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Temperature Green's functions that are correct in the small-density limit, expressed in terms 
of many-particle scattering amplitudes, are found for a system of Fermi particles that can form 
pair bound states in vacuum. It is shown that the system behaves as a Bose gas whose particles 
(bound states) form a condensate at low temperatures. 

1. THE purpose of this investigation was to obtain, 
within the limit of low densities, an exact solution 
of the following model problem of many-particle 
theory: 

We consider a system of Fermi particles that 
interact via a short-range pair potential. It is as­
sumed that a particle pair with opposite spins has 
one bound s-state (in vacuum). In order for the 
density of such a system to be low, it is necessary, 
as will be shown later, to assume that the chemi­
cal potential is negative. In this case there is no 
Fermi sphere (the radius kF of which is usually 
defined by the equation k~/2m = i\). 

These singularities distinguish such a system 
from the model of Fermi gas of repelling particles, 
investigated in detail by Galitski1 [ 1l by quantum 
field theory methods, as well as from different 
superconductivity models, [ 21 where the principal 
role is played by attraction between particles near 
the Fermi surface. It is natural to expect the 
Fermi system under consideration to behave like a 
Bose gas of molecules-bound states, and, especi­
ally at sufficiently low temperature, the bound 
pairs may form a Bose condensate. 

The calculations presented below confirm these 
assumptions. In Sec. 2 we present a preliminary 
calculation for T = 0, using a well known varia­
tional principle[ 21 based on the Bogolyubov trans­
formation. In Sec. 3 we calculate for T = 0 ex­
pressions for the single-particle Green's functions 
(normal and anomalous); these expressions are 
accurate within the limit of low densities. The 
answer is expressed in terms of functions describ­
ing the scattering of 2, 3, and 4 particles in vacu­
um. In Sec. 4, finally, we obtain the Green's func­
tions for the region of temperatures that are com­
parable with the phase-transition temperature. 

2. The Hamiltonian of the system is 1> 

H' =H-AN=~ (k2 - A.)c~cu 
k,. 

+ (4V)-1 

(2.1) 

Here s = ± is the spin index, and Uk and Wk are 
the short-range potentials of interaction between 
particles with opposite and identical spins. We as­
sume that the potential Uk has one bound s -state in 
vacuum, that is, there exists a normalized solution 
of the Schrodinger equation 

(2k2- Eo)cpk + v-1 ~ ukk,cpk, = o, (2.2) 

(2.2a) 

In (2.2), E0 (Eo< 0) is the bound-state energy and 
cpk is a spherically-symmetrical eigenfunction 
with the normalization indicated in (2.2a). We also 
assume that the Schrodinger equation with potential 
wk does not have any eigenfunctions (antisymmet­
rical because of the statistics requirement). 

The question arises: What should be the chemi­
cal potential i\ in order for the density p to be 
small, that is, for the interaction radius r 0 to be 
small compared with the mean distance between 
particles p-113 ? An answer to this question is ob­
tained with the aid of a variational calculation[ 21 

1>we use a system of units with 1i = k =2m= 1, where1i 
and k are Planck's and Boltzmann's constants and m is the 
particle mass. 
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based on the well known Bogolyubov transforma­
tion 

Cks = ukbks + svkb+_k-•• uk2 + vk2 = 1. (2.3) 

Let us consider the mean value (H'}b0 = &20 of 
the operator H' over the vacuum for the opera­
tors bks· The requirement that &2 0 be extremal 
with respect to the parameters Uk and Vk of the 
transformation (2.3) leads, as is well known, [ 2] to 
the equation 

2ukvk [k2 - 'A +(2V)-1 f (Wo- Wkk,)vk,2 ] 

+ (uk2 - vk2) V-1 ~. Ukk,uk,vk, == 2ukvk.F k 
k, 

(2.4) 

This equation reduces in first approximation (as­
suming that I Vk I « 1) to the Schrodinger equation 
for the function ukvk, so that 

ukvk. ~ Coi}Jk, 2'A ~ E0 < 0. (2.5) 

We now rewrite (2.4) in the form 

(2k2 - Eo) ukvk + V-1 ~U kk,uk,vk, = (IH- Eo) ukvk 
k., 

= (2'A- Eo) Uk.V'k.- ukv'k. V-1 ~ (Wo-W kk.) vk,2 

k, 

+·2vk2V-1 ~.ukk,uk,vk,· 
k, 

(2.6) 

We first replace vk ~ UkVk in (2.6) by its first ap­
proximation CoCfJk· Multiplying (2.6) by CfJk and 
summing over k, we obtain an equation for the de­
termination of C0: 

0 = (2'A- Eo) Co- Co3V-2 ~ (Wo-W kk,)IP~<21Pk,2 
kk, 

kk, 

(2.7) 

which has, besides the solution C0 = 0, also the 
nontrivial solution 

Co2 = ao~'A =('A- Eo/2) [ V-1 ~. (2k2 - Eo)!p~<4 
k 

+(2¥2)-1 ~ (Wo- Wkk,)!pk2!pk,2 r1
, 

kk, 
(2.8) 

where on going from (2. 7) to (2.8) the potential 
Ukkt is eliminated with the aid of the Schrodinger 
equation for CfJk· 

The formulas for the density and for the pres­
sure 

p = 2V-1 ~ vk2 = 2Co2V-1 L !pk2 = 2Co2 = 2ao~'A, 
k k 

~ 

p = -Qo/V = ~ p d'A = ao(~'A) 2, (2.9) 
Eo/2 

show that the stability condition (Pf-71. » 0) requires 
that a0 be positive, and a nontrivial solution ex­
ists only when D. A. > 0. This solution describes a 
state of the system, in which the macroscopic 
number of bound pairs with zero momentum forms 
a Bose condensate. 

The low-density requirement (r0 « p -t/ 3 ) leads 
to the inequality 

(2.10) 

by virtue of (2. 9) and to the relations r 0 "' I E0 l-1/ 2 

and ao"' I Eo 1112 . 

The condition (2.10) is necessary also for good 
convergence of the successive approximations 
when solving (2.6). Thus, the chemical potential 71., 
as already noted, should be negative (but larger 
than E0/2 if a nontrivial solution exists). The pa­
rameter e defined in (2.10) will be the parameter 
with respect to which the expansion is carrieq out 
in the perturbation theory developed : elow. 

3. An exact solution can be obtained in low­
density limit by considering the temperature 
Green's functions and using diagram perturbation 
theory[ 3] in their calculation. It must be taken 
into account that, besides the normal Green's 
function (3.1), there can also appear the anoma­
lous function (3.1a). 

(3.1) 

Gl{k, s, -r- 't'1) = -\Tcks(-r)c_l!:-s('t't) ), (3.1a) 

H1 T H'T ( ) where cks ( T) = e cks e- , and . . . denotes 
averaging over the grand ensemble. The possi-· 
bility of appearance of anomalous functions is de­
duced from the result of the preliminary calcula­
tion in Sec. 2, where (nonvanishing) averages of 
the type (cksc-k-s) actually did arise. As always, 
it is more convenient to deal with the Fourier co­
efficients G(p) and Gt(p) of the functions (3.1) and 
(3.1a) (p = (k,wn), wn = (2n + 1)7TT). We present 
the required expressions (3.2) for the functions 
G(p) and G1 (p) in terms of irreducible self-energy 
parts[ 4] satisfying the Dyson equations (Fig. 1): 

G(p) = [iwn+k2-'A+A(-p)]Z-1 (p), 

G1(p) = B(p)Z-1 (p), 

Z(p) = (iwn+k2 -'A+A(-p)) 

X (i<on-k2 +'A-A(p)) -W(p). (3.2) 

In Fig. 1 each heavy line terminating in arrows 
corresponds to a Green's function (normal if the 
arrows have the same direction and anomalous if 
opposite). When there are no arrows in the dia­
grams it is understood that summation takes 
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b{ 

-0- = 0+--8>- -0-= (t Br-
FIG. 1 

place over all possible arrangements of the ar­
rows at the beginning and end of each line. The 
vertices in the diagrams of Fig. 1 correspond to 
the factors v-tukt~ and v-1 (Wkt~- wktk3 ), 
while circles with four arrows correspond to ir­
reducible vertex parts. 

Assume now (and to the end of this section) that 
T = 0. In this case we must replace iwn by E, and 
the sum over the frequencies T~ must be under­

n 
stood as the integral along the imaginary axis 
(21Ti)-1 j dE. 

To estimate the order of the Green's functions 
let us consider the functions obtained by the vari­
ational method (if after substituting (2.3) and re­
ducing to the normal form with respect to opera-

+ 
tors bks and bks we retain in H' only the quad-
ratic form in the operators b and b +) 

G(o)(P) = (iron+ F~r.)[(iron) 2 - e~r.2]-1 

= u~r.2 (iron- llJr.)-1 + V~r.2 (iron + ll~r.)-1 , 

G~toJ(P) = G~r.[(iron)2- ll~r.2]-t = u~r.v~r.[(iron- llk)-1 

- (iro!\ + e~r.)-1], s~r.2 = F1r.2 + Gk.2• (3.3) 

Assuming that the complete Green's functions 
are of the same order of magnitude as the func­
tions (3.3), we arrive at the conclusion that the 
anomalous functions G1(p) introduce a smallness 
order 8 (since ukvk"" 8), and closed loops made 
up of normal lines introduce a smallness of the 
order 82• The latter is the result of the fact that, 
when integrating over the energy- in the closed 
loop, the contribution of the principal term in the 
product of the Green's functions, that is, I;l [u~ 
x (Ei- Ei)-11 vanishes, since all the poles1of this 
expression are located on one side of the imagi­
nary axis, and the contribution of the remaining 
terms contains at least one function v2"" 82• It is 
clear from these estimates that A(p)"" 82 and 
B(p)"" 8, the main contribution to B(p) coming 
from diagram b1 of Fig. 1, while the remaining 
diagrams have an order .S 83. Therefore the ap­
proximate equation for B(p) is 

B(p) ~ bi(k) = TV-1 ~ Un.Gt(P1) 
k.•n• 

~ TV-1 ~- U~r.~r.,bt(kt)[(iron,) 2 -(k12 -A)2]-1 
k11 n1 

= y-t ~ u kk,b1 (k1) (2k12 - 2A) - 1, (3.4) 
k, 

and its solution and the anomalous function G1(p) 
are expressed in first approximation in terms of 
the eigenfunction of the bound state 

A ~ Eo I 2, bt (k) ~ -C (2k2 - Eo) cp~r. == -C~, 
Gt(p) ~--C~Zo-1 (p) == -Cq>-;:[(iron)2 - (k2 -E0 12) 2]-1, 

(3.5) 

Expression (2.9) for the density and for the 
pressure remain in force if C0 is replaced by the 
constant C which enters in (3.5), and ao is re­
placed by the constant a defined below. In fact, 
substituting the Green's function on the imaginary 
axis 

G(.k,E) = (E + k2- A+ A(-p))Z-1{p) 
~ (E - k2 + A. - A (p)) -1 + Bz (p) 

X (E- k2 + A.- A(p))-2(E + k2- A. 

+ A(-p))-t ~ (E- k2 +A.- A(p))-t 

+ ~2(E- k2 +Eo I 2)-2(E + k2- Eo I 2) - 1 (3.6) 

into the formula for the density (E - + 0) we ob­
tain 

p = 2V-1 ~- (2:rti)-1 ~ eeEG(k, E) dE 
k 

~ 2CW-t ~ (p~r.z(2:rti) -t ~ ( E- k2 + Eo )-2 

k 2 

X ( E + k2- E; r1
dE = 2C2V-1 ~.cp~r.2 = 2C2. 

k 

(3.7) 

Since, as will be shown later, A(p) = A(k, E) has 
in first approximation no singularities in the left 
E half-plane, the first term in (3.6) makes no con­
tribution to the integral with respect to E. 

Taking into account the foregoing remarks con­
cerning the estimate of the normal and anomalous 
Green's functions, we pick out the diagrams that 
make the main contribution to A(p) and B(p) 
(Fig. 2). For A(p) these will be all the diagrams 
with one loop or two anomalous lines, and to cal­
culate B(p)-the addition to b1(k)-it is necessary 
to take into account all the diagrams with three 
anomalous lines or one anomalous line and one 
loop. 

In Fig. 2 the circles with s incoming and s 
outgoing arrows denote the functions ts(~, Ej) 
(s = 2, 3, 4), which represent the contributions 
from all the connected diagrams of the indicated 
structure without the loops and anomalous ele-
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-0-'" J;J_' S:ff_ 

-&-Q"'~+ 
FIG. 2 

ments. In calculating these functions, the Green's 
functions represented by their internal lines can 
be replaced by the zeroth-approximation functions 
(E- k2 + ;q-1 Rl (E- ~ + E0/2)-1:: G0(p). 

The functions ts are the amplitudes for scat­
tering of s particles in vacuum, in terms of which 
the self-energy parts of A(p) and B(p) are ex­
pressed in the low-density limit (see (3.8)). Two 
types of functions ~ are encountered: t2u, de­
scribing the scattering of particles with opposite 
spin and expressed in terms of a paired t-matrix 
(see (4.1)) with potential Uk, and t2w- -antisym­
metrical combination of t matrices with potential 
Wk for the case of particles with identical spin. 
The function t3 describes the scattering of three 
particles, not all of which have identical spin, and 
t 4 the scattering of four particles of which two have 
the same and two have opposite spins. 

If we close the incoming and outgoing arrows of 
the diagrams for ts by means of normal and anom­
alous lines, as was done in Fig. 2, then each anom­
alous function gives a factor C by virtue of (3.5), 
and the normal one gives a factor C2• The reason 
for the latter is that in the expansion (3.6) the first 
term, assuming that A(k, E) has no singularities 
in the left E half-plane, makes no contribution 
when the contour is closed in the left half-plane, 
while the second contains just C2• 

As a result we obtain for A(p) and B(p) = B(p) 
- b1(k) the expressions 

A (p) = C2a (p) = - C2 [ Tv-t· ~ (tt.u (p, Pt; p, Pt) 
p, 

+ t2w _ (p, Pt; p, Pt)) Go2 (Pt) Go (- Pt) fP~c,11 

+ T 2V-t ~ ta (p, Pt• - Pt; p, P'J., - P2) 

B 

X II Go (pJ Go(- PJ IPkJ 
i=l 

1J (p) = C3b (p) = - C3 [ pv-· ~ (I t2u (Pio p,; p, Pa) 12 

p,,p, 
8 

+I t2w_ (Ph P2; p, P3) 12) IT Go (pJ Go(- PJ q;ki 
i=l 

+ 2T2V-2 ~ t3 (Pt• P2• - P2; Pu p, - p) Go2 (Pt) 

Ptt PltPa 

8 

X II Go (PJ Go(- PJ~ki] • 
i=l 

(3.8) 

The first approximation (3.8) for A(k, E), as can 
be readily verified, has indeed no singularities in 
the left E half-plane, as assumed above. 

To determine C we write out the. equation 

and add to its both sides the same term, in the 
form 

bt(k) + v-1 ~.ukk,(2kt2 - Eo)-1 bt(kt) 
k, 

+ C3TV-t ~. Uk~c,b(p!)Z-1 (Pt). (3.10) 
PI 

We replace b1(k1) on the right side of (3.10) by its 
first approximation, multiply by cpk, and sum over 
k, after which the left side vanishes. Recognizing 
that 

Z-1 (Pt) - Zo-1 (Pt) ~ ~~c}Zo-2 (Pt) 

+ (A(p,)- AI..)Zo-1 (Pt)Go(Pt)- (A(-Pt)- Ai..) 

XZo-1 (Pt)Go(-Pt), (3.11) 

we obtain an equation for the determination of C: 

C [- 2 (AI..) TV-1 ~ ql~c2Z0 - 1 (p) Go (p) 
p 

+ C2 ( TV-1 ~ cpk 'Zo -2 (p) + 2Tv-t ~ cpk 2a (p) Zo -1 (P) 
p p 

xG0 (p) -TV-1 ~ cpkb (P) Z0- 1 (p) )J = 0. (3.12) 
p 

Using the equalities 

TV-1 2j cpk 2Zo -1 (p) Go (p) = 1' 
p 

TV-1 ~ qlk 'Z0 - 2(p) = v-1 ~ (2k2 - E 0) q>k 4, (3.13) 
p k 

we write the nontrivial solution (3.12) in the form 

C2 = aAI.. =: AI.. [ v-1 ~ (2k2 ..- E 0) IP~c' 
k 

p 

(3.14) 

We note that the first terms in the expression (2.8) 
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for a.O\ obtained by the variational method, coin­
cide with those in (3.14) for a-1• 

In the Appendix we obtain a different formula 
for a - 1: 

a-1 = (AHo-1AHo-•A+Ho-1A+)o == (BH0- 1B+)o, 

A= v-'1• ~qlkCJ.:+c_.,:.., B = AH0- 1A, 
k 

Ho = H- (Eo/2)N. (3.15) 

Here ( ... ) 0 denotes the average over the vacuum 
lo) (ckslo) = 0). From (3.15), as shown in the Ap­
pendix, it follows that a-t is positive if there are 
no three- or four-particle bound states. 

4. We now consider the system at temperatures 
of the order of the temperature of the phase transi­
tion connected with the vanishing of the condensate. 
In this region, in addition to the condition for the 
applicability of the gas approximation p l/ 3 « 1, we 
should have p~ T312, that is, the thermal length 
is of the order of the mean distance between par­
ticles. 

When T -1- 0 the integrals with respect to E are 
replaced by integrals around the imaginary axis 
with weight (ef3E + 1) - 1 = nF(E). Temperature 
corrections are due essentially to functions having 
singularities near the imaginary axis at Re E ~ T. 
Such a function is ~U, which in first approxima­
tion is equal to the t-matrix 

( k1 k2 ~ k3 k2 ) 
t 2-2·2-2; E+Eo-21 

(k = k1 + kz = k3 + ~. E = E1 + Ez = Ea + E~), 
defined by the equation 

t(kt. kz; z) = Uk,k,- V-1 ~ Uk,ka(2ka2 - z)-1 t(k3, k2; z). 
k, (4.1) 

Since t(kt. k2; z) has a pole at z = E0 (with resi­
due cPk1 ciJkt, t2U has a pole at E = k2/2; this pole 
makes a contribution to the temperature correc­
tions at k ~ T1/ 2. It is clear from the foregoing 
that when T -1- 0 it is necessary to add diagrams 
(Fig. 3) which make a contribution from the poles 
of t 2u near the imaginary axis, and find the tem­
perature corrections to the diagrams which have 
already been taken into account for T = 0. The 
corrections to the diagrams ai and bi for the 
self-energy parts will be denoted by oa· and Ob· l l 
(and the new diagrams of Figo 3 by ~ai and ~bi ). 

da~J@ db~~+~ 
FIG. 3 

For example, a contribution to oa2 is made by the 
pole of the function t 2u, and also by the fact that 
the residue of G(k, E) in the left E half-plane dif­
fers from the residue at T = 0 by a certain factor 
(which we denote by (1 + a)). 

The expressions for ~ai, ~bi, oai, and obi 
are given by the formulas 

6az = aaz- nz;pk.2Go( -p)' Llas = (D I C)2aa, 

Mz = 2(D I C) 2 bz, 6ba = (a+ (D j C)2) b3 

- (D2 IC)~k[(az(p) +aa(P))Go(P) 

+ (az( -p) +as( -p) )G0 (-p)], M 4 = 2(D I C)2b4, 

D2 = V-1 ~ [exp (~k2/2)- 1]-1 = (2n:)-'f, \;(3/z) T'l'. (4.2) 
k 

The expression for the residue of the function G(p} 
with corrections (4.2) differs from the correspond­
ing expression at T = 0 by a factor (1 + (D/C)2), 
so that a = (D /C)2. 

When determining C from (3.9)-(3.12), the role 
of the temperature corrections reduces, as can be 
readily shown, to a replacement of c2 by 
C 2(1 + 2a) = C2 + 2D2 in the left side of (3.14). As 
a result we obtain for the density Po = 2C2 of the 
condensate and for the total density p, which dif­
fers from 2C 2 by a factor (1 + a), the expressions 

Po= 2C2 = 2(alllc- 2(2n:)-'h\;(3/2)T'h) = 2aA, 

p = 2C2 (1 +a) = 2(allA.- (2n:)-'hs(3/ 2)T'f,). (4.3) 

It is clear from (4. 3) that the condensate exists 
when A> 0, and the equation A = 0 gives the line 
of the phase transition in the (A., T) plane. 

In the absence of condensate (A< 0) we obtain 
for the self-energy part of A(p) (B(p) = 0) and for 
the density p the expressions 

A(p) = D 2 (a(p) -- -;pk2Go(-p)), 

p = 2D2 = 2(2n)-'h\;(312)T';,, 

where a(p) is defined in (3.8). 

(4.4) 

The results show that the Fermi system under 
consideration actually behaves like a Bose gas 
whose particles (bound states) form a condensate 
at sufficiently low temperatures. The thermody­
namic functions (in particular, expressions ( 4. 3) 
and (4. 4) for the density) and the equation of the 
phase-transition curve coincide with the corre­
sponding function of a Bose gas, [ 51 and the quan­
tity (3. 5) then plays the role of the parameter t0 

(t-matrix at zero energy), describing the collision 
of two Bose particles. 

The author is grateful to L. D. Faddeev for val­
uable advice and continuous interest in the work. 
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APPENDIX 

To prove (3.15) let us consider the vacuum 
mean of the four operators A(ti) == exp (iHoti) 
x A exp (-iHoti) 

We can obtain a diagram expansion for this func­
tion by setting in correspondence to the lines in 
vertices of the two types the usual expressions for 
G0(p), v-1Uk1k and v-1(Wk1k4 - wk1k ), with 
p == (k, E), and by setting in correspon~ence to the 
operators A +(A) the vertices with two outgoing 
(incoming) lines. If in G(ti) we confine ourselves 
to the contribution of the connected diagrams (we 
denoted by Gc(ti)), then we obtain for the quantity 

3 

g =) Gc(ti) II d(ti- t4) (A.2) 
i=1 

the diagrams of Fig. 4. 

FIG. 4 

Comparing with expression (3.14) for a -1 (in 
which we must substitute a(p) and b(p) from (3.8)), 
we verify that a -1 == g. On the other hand, a con­
tribution to g is made only by the integral over 
the region (tf> t2 > ta. t 4) (or the integral over 
(t1 > t2 > ta > t4) multiplied by 4). Integrating, we 
obtain the required result 

00 3. 

a-1 = g = ( -i) 3 ~ II d(ti- ti+i) 
0 i=1 

X ( eiHotoAeiHo(t,-t,>AeiHo(t,-t,)A +eiHo(t,-t,)A +e-iH,t, )0 

=<AH 01AHo-1A+Ho-1A+)0• (A.3) 

The vector B+)0 == A+HQ1A+)0 in (A.3) is a four­
particle vector, since A+ produces a pair of parti­
cles, and H0 conserves the number of particles. 
The central operator H(/ in Eq. (A.3) acts on the 
four-particle sector, where H0 is equal to 
H- (Eo/2)N == H- 2E0• If there are no three or 
four-particle bound states, then the spectrum of H 
begins from 2E0 (double the energy of the two­
particle state), and therefore Ho, together with 
HQ1, is positive definite, and the expression for a-1 

in the right side of (A.3) is positive. 
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