kRo. 
We must now write in the case of a non central 
field 

S1 = TJ (Z-lo- A.) 82ia1, 

where according to (2) 

A.= k .·~ sv*"Yv .. (9,¢). 
'VI' 

Let us expand T/(Z -l0 - A) in powers of A: 

(25) 

(26) 

. 1M 1 ~ (-k)n 
FioMo(~,cp)= 4ik Li (-1) 1•-M,_n_l-(IloM,-Mo!L,-m) 

Lmn 

X (lii<I>L<n>lllo)/r.~('f), cp), (31) 

where 
(n) ~ . dnTJ 
hm(~, <p) = LJ e2•aj --

11, dln 

x{l'2l' +1 il'-l(Ll'm, -m IZO) (Ll'OO IZO) Yz,;,.(~. cp) 

+ l'2l + uz-z' (Llm, -mll'O) (LZOOIZ'O) Y1;,.(~. cp) }. (32) 

A very important circumstance is that the sum-
mation over l' in (32) can be carried out com
pletely up to terms of order (kR) -i, i.e., with the 
same accuracy with which the theory has been con
structed from the very beginning. The method for 
calculating this sum is given in the appendix. The 
result depends on the region of the scattering an
gles considered. In the case of small scattering 
angles satisfying kRJ :s: 1, we obtain 

(33) 

TJ(l-l -1..'-= ~ (-1..)" d"TJ 
0 I LJ I dln • 

n=O n. 

For scattering angles determined by the in
(27) equality kRJ » 1, we have 

The quantity A is a scalar, therefore we can 
write An in the form 

(28) 
Lm 

where the 4>~!_m transform like spherical har
monics V L-m under rotations and reflections and 
are functions of the quantities ~tJ.L. 

For the matrix elements of 4>~~m we can 
write[ 4l 

(/MI«<>t~mlloMo) = (-1)Io-Mo 
l'2L+ 1 

X (lo/,M, -MoiL, -m) (lil«t>L<n>iilo), (29) 

where (I 114>~> II Jo) is a reduced matrix element, a 
quantity independent of M, Mo. and m. 

The integral of the product of three spherical 
functions is equal to 

( y, y y )=(-f)ml/(2l'+1)(2£+1) 
!m, Lm 10 V 4n(2Z+1) 

X (Ll'm,-m!lO)(Ll'OO!ZO). (30) 

Substituting in (23) expression (24) for Sz and 
the.analogous expression for Sz'• we obtain, us
ing (27) to (30), 

Ji~(~, cp) = (-f)m l/ 4'"' 
V 2L+1 

X [ Y :.m (; + ~. <p) + Y~m (;, <p )] 

X ~ l'2l + 1 e2ia, dnTJ Y~(~ ~) 
1 dln '2 ' (34) 

Averaging the square moduli of the amplitudes 
over the initial states and summing over the final 
states, we obtain the differential cross section 

(~)- 1 
C1IIo - 16k2 (2lo + 1) 

X~ I~ (-7)n (/II$L(nlll/o)/z."~(~,cp) 12
• (35) 

Lm n n. 

In the region of angles of most practical inter
est, kRJ » 1, in which the diffraction minima and 
maxima are located, expression (35) simplifies: 

. _ 1' I (-k)n 
au,(~) -16k2(2Io+ 1) ~ [1 +PL(cos~)] ~ -n-!-

L n 

(36) 

where 
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Formulas (31) and (33) to (37) constitute the 
main results of the present paper. 

4. DISCUSSION OF THE FORMULAS OBTAINED 

Let us consider some general properties of the 
expressions obtained for the amplitudes and cross 
sections. 

Let us show first of all that the Glendenning
Kromminga-MacCarthy rule[ s-sl follows from ex
pressions (31) and (33): the cross sections vanish 
for J = 0 if the parity of the nucleus in the excited 
state is opposite to the parity of the ground state. 
This rule was proved earlier on the basis of the 
distorted wave method in first approximation in 
the deformation parameter, [ 61 and also in the 
adiabatic approximation on the basis of symmetry 
considerations. [ 71 

For J = 0 it follows from (33) that only the 
terms with m = 0 are nonvanishing in (31). There
fore the following factors appear in the sum over 
L in (31): 

PL(n/ 2) = 0, if L is odd 

On the other hand, in transitions with change of 
parity, 

(38) 

(JII<DL<nllllo) =,0, if L is even, (39) 

since the <I>t> transform like spherical harmonics 
of order L under inversions. Comparison of (38) 
and (39) gives the required result. 

Blair and Au stern [ 81 obtained the following se
lection rule: 

(40) 

where M is odd and the amplitudes are calculated 
in a coordinate system with a z axis directed 
along the vector q = k- ko, i.e., the vector of the 
transferred momentum. This property plays an 
important role in the consideration of the correla
tion function of the 'Y quanta emitted by the excited 
nucleus. Let us show that our results contain this 
selection rule. We set 10 = M0 = 0, L =I, m = -M 
in (31), (33), and (34). We further specify the 
choice of coordinate system by equating the reac
tion plane with the xz axis. Then <P = 0 and 

Foo1M (tt, 0) = ~X (l, tt) y;_M ( ~' o) yl:._M ( tt,- ~)' 
l 

kRtt~1; (41) 

F001M(-&,0)= [ Y/M (~ +-&,0 )+ Y/M (-~,0 )J\jl(tt), 

kRtt~1, (42) 

where X and 1/J are functions independent of M. 
It follows from the definition of the amplitude 

(22) that F~ transforms like Y1M under rotations 
of the coordinate system. Thus the amplitude 
FW' in a system with a z axis along the vector q 
is expressed through the amplitudes of the original 
system in the following way: 

F IM'- ""DI" (o n+-6- o)F IM 
00 - LJ. MM' , 2 ' 00 ' 

M 

(43) 

since the angle between the vectors q and k 0 is 
equal to (1r + J)/2. 

From this we obtain for kRJ » 1, using (42), 

F oo1M' = [Y 111;, (1 /2-6-, 0) + Y 111;, (1 /2-fr, n)] \jl ( 'fr) 

= [1 + (-i)M') y;M'(1/2'fr, 0)\jl('fr), (44) 

which yields the required selection rule. 
In the case kRJ » 1 one may neglect the angle 

J in the argument of the D function in (43), since 
J"" 1/kR. We note, moreover, that (41) has the 
consequence that 

FooiM = (-i)MFooi-M; 

F 001 M = 0, if I+ M is odd. (45) 

We can now write (43) in the form 

)?00IM' = D:~,( _::_ )F00IO + ~ [ D:;M,( _::_) 
2 M=i 2 

+(-1)MD:~M'(; )] F00IM. (46) 

The first term in (46) vanishes for odd M', 
since according to (45), F0~0 = 0 if I is odd and, 
on the other hand, D~M'(7r/2) = 0 if I+ M' is odd. 
As far as the second term in (46) is concerned, 
one easily obtains from the symmetry properties 
of the D functions the relation 

taking account of the fact that I + M must be even 
according to (45), the sum in (46) is expressed in 
the form 

1 

~ = ~ {1'+(-1)M')D~M'F00IM, (47) 
M M=1 

which concludes the required proof. 
Let us now compare our results with the re

sults of Blair and Austern. [ 11 Restricting our
selves to the case 10 = 0, which was also consid
ered in [ 11 , we compare the results for n = 1, 
i.e., in first order in the parameter of nonspheric
ity. Then we obtain from (31) and (33) for kRJ 
,:5 1 
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i --
FooiM (tl', 0) = '2, i2I + 1ct(l)[I: M] 

X~ f2l +,1e2ia, dTJ YI-M('fr, 0), 
l dl 

where 

c1 (I) = (-1)M(Iil(f>P>IIO) = (IMI!iiMIOO), 
i2I+1 

[I:M]=i-Mv 214_; 1 Y1M(~ ,0). 

(48) 

(49) 

(50) 

Expression ( 48) for the amplitude agrees ex
actly with the expression found in [ 11 • However, 
in [ 11 this expression was assumed valid for all 
scattering angles, i.e., also in the region kRJ.» 1. 
Let us see to what results the extrapolation of (48) 
into the region kR J. » 1 leads. In this region, us
ing Yrn('lr /2) = 0 if I + M is odd and the property 
(10), we may in (48) or (34) make the replacement 

YI-M(tl', 0)-+ iM-IY1-I(1't,O). (51) 

Then we obtain from (48) 

FooM(1't, O) = ii+1(- 1)Minci(I) Y1M (;, o) 
X~ i2l + 1 e2ia, ~TJ Yt-I (1't, 0). (52) 

l l 

On the other hand, (31) and .(34) lead in this 
case to the following result: 

1 -
F0lM(1'J>, 0) = 2" ii+1(- 1)M-y'n Ct(I) 

x[YIM(;+1't,O)+YIM(; ,o)] 
X~ l"2l + 1 e2ia, ddT) Yz-1(1't, 0). 

I l 
(53) 

The comparison of (52) and (53) shows that the 
difference between the results of Blair and Austern 
and ours consists in the replacement of the factor 
YIM('Ir /2, 0) by the factor 

1/2[YIM(n/ 2 + 1't, 0) + YIM(n/2, 0) ]. 

As we have seen, the last factor guarantees, in 
particular, the satisfaction of the Blair-Wilets se
lection rule, i.e., makes the structure of the am
plitude considerably more precise. In the differ
ential cross section this improvement leads to the 
appearance of the factor [1 +PI (cos J.)]/2, which 
can have an appreciable effect on the magnitude of 
the cross section. Thus, for example, for I= 2 
and J. = 1r /2 this factor is equal to 1/ 4, i.e., re
duces the cross section a factor of one fourth as 
compared to the corresponding expression obtained 
from (51). 

We note that (53) can be obtained also in the 
Blair-Austern method. To this end one must ap-

proximate better than was done in [ 11 the radial 
integrals 

"" av 
l(l,l'}=) !t(kr} -fz·(kr)dr. (54) 

0 aR 

In [ 11 the quantities I(l, l') were approximated es
sentially by 

I(l,l'} ~ I(l',l') =adTJz·fdl', 

where a is some coefficient. A more accurate 
approximation is 

(55) 

I (l, l') ~ _!_[I (l, l) + l (l', l')] =~a [ dTJz + dTJz• ,] • (56) 
2 2 dl dl' 

Indeed, this approximation is exact up to terms 
which are quadratic in the difference T = l - l ', 
while (55) is valid only up to terms linear in T. 

Substituting (56) in the corresponding expressions 
with subsequent summation according to the 
method explained in the appendix, we find our re
sult (53). Nevertheless, the method described here 
is to be preferred owing to its greater simplicity 
and the possibility it offers of considering any or
der of perturbation theory without any complica
tions, and also of including the spin of the nucleus. 

5. PROPERTIES OF THE CROSS SECTIONS. 
PHASE RULE 

Let us briefly consider the basic properties of 
expressions (35) and (36) for the differential cross 
sections. Expression (35) shows j;hat for scattering 
on a nucleus with nonvanishing spin the cross sec
tion is composed, as it were, of the cross sections 
for scattering on a nucleus with spin zero with 
transitions into states with spins L which run 
through the values from I I - I 0 I to I I + I 0 I. The 
quantity L is naturally called the multipolarity of 
the corresponding transition. For simplicity we 
shall consider only the first nonvanishing approxi
mation, discarding all higher terms, i.e., we shall 
consider the quantities 

k2n-2 

O"Lm<nl(1't} = 16(2Io + 1) (n!) 2 

><JI (III<DL<n>Uio) l2 lfLm<n>(1't,<p) 12• 

We omit for simplicity the Coulomb phases 

(57) 

exp (2iaz), which in the case of small values of the 
quantity z1z2e2/fiv, leads only to insignificant cor
rections in the region of angles kRJ. » 1. Expres
sion (57) leads in the region kRJ. .$ 1 to the usual 
expressions obtained on the basis of Fraunhofer 
diffraction theory. [91 Of more ~nterest is there
gion kRJ. » 1, where the diffract: .. '>n maxima and 
minima are located. In this region 
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O"L(n)('fr) = ~ O"Lm(nl('fr) 
m 

where 

AL(n) = !£2n-2 j (IIIIDL(nllllo) 12 / 16(2/o + 1) (n1)2. 

We replace the summation in (58) by an integration 
from -co to +co, since the quantity dn1}/dln dif
fers from zero only in a small region near l = lo. 
We may also replace hl + 1 by hkR in (58) and 
integrate by parts n- 1 times, taking account of 
(10) and keeping only the leading terms in l0• Then 
we obtain 

This same formula, with L = n = 0, will be 
valid for the principal term in the elastic cross 
section. 

Formula (59) gives the possibility of explaining 
a number of general properties of the cross sec
tions. First of all, it is seen that the integral in 
(59) is a rapidly oscillating function of the angle, 
since the quantity d1) /dl differs from zero only in 
the narrow region l:!.l « l 0 near l 0• In the limiting 
case of a black nucleus U(l -l0)= d1}/dl = 6(l -l0). 

The presence of a boundary region leads to a 
smearing out of the function U(l -l0), which more
over becomes complex. After simple transforma
tions we obtain from (59) 

2kRAL<n> 
crL<nl('fr) = ~2 sin{} {}2n-2( 1 + PL(cos 'fr)) I F('fr) 12 

x{b2(-fr)+cos2 [(zo+ ~){}-! (L+n)n 

contains the phase rule which was obtained by 
Blair[ 91 on the basis of Fraunhofer scattering 
theory. Here we can formulate it in general form: 
for the cross section for a transition of multipo
larity L and order n the phase shift of the oscil
lations relative to the elastic scattering cross sec
tion (n = L = 0) is equal to (L + n)1r /2. 

We note that the independence of the form fac
tor F(~) of L and n is in agreement with there
sults of [ 101 , where the diffuseness of the nuclear 
boundary was taken into account within the frame
work of the Fraunhofer theory. 

Another consequence of (60) is the dependence 
of the cross section on ~ for different n: this de
pendence is given by the factor ~ 2n. For example, 
the cross section for double excitation (n = 2) con
tains the factor ~ 4 relative to the elastic cross 
section (n = 0), which leads to a much smoother 
decrease of the envelope of the oscillations with 
increasing angle. 

APPENDIX 

CALCULATION OF THE SUM OVER l' 

In the sum (32) the quantity dn1}/dl n differs 
from zero only for large l, l ""KR » 1. We shall 
assume that the multipolarities of the transitions 
are small, i.e., we assume L/l « 1. Under these 
conditions we can use the asymptotic formula for 
the Clebsch-Gordan coefficients with two large 
values and one small value of the angular momen
tum:[ 41 

(x, l- -r, f.t, m- f.tllm) ~ (-1)"_,;D"""(8), (A.1) 

where Dff7 is the finite rotation matrix, and the 
angle e is defined by cos e = m/ l. 

Let us consider the sum entering in the first 
term of (32): 

(60) ~ = ~ l'2l' + fil'-l(Ll'm, -milO) 

where 
+co 

F('fr)=l'A2+B2, A=~ U(x)cos(x'fr)dx, 

+co 
B = ~ U(x)sin(x'fr)dx, 

cos'ljl=A/F, sin\jl=BF, y('fr)=Re¢, 
b('fr) = shA., A.= Im'ljJ. (61) 

We see that the quantities F(~). 'Y(~). and b(~) 
are independent of L and n and vary compara
tively little as ~ is increased. Expression (10) 

X (Ll'OO IZO) Yl'm('fr, <p) • (A.2) 

Introducing the quantity T = l - l', using (A.1) 
and noting that up to terms of order 1/kR we can 
write .J2Z' + 1 = 12f""+i, we write this sum in the 
form 

~ = f2l + 1 ~i-"Dm"L ( ~) D0"L ( ~) y(_"• m('fr, <p). 

(A.3) 

Noting that C 7 = e-i11"T/2 and also using the simple 
properties of the D functions, we can rewrite 
(A.3) as 
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~ = l'2l + 1 ~Dm~L ( 0, ~, 0) 
T 

XD~0L (- ~, ~ ,0) Yz~~.m{~,fJl). (A.4) 

We shall now distinguish two cases: 

1) Z.J r:::J kR.J r:::J 1, i.e., .J « 1; 

2) kR.J » 1, i.e., .J~ 1. 

In the first case the dependence of Y l-T m on T , 
can be neglected. This is seen most easily if one 
uses the asymptotic expression of Y l-T, m for 
large l and small .J in terms of the Bessel func
tion. Then 

V--2Z+---:-f •(:rt) •( :rt) 
= 4:rt 2L.f._TyLm 2'fJl Yzm ~.-2 . (A.5) 

We use the following definition of the Euler an
gles a, {3, y:[ 4J a rotation by a about the z axis 
transfers the system S to the position S'; a rota
tion by {3 about the y axis of the system S' trans
fers this system to the position S"; a rotation by 
y about the z axis of the system S" transfers the 
body to the final position. A right-hand system of 
axes of the system S is used, and a rotation which 
corresponds to the motion of a right-hand screw 
along the positive direction of an axis is called a 
positive rotation about that axis. 

In the second case we can use the asymptotic 
expression for the spherical functions with large l: 

1 [( 1) m:rt :rt J . ~-:...:c.=COS l-'t'+- ~+--- e-tm<P.(A.6) 
:rt"}'sin~ · 2 2 4 

Expanding the cosine into exponentials and in
cluding the factors e ± i T..J in the D function, we 
can again carry out the summation over T with the 
result 

V 2l+1 ·[( 1) = 2iL - COS l + - ~ ~ :rt{2L+ 1)sin~ 2 

-(L+ 1)~ + :J YL-m(-~+~,(jl) 

The sum entering in the second term of (32) is 
calculated in an analogous fashion. 
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