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A one-dimensional system of spins (s = 1/ 2 ) with a strongly anisotropic nearest neighbor inter
action and situated in a homogeneous magnetic field directed along a chosen axis is considered. 
Exact formulas are obtained for the thermodynamic characteristics of such a system. It is 
shown that at T = 0 and for a certain value of the magnetic field strength Ho the magnetic 
susceptibility has a singularity of a logarithmic or a fractional power nature. The nature of 
the singularity as well as the value of the field strength Ho depends on the ratio between the 
interaction constants. 

1. IN this paper we consider the thermodynamic 
properties of a spin chain with a strongly aniso
tropic nearest neighbor interaction. It is assumed 
that there exists a particular direction along which 
an effective magnetic field acts on the system. 
This field can either be external, or it can be a 
field associated with the anisotropy of the system. 
The part of the interaction associated with the 
transverse spin components has the nature of an 
effective spin-spin interaction. The corresponding 
Hamiltonian has the form 

Going over to the Fourier transforms of the oper
+ ators az and az: 

::Jf =- ~ l;h.slj S~1- Jlfl ~ Sz•, (1) 
I l 

where s z is the spin operator at the l-th lattice 
point (the spin is equal to 1/ 2 ): Jjk is the symmet
ric tensor of the interaction constants associated 
with the transverse components (j, k = x, y); H is 
the magnetic field; JJ. is the Bohr magneton. 

The Hamiltonian (1) can be diagonalized, and 
this enables us to obtain exact formulas for the 
thermodynamic characteristics of the system. The 
cyclic spin components (si = s~ ± isJ[, sz = 1/ 2 - sz sf) can be transformed into the Fermi crea
tion and annihilation operators az, az with the aid 
of the Wigner factor (cf., for example, [1- 31 ): 

sz- = az+ IT ( 1 - 2llm +llm), sz+ = IT ( 1 - 2am +am) az. 
m<l m<l 

(2) 
On substitution of formulas (2) into (1) the Hamil
tonian assumes the form 

we obtain 

i - 4 (lxx -lyy + 2ilxy} ~ a,_+a_,_+ sin A-
). 

- ~(lxx- lyy- 2ilxy) ~ a,_a_,_ sin A.. 
). 

(3) 

Diagonalization of the Hamiltonian (3) is accom
plished with the aid of the canonical u, v-transfor
mation: 

G9ing over to the Heisenberg representation for 
the operators all.: 

a,.(t) = exp (iJet I li)a,. exp ( -i::Jtt I li), 

we obtain the "equation of motion" 

. if( H lxx+lyy ) a,. = h\. . - Jl + 2 cos A a,. 

+ ~(lxx-lyy+2ilxy)a-A+sin).~. (5) 

Since in terms of the operators cA. and c~ the 
Hamiltonian must be diagonal we have 
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where EA_ is the energy of the corresponding qua
siparticle. Taking this into account and substi
tuting (4) into (5) we obtain a system of equations 
to determine UA_ and VA_: 

[ -IJ,H + 1/2 (lxx + lyy} cos')..,+ 8A] UA 

+ 1/2i(lxx -lyy + 2ilxy)VA sin f.. = 0, 

1/2i(lxx - lyy- 2ilx11 ) UA sin f..+ [ -t.tH + 1/2 (lxx + lyy) 

X cos ').., - 8A] VA = 0. 

From here we have 

AA = 1/?. (lxx + lyy) COS f..- t.tH, 

BA = i[l/2(1.,,. -/1111) + i/,.11] sin f... (6) 

Here UA. and VA_, apart from a phase factor, are 
respectively equal to 

UA=--'~--·, VA=- [AA+8AJ''• IBAI. 
[28A (AA + 8).)]''• 28A B,. 

We then have 

or 

(7) 

Thus, the chain of interacting spins under con
sideration is reduced to a Fermi gas of noninter
acting quasiparticles. Because of this it is possi
ble to evaluate all the thermodynamic quantities. 
The free energy of the system is, in accordance 
with (7), equal to 

F =- T~ ln{2ch 8~ }· (8)* 
A 2 

From this we immediately obtain the expression 
for the magnetic moment of the system and for its 
energy 

(9)t 

f "" 8A E = - 2-.LJ 8A th2T . 
A 

(10) 

Since an investigation of the general formulas 
is too awkward we restrict ourselves to a consid-
eration of three special cases: 

a) lxx = 21, lyy = lxy = 0; 
b) lxx = lyy = I, lxy = 0; 
c) lxx = lyy = 0, lxy = J. 

2. Case a) corresponds to the one-dimensional 

*ch =cosh. 
tth =tanh, 

Ising model with a transverse magnetic field. It 
should be noted that the problem of ordering in the 
system discussed by Vaks and Larkin[ 41 taking 
quantum effects into account leads to this model. 

The energy spectrum in this case, as follows 
from (6), has the form 

8A = [ (J- t.tH) 2 + 4t.tHl sin2 ').. / 2] ''•. 

As can be seen the energy spectrum has a gap de
fined by the difference J - ~-tH. This gap vanishes 
for J = ~-tH, and this should lead to singularities 
in the thermodynamics. It turns out that the mag
netic susceptibility has a logarithmic singularity 
with respect to the parameter IJ -~-tHI/J at T = 0, 
viz.: 

It is curious that the specific heat in the two
dimensional Ising model has the same singularity 
with respect to the temperature at the transition 
point in zero magnetic field. In an analogous man
ner one can obtain 

t.t2N I 
X I I'H=.T ~ 2nl In T ( T <, /). 

Thus, the model under consideration leads to a 
logarithmic singularity in the magnetic suscepti
bility at an isolated point ( ~-tH = J, T = 0) of the 
(T, H) plane. But the specific heat has no singular
ities, and at the same time for T « J near the 
point ~-tH = J the quantity C ~ 7TNT/6J, while far 
from this point C'"" exp (-1~-tH- JI/T). 

3. In case b) the energy of the quasiparticle is 
equal to 

8A = IJ cos ').., - t.tH 1. 

Such a dispersion law corresponds to the fact 
that for cos A. < ~-tH/J "particles" are excited 
with energies €A_ = ~-tH - J cos A., while for 
cos A. > ~-tH/J "holes" are excited with ener
gies €A_ = J cos A.-~-tH. In the absence of a mag
netic field the contributions of the "particles" and 
of the ''holes" to the magnetic moment of the sys
tem are equal in absolute value, so that the spon
taneous magnetization is equal to zero. For a mag
netic field H different from zero ordering of the 
spins parallel to the field occurs. If at the same 
time the temperature is equal to zero, then, as 
follows from formula (9), the magnetic moment is 
equal to 

t.tN JL1V t.tH Mo = -----arcco.s-1-. 
2 n 

(11) 

From this it can be seen that for ~-tH = J the quan-
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tity Mo = JLN/2, i.e., the magnetization, attains a 
nominal value, and this is analogous to the classi
cal result for a uniaxial ferromagnet with a nega
tive anisotropy constant. [ 51 But in our case, in 
contrast to the classical one, the dependence of 
M0(H) is nonlinear. 

From expression (11) we obtain 

Xo = (~-t2N /nJ) (1- (r.tH) 2 / J2)-'l•, 

i.e., the magnetic susceptibility at T = 0 has a 
fractional power singularity with respect to the 
field H at the point JLH = J. We note that the cor
responding classical result does not yield a singu
larity in x, but only a discontinuity. 

For IL H = J and T « J, as can be easily shown, 
the magnetic susceptibility has a fractional power 
singularity with respect to the temperature: 

X I v.H=J ~ ~-t2N In (2/T) 'I•. 

The specific heat, as in case a), has no singulari
ties, and for T « J the magnitude of C I H =o "" T, 
while CIJLH=J"" ..ff. 

4. Case c) with the dispersion law 

e,_ = [ ( r.tH) 2 + /2 sin2 A. J'l' 

is analogous to case a) with the only difference 
that the gap disappears at H = 0. Therefore the 
magnetic susceptibility has a logarithmic singu
larity at the point H = 0, T = 0. 

In conclusion we express our sincere gratitude 
to V. G. Vaks and A. I. Larkin for valuable dis
cussions. 
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