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The behavior of small perturbations of simple vortex lattices is investigated. It is shown that 
the triangular lattices and similar ones are stable. The dispersion law for lattice oscillations 
is found and the shape of the normal oscillations is elucidated. In the limit of long waves they 
resemble transverse sound in crystals. 

J. RECENTLY there has been renewed interest in 
vortices in an ideal liquid, those discrete vortices 
whose theory was founded in the last century by 
Helmholz, Kirchhoff, Stokes, and Routh. For a 
long time, this theory found no application, and its 
development was thus hindered. Important results 
in this field are associated with the name of von 
Karman, who investigated the effect of a vortex 
street on the hydrodynamic resistance of a cylin
der. His work stimulated many new investigations 
which, however, have not brought full clarity to the 
problem of stability of the Karman vortex street. 
The number of papers on vortices has decreased 
continually since that time until recently. A con- -
siderable number of the aforementioned papers are 
reviewed in U-4l. 

During the last decade, the following topics, 
which are close in their properties to vortices in 
an ideal liquid, have become popular: a) vortices 
of the superfluid component of helium II, b) vor
tices in superconductors of the second group, 
c) dislocations (especially screw dislocations) in 
crystals. Vortices in helium constitute a direct 
realization of discrete vortices. The flow of the 
helium is potential everywhere with the exception 
of vortex filaments, and the circulation of the ve
locity around the vortex is r = h/m >:::: 10-3 cm2/sec 
(h-Planck's constant, m-mass of helium atom) 
and can also be a multiple of this quantity. Vor
tices in semiconductors differ essentially in that in 
this case there is a certain depth of penetration ,\ 
at which the field of the vortex attenuates exponen
tially. In many cases the fact that ,\ is finite is 
important, even if ,\ is large. Screw dislocations 
differ little from the mathematical point of view 
from vortices in helium. [SJ 

We shall henceforth concentrate our attention 
on straight-line vortices parallel to each other. It 

is precisely these systems that have been the sub
ject of most recent papers. 

Investigations of vortices in semiconductors 
were started by Abrikosov, [SJ the stud~ of vortices 
in helium II was initiated by Feynman, 71 and the 
planar case of the continual theory of dislocations 
was considered in detail by Eshelby. [BJ Matri
con[91 found that in superconductors, out of all the 
possible simple vortex lattices, the energetically 
favored lattice is the triangular one. A similar re
sult was obtained for helium by the present auth
or. [ 51 However, the situation is not so clear with 
respect to stability of the lattices. The investiga
tions of Abrikosov, Kemoklidze, and Khalatni-
kov[ 101 on superconductors and of Pincus and Sha
piro [ 111 on helium have shown that all is not well 
in connection with stability of lattices against long 
waves. 

In the present paper we undertake an investiga
tion of the stability of a simple vortex lattice in 
helium. 

2. Our problem is essentially a two dimen
sional one. Therefore it is advantageous to intro
duce a complex coordinate z in the plane perpen
dicular to the vortices. In exactly the same man
ner, the velocity of the liquid will be described by 
a complex number v, the magnitude and direction 
of which in the complex z plane coincide with thee 
velocity of the liquid at the given point. 

It is well known[ 41 that plane potential flow of 
an incompressible liquid is conveniently described 
with the aid of a complex potential cl>(z). The ve
locity v(z) of the liquid is given by the formula 

v (z) = dcD (z) I dz. 

The quantity v(z) is an analytic function which has 
on the complex z plane simple poles with equal 
residues at the points corresponding to the vor-
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tices. These are its only singularities in the finite 
part of the plane. We shall henceforth find it con
venient to operate with the function 

~(z) = iv(z). (1) 

For one vortex located at the point z = 0, we 
get t(z) = 1/z. If there is an aggregate of Q vor
tices in an infinite liquid, then we can write for the 
function t the expression 

1 
~(z)= ~ ---. 

qEQ Z- Zq 

(2) 

In the case of a simple lattice the vortices are 
located at the points Zmn = 2mw1 + 2mw2. Here 
w1 and w2 are complex quantities called the semi
periods of the lattice (m and n are integers). The 
corresponding sum in the right side of (2) diverges 
when summed over all vortices of the lattice. 
Nonetheless, a function with identical first-order 
poles at the points Zmn exists, for example the 
Weierstrass t-function. It is obvious that all 
other such functions differ from the Weierstrass t 
function by an entire function. We are interested 
in the function 

~o(z) = ~(z) + az. (3) 

Here the entire function az is chosen such that 
the obtained velocity field leads to rotation of the 
lattice as a whole. The value of a was found in [5l. 

3. Thus, the investigated motion constitutes 
rotation of a system of vortices as a whole. The 
problem consists of determining whether such a 
motion is stable. 

Any statement concerning the stability of a 
system of vortices encounters the following ele
mentary objection (sometimes called the Earnshaw 
theorem). Each vortex of the system interacts with 
with the remaining vortices and the potential of 
this interaction is harmonic. Therefore the energy 
of the system is also harmonic in the coordinates 
of this vortex. It is well lm.own that a harmonic 
function cannot have a minimum inside any region, 
and, thus, it is always possible to displace the 
vortex in such a way that the total energy of the 
system decreases. The objection consists in the 
fact that stability in physical systems is frequently 
connected with an energy minimum, and no energy 
minimum is attainable for any arrangement of the 
vortices. The point is, of course, that the connec
tion between the minimum of the energy and the 
stability is not universal. This system may be 
stable also in the case when the concept of energy 
cannot be introduced at all. 

A close connection between stability and the 
energy extremum is realized in the case when the 

energy is the first integral of the equations of mo
tion, and furthermore the only first integral. On 
the other hand, if there are other first integrals, 
for example the angular momentum M and the mo
mentum P, then we can speak of the extremum of 
the quantity E- ~M- VP, where ~ and V are 
Lagrange multipliers. This quantity is no longer a 
harmonic function of the coordinates of the vor
tices, and Earnshaw's theorem has no relation to 
such systems. 

We shall refer henceforth to stability in the 
usual sense, that is, we shall investigate whether 
a sufficiently small perturbation of the motion will 
remain small in the course of time. 

4. A small perturbation is a rather undefined 
concept. It can be regarded to be, for example, a 
perturbation such that the displacements of the 
vortices Emn are sufficiently small; we can add 
to this the requirement that the changes in the vor
tex velocities vmn be small. However, it is easy 
to indicate in the most trivial manner a perturba
tion satisfying these two requirements, yet with 
respect to which there is no stability; if we impart 
to all vortices a small additional velocity, then in 
the course of time they will move arbitrarily far 
from their undisturbed positions. In the present 
paper we shall investigate the behavior of pertur
bations that satisfy at the initial instant of time 
the conditions ( 11 is a sufficiently small positive 
number) 

~ 1Emni 2 ~TJ, 

~ lvmnl 2 < oo, 

(4) 

(5) 

Thus, a small change in the lattice parameters 
w1 and w2 does not satisfy these conditions. Nor 
are these conditions satisfied by any periodic per
turbation. Nonetheless, the class of perturbations 
satisfying (4) and (5) is quite large-this is the 
class of perturbations that can be expanded in an 
integral in terms of plane waves. 

The majority of perturbations are best assigned 
a complex linear structure, that is, we define in 
them the addition of perturbations and their multi
plication by a complex number (this is done in ob
vious fashion), obtaining thereby an infinite-dimen
sional vector space. In light of a condition (4) it is 
reasonable to introduce a norm II E: II = (~ IE mn 12) 1/ 2 

of the perturbation E: = {Emn}. We thus obtain im
mediately the Hilbert space of the sequences l2. [ 12 l 

It contains all the perturbations for which ~I Emn 12 
converges. 

We note here that the Hilbert space will soon 
become too narrow for us. 

5. We proceed now to study the equations of 
motion. The velocity field of the liquid in the case 
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of an unperturbed lattice is known[ 51-it is de
scribed by a slightly modified Weierstrass t func
tion 

1 g2 g3 
\;o(z) = ~(z) + az = z +az- 60 z3 - 140 z5 ••• (6) 

Let us find the velocity field for a small change 
of the lattice. In the vicinity of zero we immediate
ly separate the term 1/(z - E00 ) corresponding to 
a displaced central vortex. The influence of the 
displacement of the vortex located at Zmn on t(z) 
can be written in the vicinity of z = 0 in the form 

1 1 
l3mn (z) = · ·----

Z - Zmn - emn Z - Zmn 

For the perturbed function tb(Z) in the vicinity 
of zero we have 

1 
~b(z) = ---+ ~ l3mn + az + O(z3). 

z- eoo 

Putting z- E"00 , we obtain 

lim [~b(z)- 1 J =aeoo+ ~ Emn2 
z-+soo Z - eoo mn*O Zmn 

It is easy to see that the three last terms of the 
right side are of higher order of smallness than 
the first two as l:/ € mn/2- 0. The left side con
tains a quantity which differs only by a coefficient 
from the complex-conjugate velocity of the central 
vortex. For the velocity v00 of the vortex we thus 
have, neglecting small quantities of higher order 
(the bar denotes complex conjugation), 

deoo - . . ~ emn 
--=voo= -zaeoo-z Li --. 

dt mn*O Zmn2 
(7) 

For the change of the velocities of the remaining 
vortices we have analogous expressions. 

The mapping e-v can be regarded as a linear 
operator in Hilbert space. It can be written in the 
form 

de-/ dt =; = -iA*e. 

The operator A* in matrix form is 
A*mn,ht= (Zmn-Zhl)-2 for (m,n) =I= (k,l), 

A*mn,mn =a. 

(8) 

(9) 

A study of the operator A* will show later that 
it is bounded, and is therefore also a continuous 
operator. The boundedness of the operator A* de
notes the existence of a number N such that 

IIA *ell ~Nile II 

for all E" E l 2• We see therefore that from /IE' 1/ < TJ 
it follows by virtue of (8) that 

II vii = IIA *ell ~ Nile II ~ NTJ. 

This relation agrees with the condition (5). 
We now call attention to the fact that the veloc

ity field of the liquid is determined by specifying 
the coordinates of the vortices not uniquely, but 
only accurate to a certain entire function f(z). By 
virtue of the condition l:/vmn /2 < oo, the function 
f(z) is bounded and must therefore be only a con
stant. From the same condition it follows also that 
this constant is equal to zero. 

We have thus defined uniquely the equations of 
motion of the vortices (8) under conditions (4) and 
(5). 

6. The operator A* depends on the time t. 
This is connected with the fact that the system of 
vortices rotates with angular velocity n so that 

The coefficient 01 also depends on the rotation of 
the system: [ 51 

a(t) = aoe-2Wt. 

Here n is the angular velocity of the rotation. 
From the definition (9) of the operator A* we 
conclude immediately that 

A • (t) = Ae-2wt, (10) 

where A is an operator independent of the time. 
In order to go over from (8) to an equation with 

an operator that does not depend on the time, we 
go over to a rotating reference frame. This is 
done by means of the transformation 

ee-mt = c, (11) 

where c ={cmn}. 
In the new variables, Eq. (8) becomes 

de I dt = -iQc + iAc ='He. (12) 

7. We have expressed the derivative dc/dt as 
a result of the action of a certain operator H on 
c. When regarded as an operator in complex 
space, this is a semilinear operator in the sense 
that 

H(vc) =I= vHc 

for complex 'Y. As an operator in real space, it 
it will be linear. Equation (12) admits of several 
first integrals, but their analysis does not clarify 
the stability of the system. We shall therefore not 
write them out. 
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8. In order to investigate the behavior of the 
solutions of (12), it is necessary to carry out a 
spectral analysis of the operator H. Since H is 
not a linear operator on a field of complex num
bers, we first obtain a spectral analysis of the 
operator A. We write it in matrix form (9) 

Amn, l<l = [2(m- k)w1 + 2(n -Z)w2]-2 

for (m, n) =I= (k, l), 

Amn,mn =a. (13) 

The spectrum of the operator A is the aggregate 
of the numbers 'Y for which the operator A - 'Y E 
has no inverse (E is the identity operator). In 
other words, those are the values of 'Y for which 
the "determinant" of the infinite matrix lA- yE I 
vanishes. We shall not seek 'Y directly from this 
condition. In addition to the spectrum, we shall 
need also generalized eigenvectors, generalized 
because they do not belong to the Hilbert space Z2• 

The complementation of the Hilbert space to a 
linear space l A in which there already are eigen
vectors of the operator A is given in the Appendix. 
It is perfectly analogous to the Dedekind construc
tion of irrational numbers. The role of the rational 
numbers is played by vectors from the Hilbert 
space. 

The vortex displacements corresponding to the 
eigenvector of the operator A can be written in 
the form 

(14) 

where cp and l/J are real numbers. The action of 
the operator A on the perturbation a specified by 
means of the components amn• is not defined. If we 
nevertheless attempt to calculate the components 
b = Aa, then we encounter the divergent expres
sions 

ei(m.q>+n¢J 
b,.z = ~· ·---- + aei(l<'l>+l¢J (15) 

m,n[2(m-k)·w1+2(n-l)w2]2 · 

In the space ZA, however, the operator A trans
forms the eigenvector into a fully defined vector, 
to which there correspond uniquely several dis
placements of the vortices bkz· It turns out that 
these displacements coincide with those calculated 
by formulas (15), if their right side is summed as 
a Fourier series. We introduce the notation 

ei(mq>+n¢) 
B(cp,¢)= ~ (2 + 2 )2 +a. (16) 

nm*o mw1 nw2 

The right side should be regarded here as the 
Fourier series of the function B(cp, l/J). Then bkz 
= Bak z and B is the eigenvalue of the operator A. 

9. In calculating B we encounter difficulties of 
purely technical order. We rewrite B in the form 

1 ei(mq>+n¢) 

B = (2w!)2 m~o (m + n't')2 +a, (17) 

where 'T = wdw1. 
We obtain the sum 

+oo eimq> 

m~oo·-(m +n't')2. 

Analogous sums were calculated by Lamb[ 11 in the 
analysis of the stability of the Karman street. 
Using his result, we obtain (0 :s: cp < 271") 

:rt2 e-imq> eim(n-q>) 
. +i:rtcp-.--

sm2 :rtn't' sm :rtnt" 

00 [ ei(mq>+n¢) + ei(mq>-n¢) ] 

m=~ (m + n't')2 (m- n't') 2 

2 2cosn('t'cp-1jl) 2 sin[nt"(:rt-cp)+n¢] ) 
= :rt . - :rtcp . . (18 

sm2 :rtnt" sm :rtnt" 

The sum of the terms (17) with n = 0 can be 
readily obtained: 

eim'l> 2 oo cos mcp 

m~o(2mw!)2= (2{i)!)2 ~~ 
= _1_ [ :rt2 - (2:rt-cp)cp J 

(2w!) 2 3 2 · 

We now have for B, taking (18) and (19) into 
account (O :s: cp < 271") 

(19) 

B=--1-[~-.(2:rt-cp)cp + 2 2 ~ cosn(t"cp-'ljl) 
(2<il!) 2 3 2 :rt n=l sin2 :rtn:rt 

+ 2:rt ~ sin n ( ~cp - 'ljJ - ·m) J + a. 
cp n=l sm:rtn't' 

Inasmuch as the sum for B diverges at the 
point cp = 0 = l/J, we make a change of variables 

(20) 

~ + 1r = cp, 1) + 1r = l/J. We then obtain for B an ex
pression which, after introducing the notation as
sumes the form 

assumes the form 

1 [ :rt2 ~2 
B= (2w!)2 -6+; 

+ 2:rt2 ~ ( _ 1) n cos ( :rtn~/2w!) cos :rtnt" 
n=l Sill :rtnt" 

+ 2:rt!; ~ (-1)" sill(~nu/w 1 ) J +a. 
n==! Sill :rtnt" 

(21) 
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For the second sum of the right side we know 
an expression in terms of the e function[ 131 

~ (-1)n sin(nnu/w1) = _ i Sa'(nu/2w!) (22) 
n=t sin nnT 2 Sa ( nu/2w1) • 

Integrating (22) with respect to u, we obtain 

_ -Y, (-1)n, cos(nnu/w!) 

n:;:t n sin nnT 

=- ilnSs( nu, •) + ilnG(T), 
, 2Wt 

(23) 

where G(r) is a quantity that does not depend on 
u, which we now define, putting u = 0: 

oo (-1)n 2i n 
~ -- q =- ilnSa(O, •)+ ilnG(T). (24) 
n=l n 1- q2n 

Using the formulas of Appendix I of [ 51 and the 
representation of the e functions in the form of 
products, [ 141 we get from (24) 

G(T)=fl (f-q2n)=[ 6/(0,T) ]'/a 
n=l 2q'l• 

The first sum of the right side of (21) obviously 
coincides, apart from a coefficient, with the deriv
ative of the left side of (23) with respect to T. We 
therefore have 

~"" cos ( nnu/ Wt) cos nn• n ( -1) n _ _.:..._ _____ _ 

sin2 nn• n=l 

.8Ss(l1u/2w~o•)/&r i 06/(0,•)/8• i . 
= - ~ -e;(nu/2wio -r) + 3 e,' (0, -r) -Tim 

n 6a" (nu/2wt) n 6/" (0) n 
=- 4 6a(nu/2w!) + 12 e/(0)- + 112. <25) 

We have used here the differential equation of the 
e functions. [ 141 We can now express B in terms 
of e functions: 

8 = __ 1_ [l:. _ ~ Sa" (nu/2ro!) + n2 6/" (0) 
(2w1)2 2 2 Sa ( nu/2ro!) 6 61' (0) 

... 6a' (nu/2rot) J + 
-n~;~ I a. 

Sa(nu 2ro1) 
(26) 

This expression can be given a symmetrical 
form by replacing the e functions by a t 0 function 
and the elliptic function ~ of Weierstrass. How
ever, we prefer 

~0 (x) = ~ (x)-a-- ~o' (x). 

We write also the expression for Ol in terms of 
the e function:[ 51 

Using the equation 

~ (x) = ~o (u- Wt + ros) 

Qrol Q- + Q- n 63 ' (nu I 2wl) 
=--u- w1 w2+-- , 

ro1 2wl 63 (nu I 2wl) 

which is similar to one contained in [ 51 , and the 
derivative of this equation with respect to u, we 
obtain after laborious algebraic transformations 

B (x) = ~o (x)-;- ~o2 (x) + Qx~o(x)- n;x2 + ; a. (27) 

We can check by direct calculation that (27) de
fines a periodic function with two periods, 2w1 and 
2w2• Whereas the preceding expressions for B 
were valid only for 0 :=s ffJ < 27!", the latter, by vir
tue of its periodicity, is valid for all complex K. 

10. The perlll.rbation of a(K), specified by (14), 
can be regarded as a circularly polarized plane 
wave, the length of which is }.. (complex). It is 
easy to find a connection between K and ;\.: 

xi = in I Q, (28) 

Since o = 7r/4Im (w1w2). [ 51 

The function B(K), as we shall presently see, is 
.bounded. Indeed, its only singular point (apart from 
a shift by one period) is K = 0. In the vicinity of 
this point, we have, taking (6) into account (K = peio; 
p > 0, and u are all real), 

B(x) = B(peia) = Qe-2ia _ tj2Q2p2e-2ia + aQp2 

Thus lim I B(K) I = 0 and consequently B(K) is 
x-o 

bounded for all K. 

(29) 

We now call attention to the fact that by con
structing the eigenvectors a(K) for all K we have 
obtained a complete system. In fact, for any vec
tor c E l 2 we have 

Cmn = - 1- r ~ C('P "¢)e-i(m<P+n.P)d!pd"¢, (30) 
(2n) 2 .l ' 

where C(qJ, !/!) = 6 Cmn exp [i(mf{J + n!/J)]. We 
m,n 

shall write out the Parseval equality, which we 
shall need later: 

~ lcmnl 2 = (2!) 2 ~ ~ IC(!p, "¢) l2 d!pd"¢. (31) 

From the completeness of the constructed sys
tem it follows that the region of values of B(K) 
constitutes the entire spectrum of the operator A. 
From the boundedness of the spectrum we now ob
tain[151 the boundedness of the operator A re
ferred to already in Sec. 5. 
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We can thus regard the spectral analysis of the 
operator A as completed. 

11. We turn to Eq. (12). Differentiation with 
respect to time yields 

iPc de - dC 
dt2 = - iQ dt + iA dt. (32) 

Equation (32) can be reduced to a linear equation 
over a field of complex numbers, by expressing 
dc/dt and dc/dt with the aid of (12). A similar 
procedure was used by Milne-Thompson[ 41 in the 
analysis of the stability of the Karman street. 
We then obtain in lieu of (32) 

d2c I dt2 + (Q2 - .AA)c = 0. (33) 

Here A is an operator which is complex conjugate 
to A. The solutions of (12) satisfy (33), and would 
be bounded were we to have 0 2 > r 2 + 6, where {j 

is a posit~e number, for any eigenvector of the 
operator AA with eigenvalue r 2. 

Unfortunately, 6 is not positive, so that the 
analysis of the solutions of (12) becomes somewhat 
more complicated. In fact, besides the eigenvec
tor a(K ), a(K) =a(- K) is also an eigenvector, to 
which the same eigenvalue B(K) = B( -K) corre
sponds._Consequently, the eigenvectors of the op
erator A will be a(K) with eigenvalues B(K) and 
the eigenvalues of the operator AA will be 
IB(K) 12. Since lim IB(K)I2 = 0 2, {j is not positive. 

K-o 
Using the elements of homotopy theory, we can 

prove that for any lattice there exists a Ko such 
that B(Ko) = 0. It follows therefore that the maxi
mum frequency of the oscillation spectrum is al
ways equal to Q. 

Let us find the eigenvectors of the operator H 
or, what is the same, the normal vibrations of the 
vortex lattice. We put B(K) = re2iX, r > 0, x real, 
and consider lattice oscillations with wavelength 
±A.. We seek the solution of (12) in the form 

c(t) = e-ix(dcosJ.tt+bsinJ.tt). (34) 

Here 1-L = VQ2 - IB 12, d and b are linear combina
tions with complex coefficients of the vectors a(K) 
and a(- K). Let us find the connection between d 
and b, imposed by Eq. (12): 

-J.td sin J.tt + f.tb cos J.tt = -iQ (d cos J.tt + b sin J.tt) 

+ ir(dcos J.tt + b sin J.tt). 

Thus 

f.tb = -iQd + i;:(f, -J.td = -iQb + irb. 

Putting d = g + ih, where g and h are real vec
tors, we get 

Q+r . Q-r 
b=--h-~--g. 

f.t f.t 
(35) 

Let us consider in greater detail the case 
d = Re a(K). Then b = -il-L -1 (Q- r)-1 Re a(K), and 
for the normal oscillations we have 

Cmn (t) = e-ix (cos J.tt·cos(mq> + mp) 

Q-r ) - i--f.t-sin J.tt·cos(mq> + mjl) . (36) 

We see that each vortex describes an ellipse 
with an axis ratio (Q- r)/1-L =..; (Q - r)/(Q + r). The 
length of the axis varies sinusoidally with the pe
riod of the wavelength, and the orientation remains 
unchanged. This is a typical normal oscillation, 
similar to those in which any arbitrary perturba
tion satisfying (4) and (5) is expanded. 

12. We call special attention to the study of the 
triangular lattice, since such a lattice and lattices 
close to it are stable. In the case of a triangular 
lattice a = 0, g2 = 0, and 

1 u5 ga2uH 
~o(u) = u- g3 140 - 112112 · · · (37) 

for B(K) we have by virtue of (27) in the vicinity 
of K = 0 

B (pe·;a) = Q - --- e-2ia + g3 _- _P_ p4&ia ( Q2p2 ) ( 1 Q 2 ) 

\ 2 40 140 

+ gl' (--1--~) p10 10i<J 
30800 11.2112 e .. · 

(38) 

We put g3 = 1. Then[ 131 w1 = 1.52995 and 
Q = 0.387405. Calculations of B by means of this 
formula at the points w1 and (%)(w1 + w2) yield 
0.31495 and 0.00013. The exact values, as can be 
shown on the basis of the Weierstrass theory of 
elliptic functions, will be 2 -s/s = 0.3150 and 0. 
The accuracy of formula (38) increases with de
creasing p. We shall not stop to prove in detail 
that B(K) < Q everywhere except K = 0 (accurate 
to one period). 

Obviously, a similar statement is true also for 
lattices which are sufficiently close to triangular. 
For all these lattices the instability can be re
vealed only in the long-wave region (K,..., 0). We 
shall investigate this region in detail in the next 
section. 

Let us demonstrate here the instability of a 
quadratic lattice. For such a lattice a = 0 and 
g3 = 0. Let us put g2 = 11 then w1 = K(2-1/2) 
= 1.8541 and Q = 0.228467. From the Weierstrass 
theory it follows in this case that B(w1) = 1; 4. In
asmuch as this quantity is larger than Q, the 
quadratic lattice is unstable. 
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13. Let us consider now the time behavior of 
small perturbations. In the case of a Karman 
street, no such analysis has been carried out be
fore, and this has led to different misconceptions 
with respect to its stability (see [ 161 ). Let us 
write out again the Fourier expansion of the small 
perturbation: 

Cmn(t)= (2:)2 ~ ~ C(x, t)e-i(mcp+nw>d<pd'ljl. (39) 

According to (12), we have for C(K, t) 

d ·~~~--7. 
-;J/(x, t) =- iQC(x, t)+ iB(x)C(-x, t). (40) 

If we put C(K, 0) = C(K), then the solution of (40) 
will be 

C(x, t) = C (x) cos 11t- i E. C {x) sin 11t 
11 

B(x)C(-x) . + i sm11t. 
11 

(41) 

Formulas (39) and (41) give the solution of (12). As 
follows from Sec. 5, the solution will be unique if 
conditions ( 4) and ( 5) are satisfied. 

For a triangular lattice 

11 = l'!.l2- IB(x) 12 '"""' Q'1•1xl = Q'!.p (42) 

at small values of I K I (long waves). For suffi
ciently small p. , the values of C(K, t) can be arbi
trarily large for large t. It turns out, however, 
that 

lim Cmn (t) = 0. (43) 
t-+co 

The satisfaction of (43) follows from (42) and 
from the integrability of J J I C (K) 12 drp d'lf!. This 
can be proved by using the theory of the Lebesgue 
integral and the Dirichlet integral. The integra
bility of JJIC(K)I2 drp d'lf! follows in turn from (4) 
by virtue of the Parseval equality (31). It must be 
noted that uniformity of the approach of cmn(t) to 
zero with respect to the indices m and n cannot 
be proved. It follows from ( 43) that any small per
turbation goes off to infinity in the course of time, 
but whether it increases or decreases cannot be 
stated on the basis of (43). We therefore investi
gate further the behavior of 

1Jc(t)ll2= ~lcmn(t)l 2 = (2~) 2 ~ ~ IC(x,t)l 2d<pd'ljl. 

We confine ourselves to the case of a continuous 
function C(K), which will assuredly be continuous 
if only a finite number of vortices is displaced 
during the initial instant. The growth of llc(t)ll as 
t -o:-oo is determined by the behavior of C(K) in the 
vicinity of I K I = 0. In this vicinity we have 

sin 11t 2 . -) ( 44) C(x, t)'"""' C0 cos 11t- i - 11-(!.lCo- Qe- •a Co • 

Here c0 = C (0) and K = p eia. The principal term 
in II c(t)ll2 as t - oo will be 

2Q21 C0 12 i sin2 11t 
+ICol2)d<pd'¢= (2 )2 J --2-pdp 

n I><I<O 11 

= 21 Co 12 ~ sin2 11t ·J.t dl1. 
(2n)2 Q I><I<O 112 

As t - oo , an asymptotic estimate for the latter 
integral is Un (nt)] /2 and we ultimately have 

llc(t)ll'"""' ICi l'J.n!.lto. (45) 
2nyQ 

Thus, the perturbation going off to infinity has a 
rather slow growth. The slowness of the growth 
allows us to speak of stability of a triangular lat
tice. A similar stability takes place also for lat
tices which are sufficiently close to triangular. 
This follows from the continuity of the spectrum 
with respect to a small change of the lattice par am
eters. 

14. Summarizing the foregoing, we can state 
that we have succeeded in the investigating of the 
behavior of small perturbations of vortex lattices. 
It turns out that the long-wave oscillations are not 
determined by the vortex density, but depend on 
the structure of the lattice and are anisotropic in 
all lattices except triangular ones. This should not 
surprise us, for we encounter similar phenomena 
in real crystalline bodies. Triangular lattices and 
those close to them can be characterized as sta
ble-small perturbations in these lattices go off 
to infinity, and their norm llc(t)ll increases suffi
ciently slowly. All other lattices, including quad
ratic, are absolutely unstable-some of their small 
perturbations grow exponentially. We have ob
tained an exact expression for the oscillation spec
trum of the lattices and determined their normal 
oscillations. All these results were obtained with 
the aid of the Weierstrass theory of elliptic func
tions, developed a century ago. 

We shall not discuss in this article the possi
bility of experimentally observing vortex lattices 
in rotating helium and the influence of the normal 
component of helium on the lattice oscillations. 
We note only that in the continual approximation 
long-wave excitations of a triangular lattice satisfy 
the wave equation (z = x + iy). 

1 82c(x, y; t) _A ( • t) 
-- - uC X y, s2 8t2 

(46) 
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with velocity s = ( 1/ 2) v'D in dimensionless units 
or ( 1/ 2)v'tHVm em/sec. 

We note, finally, that the results have a bearing 
not only on helium, inasmuch as we have essen
tially obtained the dispersion law for a plane lat
tice with screened Coulomb interaction. If neces
sary, similar methods can be used to investigate 
complex lattices or lattices with defects. 

I am grateful to S. V. Iordanski1, who pointed 
out the feasibility of the calculations presented 
above, and to L. P. Pitaevski1 for interest in the 
work and a discussion. The work was initiated by 
the Bakuriani symposia on superconductivity and 
superfluidity, and the author is exceedingly grate
ful to their organizers. 

APPENDIX 

Let us consider a sequence of vectors a<1>, a< 2> 
a<3 >, ... , in an infinite-dimensional vector space, 
that converges weakly[ 15 • 11l to a vector a <oo >. This 
denotes the convergence of each component separ
rately. If A <s> E Z2, this still does not mean that 
a<00 >E Z2• Let us consider now the sequence 
Aka<1>, A~<2 >, and Aka< 3>, ... It may or may not 
have a limit in weak topology. In the case when 
such a limit exists for arbitrary natural k, we 
shall say that the sequence [a<s>] converges in 
A-topology. Different sequences [a<s>] and [b<s)], 
which have identical limits in weak topology, can 
correspond to different limits in A-topology, if 
such limits exist at all. 

Let us consider the set of all possible sequences 
that converge in A-topology. We introduce in it, in 
natural fashion, a complex linear structure, after 
which the set becomes a complex linear space. 
Two elements of this space, [a<s)l and [b<s>], will 
be regarded as equal if lim Ak(a<s) - b<s>) = 0 in 

s~o 

weak topology of space Z2 for all natural k. Fol-
lowing such an identification, we obtain a complex 
linear space which we denote by lA. The space 
l A contains in natural fashion all the elements 
from l 2• Indeed, to each element b E l 2 we can 
set in correspondence a sequence [b<s>l , where all 
b<s) =b. Moreover, if A is a bounded operator, 
then all the sequences b<s> whose norm converges 
to b represent in lA the same element, which we 
shall denote simply by b. The initial region in 
which the operator A is defined (the space Z2) can 
be expanded to the space l A. The operator A 
transfo:rms an arbitrary element a = [a <s>] E l A 
x '(a<S) E Z2) into Aa = [Aa<s)l. As is easily 
seen, Aa does not depend on the concrete choice 
of the sequence [a<s)] which represents a. 

Let the operator A be now defined in accord-

ance with (13), and let us consider the sequence 
and the vectors a<s) ={a~}, where 

amn<•J = ei(mcp+nw) for lml =s;;;; Ms, 
amn<•l = 0 for lml > Ms, 

The integers Ms and Ns tend to infinity as s- oo, 

while qJ and l/J are real numbers. With the aid of 
the theory of trigonometric series[ 181 it is easy to 
prove that this sequence converges to a certain 
element a E l2 in A-topology, with a independent 
of the manner in which Ms and Ns tend to infinity. 
Moreover, we can let M - oo at fixed N, and then 
let N - oo, obtaining the same element a (the so
called ''unbounded summability' '). 
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