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The dependence of semiconductor photoconductivity arising because of strongly nonequilibrium 
current carriers on the frequency of external radiation is investigated. Expressions are ob­
tained for photoconductivity as a function of this frequency. Photoconductivity oscillations are 
observed when the interaction time between an electron and optical phonons is sufficiently 
small; the form of the oscillations is then found to depend on the specific energy dependences 
of the carrier lifetime and the relaxation time for impurity scattering. It is shown that when 
the energy of the photo-produced electrons is a multiple of the optical phonon energy negative 
photoconductivity arises, the photocurrent direction being opposed to that of the external field. 
In this case the current is a nonlinear function of the field strength. 

1. INTRODUCTION. FORMULATION OF THE 
PROBLEM 

MucH interest is being shown at the present 
time in various semiconductor phenomena involv­
ing nonequilibrium current carriers; only elec­
trons are specifically referred to in the present 
study. The electron energy distribution ordinarily 
differs little from the quasi-equilibrium distribu­
tion that is characterized by the effective temper­
ature. Also, as a rule, the stabilization time for 
equilibrium between electrons and lattice vibra­
tions is considerably shorter than the electron life­
time in the conduction band. Therefore electrons 
reach equilibrium rapidly, so that semiconductor 
conduction is determined mainly by thermal elec­
trons. ru 

The situation changes considerably, however, 
when the lifetime Te of a nonequilibrium electron 
becomes shorter than both the interelectron inter­
action time Tee and the relaxation time Tac for 
acoustic phonon scattering. In this case electrons 
do not achieve equilibrium with the lattice during 
their lifetime in the conduction band and they pos­
sess energy distribution that differs greatly from 
quasi-equilibrium. The strongly nonequilibrium 
states can lead to several qualitatively new ef­
fects. We have previously[ 21 suggested that nega­
tive conductivity may exist under such conditions. 
In several recent investigations[ 3- 51 photoconduc­
tivity was measured at very low temperatures that 
would appear to provide the foregoing situation. It 
was observed that photoconductivity oscillates as 
the external radiation source frequency increases 

and that the frequency of these oscillations coin­
cides with that of longitudinal optical phonons. 

The foregoing result makes it interesting to 
construct a theory of photoconductivity for such 
strongly nonequilibrium states and to analyze the 
mentioned effect; the present study is devoted to 
this end. Our theory of photoconductivity will be 
based on a solution of the kinetic equation for pho­
toelectrons that interact only with optical phonons 
and impurities, neglecting interelectronic interac­
tions and interactions with acoustic phonons. We 
also assume that the temperature is sufficiently 
low (kT « tiw0, where tiw0 is the frequency of op­
tical phonons), and that photoelectrons are injected 
into the conduction band by a monochromatic 
source of intensity J and distribution g(n), where 
n is the frequency of the radiation source. We as­
sume that the electric field E applied to the semi­
conductor is not too high, i.e., {3 = eE r I ..,J tiwm « 1, 
where e, m, and T are, respectively, the charge, 
effective mass, and total relaxation time of an 
electron, and tiw is the energy with which elec­
trons are introduced into the conduction band. This 
means that the energy acquired by an electron 
through acceleration in the field E is consider­
ably smaller than the energy with which it origi­
nally appears in the conduction band. 

We note that the familiar method of solving the 
kinetic equation using a series expansion of the 
electron distribution function in powers of the 
electric field can be applied in our problem only 
subject to the condition 

eE-r:(oo} oo- roo 
fl = (lioom)'" ~-oo-. 
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When w is close to w0 this condition is violated 
and the indicated method is inapplicable. There­
fore in our investigation of electron photoconduc­
tivity at energies near that of optical phonons we 
shall employ the method used by Keldysh[ 61 in 
his study of impact ionization within semiconduc­
tors. The kinetic equation will be transformed 
into an integral equation, which will then be solved 
exactly for a definite case. 

In Sec. 2 we present the general formulas for 
calculating the photocurrent and the symmetric 
part of the electron distribution, and we also de­
scribe the method of solving the kinetic equation. 
In Sec. 3 we consider the conditions that produce 
photocurrent oscillations as the source frequency 
is varied. We consider negative conductivity far 
from "resonance" in Sec. 4 and at "resonance" 
(w = w0) in Sec. 5. The principal results are sum­
marized and analyzed in Sec. 6. We shall hence­
forth assume li = 1. 

2. DETERMINATION OF THE PHOTOCURRENT. 
GENERAL 

The photocurrent is defined by 

. r2dpt 
l = - e J (2n)3 v (p)' (1) 

where p is the electron quasimomentum in the 
conduction band, v = V pEp, and Ep is the electron 
energy. The electron distribution function f(p) 
satisfies the equation 

-eEV pf(p) + s~->t(p) = s~+> {!}, (2) 

where E is the external electric field of the semi-­
conductor, and the "removal" and "admission" 
operators on electrons with respect to a state of 
given p are under our conditions 

S p<-> = 2n ~ (~~ {I .M~~k l2 lJ ( Sp - rok- sp-k) 

I M(im) \1() } 1 + p,p-k (sp- Ep-k) + 'ts (ep) , 

Sp<+> {f} = 2n ~ l(~~s f(p + k) {I .M~~~k 12 () (ep + rok- sP+k) 

(3) 

Here M<OP> and M<im> are the matrix elements 
of interactions between electrons and optical pho­
nons or impurities, respectively; Te(Ep) is the 
electron lifetime in the conduction band. The term 
Ig (Ep- w) describes photoelectron production 
near Ep = w through the absorption of external 
monochromatic radiation; I is associated with the 
source strength J and the semiconductor absorp­
tion coefficient k(w) by the relation 

I = lk ( ro) n2p-2 \ f)e p I f)p \. 

The source width is r « w, so that 

g(x) =I= 0 for lxl ~ r, g(x) ~ 0 for lxl ~r, 
ao 

~ g(x)dx = 1. (4) 

We shall henceforth assume a quadratic disper­
sion law for electrons: Ep = p2/2m and M<p,Pp-k 
= M0 (independent of the quasimomentum). We 
note that the following calculation could be per­
formed without making these assumptions; there­
sulting expressions would be essentially equiva­
lent but more complicated, thus hindering their 
analysis. Finally, we assume Wk = w0 for the opti­
cal phonon spectrum; this is well satisfied if the 
electron quasimomentum is much smaller than the 
quasimomentum at the Brillouin zone boundary. 
We then obtain 

1 1 1 1 
Sp<->=--+--+--=--, 

'te ( 8p) 'tim ( 8p) 'top ( Ep) 't ( Ep) 

Sp<+J {/} = fo(ep) + /o(Ep +roo) (ep + roo)''• 
't;m(Ep) 'top(Bp) (ep- roo)'h 

(5) 

where the integral for elastic collisions with im­
purities is written in the T approximation, so that 
Tim(Ep) is the relaxation time for impurity scat­
tering (see [ Tl, for example). 

is 
The probability of spontaneous phonon emission 

1 {A yep- roo, 
'top (ep) = 0, 

Sp > mo 
Ep ::::;;; roo ' 

(6) 

where A = (2m)3/ 2 1r -ll M0 12• The symmetric part 
f0(Ep) of the stationary nonequilibrium distribution 
function is 

n2 r 2dp' 
fo(ep) = J --/(p')<i(ep- Ep•). 

m y2msp (2n)3 
(7) 

It can now be seen from (2) and (5) that the 
right-hand side of the kinetic equation depends 
only on f0(Ep). If the right-hand side of (2) is con­
sidered to be inhomogeneous, the solution of the 
kinetic equation can be represented by 

00 t 

t (p) = ~ dt S~sEt {/o} exp (- ~ s~;sEt' dt') ' (8) 
0 0 

which may be verified indirectly. Substituting (8) 
into (7), we obtain the integral equation 
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00 t 

X~ dt s~-tl.Ed/o}exp (- ~s~-;leEt'dt'), 
0 0 

which determines the photocurrent when used in 
conjunction with Eqs. (1) and (8). 

(9) 

We now indicate the method of solving (9). When 
an electron is scattered by impurities its energy 
is not affected, whereas the electron loses the en­
ergy w0 when an optical phonon is emitted. Since 
the external source is highly monochromatic, the 
electrons will be grouped mainly near Ep = w, 
where they are produced by the action of the 
source, and at Ep = w- kw0, k = 1, 2, ... , which 
they reach following the emission of one, two, etc. 
phonons. If w lies within the interval nw0 ~ w 
~ (n- 1)w0, where n is an integer, the symmetric 
part of the distribution function can be represented 
by a sum: 

n 

/o(ep) = ~ /n,z(ep), (10) 
!=1 

where fn, z (Ep) will differ greatly from zero near 
Ep = w- (n -l)w0• This enables us to transform 
(9) into a system of coupled integral equations. 
After making the substitution p'- p' - eEt in (9) 
and utilizing (10) we obtain 

11:2 ~ 2dp' 00~ 
/ 11 , n ( 8p) = -,[' --3 dt <'l ( 8p- 8p'--eEt) 

m r 2mep (211:) 0 

"2 c 2dp' r 
/n,z(Sp) = yz J (2 )3 J dt<'l(sp-8p'--eEt) 

m map 11: 0 

(12) 

Equation (11) does not include the term associ­
ated with electron transitions to a state with 
Ep = w from Ep = w + w0 due to the emission of 
optical phonons, because there are no photoelec­
trons in Ep = w + w0, whereas for Ep = w 
- (n - l )w0 with l < n electron transitions can oc­
cur only through optical phonon emission by elec­
trons of higher-lying energies. The system repre­
sented by (11) and (12) will be solved here for 
small electric fields (Sees. 3, 4) and when w = w0 

(Sec. 5). 

3. OSCILLATIONS OF PHOTOCONDUCTIVITY 

We now consider the case of small electric 
fields permitting a series expansion in powers of 

E; the appropriate criterion will be given below. 
Confining ourselves to the first terms, we obtain 
from (8) and (9): 

Sp<+> {/o(sp)} 
/o(sp) = Sp<-> , (13) 

/(p) = Sp<+> {/o(sp)} + eEp ~~ Sp<+> {/o(sp)} 
SpH m Sp<->dsp Sp<-> 

-j( )+eEp ( )d/o(sp) - o ep --'t' ep ---, 
m dep 

(14) 

corresponding to the customary method of solving 
the kinetic equation. The equation (1) for the cur­
rent then becomes simply 

e2 2-y'2m Soo d 
j = E 3 2 def0(s)-d ['t'(e)e'l•], 

" o e 
(15) 

and the system of integral equations (11) and (12) 
is transformed into a system of coupled algebraic 
equations: 

/n,n(ep)[-(1 ) +-(1 )]=lg(ep-ro), 
't'e Ep 't'op Ep 

[ 1' 1 ] 
/n,!(8p) -(-) +--( -) 

't'e Ep 't'op Ep 

( ep + roo) ''• 
=/n,!H(ep+roo)· ( )( . )'I • 't'op ep 8p - roo • 

which are solved easily, yielding 

/n,z(ep) = /Cn,z(sp)g[sp- ro + (n -l)roo], 

n-l 

Cn,z(sp) = An-lsp-'1• IT -y''""e_p_+---=-k-roo 
k=O 

[ 1 1 1-1 
X 't'e(8p + kroo) + 't'op(ep + kroo) ' 

n = E{ro/roo+ 1}. (16) 

We note that fn,Z (Ep) repeats the line shape of 
the external radiation source. This can occur only 
when the broadening of the electron distribution in 
the electric field is considerably smaller than the 
source width (/3 « rjw), which is a sufficient con­
dition for the series expansions of (8) and (9) in 
powers of the .field E. 

We now calculate the current from (15) by using 
(16). Assuming w - (n- 1)w0 » r and taking out­
side of the integrand the functions that vary slowly 
compared with g[ Ep - w + (n - l) w0], we obtain 

j = E ( e223~2f- )1 ~1 { C n,z(s) : 8 ['t'(s)e'"]} e=ro-(n-!)ro,' (17) 

which represents the photoconductivity as a func­
tion of the frequency w. 

When Te(E) » Top(€), which occurs in a broad 
region of € except near w0, the principal contri-
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bution to (17) comes from Cn, 1(E), so that the pho- y 2u> 
j-=- -meAn tocurrent is transformed into 

j = E ( e22l'27ii ) 1-r:e [co- (n.-1) roo] l'~ 
3:rt2 [co-(n-1)co0]'1• 

{ d } x --r(e)e'l• . 
de e=m-(n-1)roo 

(18) 

Thus the photocurrent oscillates regularly with the 
frequency w0, since w- (n- 1)w0 varies in the 
range [0, Wo1· Physically this means that the pho­
tocurrent depends on the behavior of electrons in 
the energy interval [ 0, w0] , where they do not in­
teract with optical phonons and remain a large part 
of their lifetime. When w > w0 the electrons lose 
energy rapidly, emit optical phonons, and drop to 
a lower energy range. 

We observe that the electric field for which (17) 
is valid must fulfill the condition 

ll= eE-r(co) ~ co-(n-1)co0 • 

l'mco <il 
(19) 

Indeed, in the derivation of (17) no detailed knowl­
edge of the distribution function f0(Ep) was re­
quired. The only essential requirement was that 
this function should vary much more rapidly with 
Ep than the remainder of the integrand in (15). 
Equation (19) is a sufficient condition for this pur­
pose. 

The case w- (n- 1)Wo requires the special 
treatment that will be given in the following sec­
tion. 

4. NEGATIVE CONDUCTIVrrY IN WEAK 
ELECTRIC FIELDS 

For simplicity we confine ourselves to the case 
n = 2, i.e., w0 < w < 2w0• The electric current (15) 
is divided into two parts: 

i=i++i-, 

i+ = E ( e2 2~~ ) 

. ( 4e2 y2m) r ' d 
J- = -E 3~ ~ deeJofo(e)-r2 (e) de 't'op-1 (e). (20) 

The current j+ is parallel to E, while j_ is anti­
parallel since the derivative of T ~~(E) is positive 
(Eq. (6)). The procedure used to calculate (17) is 
also used to calculate j+ and j_: 

(21) 

=- eE-r(<il)_ en1(-r(co)A l'<il) (-co-)''•, 
3m oo-coo 

where we have introduced the notation 

-r" (CO) = 't' ( <il) - ~ CO't'1 ( 00) d~ ( 't'e - 1 + 't'im - 1} , 

Jk(co)-r.(co) 
l'Lt= , 

1 + 't'e ( co)'t'op-1 (co) 

Jk((l>)-r.(co- roo)-re(oo)'t'op-1 (co) 
na= . 

1 +-r.(co)'t'op-1 (ro) 

ii ,;~ d 
An= 3 n1-r:2 (co)eE f m dco 't'op-1 (oo). 

(22) 

(23) 

Here -r*(w) characterizes the electron accelerat­
ing time in the field E, n1 and n2 are the electron 
densities at energies near w and w - w0, and An 
is the density of electrons participating in the neg­
ative current. 

When we assume -r*(w) l":j T (w) the current 
ratio becomes 

j+ = 3l'~+ 3(ro-coo)-re(ro-coo)-r(co-coo) (24) 
j_ -r(co)Aco <il't'2(ro) · 

As w approaches w0 this ratio diminishes and be­
comes smaller than unity for 

( co- <ilo )''• 2-r:(co)A l';(if+1-1) (25) 
co < 3s · 

where ~ = 4_13 -r(w - w0)-re(w - w0)A2w. For the 
most realistic case, when ~ » 1, Eq. (25) is re­
placed by 

co- roo -r:l.(co) --- < -o-----:--_ ____2,___:__, __ _ 

co 3-r. (co - roo) 't' (co -roo) · 
(26) 

In the case of InSb, for example, we have 

-r(co) ~ 't'im(ro) ""'co'!.""' 10-12 sec 

for w~0.013 eV and Te ~ 10-10 sec.[ 3l Therefore 
negative conduction should occur when w - w0 
.$ (0.01-0.1)w. 

5. NEGATIVE CONDUCTIVrrY AT RESONANCE 

It is interesting to analyze the behavior of the 
negative conductivity as w approaches w0• The 
condition (19) is then violated and the customary 
method of solving the kinetic equation through a 
series expansion in powers of E cannot be applied. 
A complete solution of the problem is obtained by 
solving the integral equations (11) and (12) for 
f0(Ep). The inapplicability of the usual method re­
sults from the fact that although the energy ac-
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quired by an electron from the electric field is 
much smaller than its mean energy, this additional 
energy is sufficiently large to produce a sharp 
change in the probability of optical phonon emis­
sion [Eq. (6)] and therefore in the electron energy 
distribution near w0• 

Before proceeding to solve the equation for 
f0(Ep) it will be useful to analyze the expression 
obtained for the current when the solution of (9) is 
substituted into (1). Then, making the substitution 
p -- p - eEt, we obtain 

j = h+h. 
co t , 

• e2 ~ 2dp (+) ~ ( ~ dt ) J1=E- --3 Sp {/0} dt·texp- ( ) , 
m (2n) 0 0 "t" Bp-eEt' 

co t , 

j 2 =- ~~ Zdp pS~+) {/0 } (' dtex.p (- (' ( dt )) • (27) 
m J (2:rt)3 ~ \ ~ "t" Sp-eEt' 

If we assume for the combined relaxation time 
T = const, then h = 0 and j 1 = e2ETnm-1• It is 
thus seen that the current j 1 results from the fact 
that electrons derive momentum from the electric 
field directly; j 1 therefore always has the direc­
tion of the field. 

The current h is of entirely different origin. 
The asymmetry inducing h is associated with the 
dependence of the relaxation time T(Ep-eEt) on the 
electron energy in the electric field. The direction 
of h will be determined by the specific form of 
T(Ep). It is easily seen from (6) that Top(Ep) re­
sults in a negative current, which becomes appre­
ciable if f0(Ep) has a maximum near Ep r:::; w0• In 
this case the electric field participates in creating 
h as a factor governing the distribution of the ex­
ternal source energy among the electrons and op­
tical phonons, so that the electron and phonon sub­
systems acquire momenta that are equal in mag­
nitude but opposite in direction. 

We shall now calculate the negative current for 
a specific case which is the reverse of that given 
by (19): 

We can assume w = w0 and a rigorously mono­
chromatic source: g(x) = o(x). The calculation be­
comes especially simple for fields satisfying 

- ( eE-ro(w) )''• (-ro(w)A l'w) ~ 1, 't'o-1 = "t"im-1 + -r.-1• (28) 
"fmw 

The exponential in (27) can then be written as 
t 

exp [- \ dt' J = {t + eEp _!_ _1_ 
h(sp-eEt') m dep"t"o(sp) 
o. 

t 

_ A ~ ( ep - w0 - e!p t' )"" dt'} exp [- "to ; 8J · 
0 

(29) 

By substituting (29) into (27) we shall distin­
guish a current determined by interactions between 
electrons and optical phonons. For this purpose we 
retain the last term in (29), integrate twice by 
parts, and obtain 

e2 ~ 2dp j_ = -- --pSp<+> {fo(sp)} 
2m2 (2n) 3 

X -to2(ep)A r dt Epexp[-t/co(sp)] 
0 [ep- wo- eEptJmr'• 

(30) 

Electrons contribute to the negative conductivity 
only if Ep r:::; w0, so that 

Sp<+>{f0 (ep)} = /o(~p\ +JcS(ep-w) (31) 
"t";m 8p 

and we shall now regard f0(Ep) as the symmetric 
part of the distribution function satisfying (11) in 
the vicinity of Ep = w0• It is then sufficient to re­
place the exponential in (11) by exp [-t/T 0(Ep)]. In­
tegration over the angle variables converts (11) 
into 

00 

fo(s) = ~de' K (e, e') {a(e')/o(s') + b (w) c5 (e'- w) }, 

1 r dz ( 2mli~- -y;'l ). 
K(e, e') = --- .l-exp - z , 

2"fe 1 z eE-ro(e') 

A= l'e +"Yo' , 
ll'e -l'e'l 

i~ 
a(e)=------, 

12 eE-t;m(e) 

Il'mw 
b(w) = ---==· 

l'2 eE 
(32) 

When eET 0(w) « ..Jmw the upper limit of inte­
gration in the kernel K( E, E ') can be replaced by 
infinity, thus enabling us to neglect small terms 
~ exp (-..J2mw/eET 0). By making the change of 
variables 

e-w 
x=-_--, 

i2 ~(J) 
eE-ro(w) 

~=--==--
l'mw 

and by extending (in the same approximation) the 
lower limit of integration over x' to -oo, we ob­
tain for the distribution function in the vicinity of 
E = w the Milne integral equation[Bl 

00 

fo(x) = 1/2 ~ dx'[hfo(x') + Qc5 (x') ]E1 ( lx- x' I), 

r dz , -to(w) 
Et(lx-x'i)= .l-e-lx-xlz, h= ' Q=ho(ro), 

1 Z "tim( (J)) 

which is solved by a Fourier transform. Standard 
operations yield the exact solution 
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/o(x)= Q2E1(1xl)+ Q6o(1-6o) e~l=l 
h(h + 6o2 -1) 

+ _g_ ~ TJ (h, 6) e-lo:!; ds , 
2 1 1- TJ (h, 6) 

(33) 

where .;0 is the root of the transcendental equa­
tion 

h 1 +so 
1 = 26o In 1-;o' 

and 

The first term in (33) describes the distribution 
for unscattered electrons and becomes dominant if 
T e(w) « Tim (w), when the "absorption" of elec­
trons prevails over scattering by impurities. The 
second term describes the distribution of scattered 
electrons and becomes dominant in the opposite 
case, when Tim(w) « Te(w), where we have 

fo(x) = !i, e-i•l=l; (34) 

The latter distribution corresponds to the diffu­
sion approximation for the kinetic equation, so that 
the analogue of the diffusion length in energy space 
is 

L = eE(w-r.(w)-ro(w) I 6mJ"', 

which is the maximum broadening of the electron 
distribution near Ep = w. The third term is unim­
portant because for x « 1 it is considerably 
smaller than the first term, while for x » 1 it is 
considerably smaller than the second term. 

We note that for arbitrary values of w satis­
fying the inequality {3w « w- w0 the symmetric 
part of the distribution function will have a simi­
lar form after replacing To(w) by T (w). 

When Te(w) « Tim(w) we can neglect the first 
term in (31) as compared with the second term. A 
complete integration for w = w0 then yields 

in eE-r.(wo) 
i-=- 10 m elk(wo)-r.(c.oo)[-r.(wo) 

- [ -v~ ]''• 
X A "fc.oo] eE-re ( c.oo) • (35) 

We see that except for a numerical factor this re­
sult coincides in the same limiting case with (22) 
when we replace w- w0 with eETe(w0) (w01m)112 

in the latter equation. 
In the opposite case Te(w) » Tim(w), however, 

by neglecting the second term in (31) compared 
with the first term and substituting the distribution 

(34) into (30) we obtain after a similar integration 

• "fn 3-'1• eE't'im { wo) 
J- = -----:;;=- elk(wo)-re(wo) 

5r2 m 

X him(wo)A -y;] [ 't'im(roo) ]''• [ -y21n<; ]''•. (36) 
't'e ( Wo) eE't'im { Wo) 

with eETim(w0/m)1/ 2 replaced by w- w0 , this re­
sult will differ from (22) only by a numerical co­
efficient and by the factor (Tim/Te)1/ 4 that re­
sults from additional broadening of the symmetric 
part of the distribution function in the electric 
field. By virtue of (25) it follows that negative 
conduction also occurs at "resonance." We note 
that the dependence of (35) or (36) on the electric 
field is nonlinear, having the form j ~ ..fE. 

6. ANALYSIS OF RESULTS. CONCLUSION 

1. Negative conductivity permits the following 
simple physical interpretation. In phase space 
electrons are produced in a narrow spherical 
layer close to the sphere p2/2m = w Rl w0• When an 
electric field is switched on the electron quasimo­
mentum becomes p' = p - eET and their energy 
becomes Ep Rl Ep- (eE • pT /m). Electrons moving 
against the field acquire more energy and begin to 
interact more efficiently with optical phonons 
[Eq. (6)] than do the electrons moving in the direc­
tion of the field E. Since in this case electrons in­
teracting with optical phonons lose almost all their 
energy and quasimomentum, an excess of electrons 
with the quasimomentum (2mw)112 will appear, 
moving mainly in the field direction. This results 
in a negative current j_ .... -eAn(2w/m) 112• 

Under stationary conditions the electron excess 
An can be determined from the balance equation 
An/T = n1W, where W is the probability that elec­
trons will be produced with an uncompensated mo­
mentum: 

( eEp-r) ( eEp-r) W"''t'op-1 8p+m- -'t'op-1 8p---,;:-, 

which for eEpTID - 1 « Ep- w0 gives W ~ 2eEpTID - 1 

x (dT;J/dE), so that we have 

j_ ,..._ -e(2w I m)'l•n1eEp-r2m-1(d't'op-1 I de}, 

which coincides with (22) except for a numerical 
coefficient. 

For exact resonance, Ep = w0, we have W 
.... A(eEpT/m) 112, so that 

j_ "' e (2w / m) 'l•n1-rA ( eEp-r I m) 'I•, 

which coincides with (35) when T Rl T e· It is thus 
found that negative conductivity results only from 
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a nonequilibrium energy distribution of electrons 
and from the threshold character of the interaction 
between electrons and optical phonons. 

2. It was shown in Sec. 3 that the main contri­
bution to photoconductivity comes from electrons 
having energies in the interval [0, w0] into which 
electrons move at a rapid rate from higher ener­
gies as optical phonons are emitted. Therefore 
the negative conductivity considered in Sees. 4 and 
5 will appear whenever the frequency w is nearly 
a multiple of an optical phonon frequency. Under 
these conditions the photoconductivity spectrum 
can contain dips at the points w = kw0, k = 1, 2, ... , 
with their widths determined by (25). The experi­
mentally observed dips at the maximum of oscil­
lations in the photoconductivity spectrum [ 31 appear 
to be of just this nature. 

3. The foregoing analysis of the negative cur­
rent permits an important generalization. Small­
ness of the lifetime T e compared with Tac and 
Tee is not a necessary condition if the inequalities 
Tac(w) » T op(w) and T ee(w) » T 0 rJw) hold true. 
This means that electrons can contribute to the 
negative current before their energy distribution 
is smeared out by acoustic phonons and by inter­
electronic interactions. 

4. In electric fields that are high enough to 
violate condition (28) the solution of our problem 
requires special treatment. However, a qualita­
tive analysis shows that in this case the negative 
current ceases to depend on the electric field. In 
such high fields almost all electrons moving 
against the field direction lose their momentum as 
they emit optical phonons so that any further in­
crease of the field strength does not essentially 
affect the electron momentum distribution. For 
this reason the field dependence of the positive 
current should be weakened when w is close to 
wo. 

5. The expressions (17) and (18) for the photo-
conductivity that were derived in Sec. 3 contain 
semiconductor properties which were not aver­
aged over energy, such as the electron lifetime in 
the conduction band, and the relaxation times for 
scattering from impurities and optical phonons. 
Therefore a measurement of the photoconductivity 
spectrum can furnish sufficiently full information 
regarding these properties if we also take into ac­
count that the entire foregoing analysis of the pho­
tocurrent can be performed with an arbitrary elec­
tron dispersion and an arbitrary law for the inter­
action between electrons and optical phonons. 

6. An analysis of (24) for the ratio between the 
positive and negative currents shows that when w 
approaches w0 this ratio becomes arbitrarily 
small. This result is associated with the fact that 

in calculating the photocurrent we neglected the 
broadening of electron levels resulting from the 
finite lifetimes of electrons and optical phonons, 
so that the minimum value of this ratio will depend 
on the specific parameters for a given semiconduc­
tor. 

7. It has been suggested that negative conduc­
tivity can result from the existence of "negative 
masses. ,[ 9 1 We emphasize that the negative con­
ductivity discussed in the present article and in 
[ 21 is of a very different character. Specifically, 
the interaction between electrons and optical pho­
nons results in negative conductivity, whereas this 
interaction is undesirable for conductivity based 
on ''negative masses." 

In conclusion the authors wish to acknowledge 
their great indebtedness to A. M. Afanas'ev, N. G. 
Basov, Yu. A. Bykovski'i, A. A. Vedenov, V. M. 
Galitskil, I. K. Kikoin, M. A. Leontovich, and 
B. A. Trubnikov for discussions. 
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