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The usual expression for energy dissipation per unit time (formula (3)) under the action of 
external forces is a quadratic function of the forces. It is shown that this expression is mean­
ingful only in the classical domain when one can neglect the quantum correlations. In the gen­
eral case, when it is not possible to neglect the quantum correlations, a formula is obtained 
for the energy dissipation which can be expressed in terms of the average values of the quad­
ratic magnitudes of the external forces and which is valid both in the classical and in the quan­
tum domains. 

1. THE well known expression for the Joule losses 
in a circuit element of resistance R has the form 

Q =Rf2, (1) 

where I is the current in the circuit. It can be 
easily seen that this expression, generally speak­
ing, does not hold in the quantum case (when one 
should, evidently, interpret I 2 as the average 
square of the current (I 2)). One can easily give an 
example when this expression is obviously incor­
rect. Let us take R to be the radiation resistance, 
and let I denote in this case the derivative of the 
dipole moment of the system (in the dipole approx­
imation). Then expression (1) can be interpreted 
as the intensity of spontaneous radiation and is 
equivalent to the well-known expression 

(2) 

where d is the dipole moment. In the quantum 
case this expression is incorrect, since it differs 
from zero even in the case when the system is in 
its ground state and there should be no spontane­
ous radiation. (In the ground state the mean quad­
ratic fluctuations of the dipole moment, generally 
speaking, differ from zero.) For the case of radi­
ation the situation has been discussed in detail 
previously[ 1• 21 and the corresponding quantum 
generalizations have been obtained. 

In the present paper we shall carry out the 
quantum generalization of the formula for the dis­
sipation of energy per unit time ( cf., for example, 
[ 2, 3]) 

Q = i: ~ (Xab*(w)-Xba(w))foalob•. (3) 
ab 

In deriving this classical formula it was assumed 
that the system is acted upon by forces fa (t), the 
energy of interaction with which has the form 

V =-~ fa(t)xa, 
a 

where xa are quantities conjugate to fa, and in 
the linear approximation 

<xa(t) >= Re ~,Xablb(t) = ~ .~ (Xab(w)fobe-irot 
b b 

(4) 

(5) 

where Xab(w) is the generalized susceptibility of 
the system. Formula (3) expresses the energy 
dissipation per unit time under the action of the 
sinusoidal force 

(6) 

The Hamiltonian operator of the system (Y) 
upon which the forces (X) are acting can be writ­
ten in the form 

3t=Hy(yt,Y2···Yn)+Hx(Xt,X2···xn)- ~XaYa· (7) 
a 

Here the quantities x and y enter in a completely 
symmetric manner, and one can with equal justifi­
cation consider the quantities Ya to be the forces, 
and xa the quantities conjugate to them. It should 
also be noted that the Hamiltonian (7) describes a 
macroscopic system and, generally speaking, de­
pends also on other variables in addition to x and 
y. We shall define the dissipation of energy per 
unit time as the average value of the operator 
-iix: 
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i 
Q =-<fix>= -h<[3t',H;x]> =- ~ <iaYa> 

a 

=- ~Sp (piaYa}. (8) 
a 

Here we have made the natural assumption that 
the forces x commute with y and Hx commutes 
with Hy. 

In order to determine Q up to the second order 
in x it is sufficient to find the density matrix p in 
the first approximation with respect to the interac­
tion energy (in the interaction representation) 

. t 

p(t) = p(O) + ~ ~ ~ [xa(ti)Ya(ti),p(O)]dti. (9) 
o a 

We substitute (9) into (8) and assume that the den­
sity matrix p(O) can be represented in the form of 
the product px(O)py(O), i.e., we assume the sta­
tistical independence of the subsystems X and Y 
at the instant t = 0. As a result we obtain 

. t 

Q =- ~ ~ ~ {<ia(t)xb(ti)><ya(t)yb(ti)> 
ab 0 

(10) 

Here the averaging is carried out with the aid of 
the unperturbed density matrix p (0) and, as usual, 
it is assumed that the quantities y are chosen so 
that in the absence of the forces x 

(y(t)> = Sp p(O)y(t) = 0. (11) 

The operator xa(t) in the general case can be rep­
resented in the form 

Since we are going to be interested in the effect of 
a monochromatic force, then (just as in formula 
(5)) we shall pick one Fourier component 

(12) 

Further we assume that the unperturbed density 
matrix p (0) describes a stationary state of the 
system Y, we neglect terms with the double fre­
quency 2w (the active part of the power) and we 
let t-oo. As a result of this we obtain 

00 

Q = ~ ~ ~ {(<Aa+Ab) <ya(T)Yb(O)) 
0 ab 

-<A bAa+> <yb(O)Ya(-r) ))eiwt +(<Ab+Aa> <yb(O)Ya(T) > 
- <AbAa+> <Ya(T)Yb(O) ))e-i"'~] a,. 

This expression can be easily transformed into the 
form 

00 

Q= ;li~ ~ (<{ya(-r)yb(O)}><[Aa+Ab]>eiw< 
ab 0 

+ <£Ya (-r) Yb (0) ]><{A a +Ab}> eiw-r + <{Ya (T) Yb (0) }> 

X <{Ab +A a]> e-iw< - <(ya (T) Yb (0)]) <{Ab +A a}> e-iw<) a,, 
where 

{AB} = AB + BA and [AB] = AB - BA. 

Further we make use of the expressions for the 
spectral density of the fluctuations and for the sus­
ceptibility of the system (cf., for example, [ 2, 31 ) 

Xab ( W) = ~ f <fYa (•) Yb (0)]) eiw< a,. 
0 

After straightforward computations we obtain 

2w:n: ~ iw "' Q =h.;;..~ <[Aa+Ab]>(YbYa)w- 2 LJ (Xab(w) 
ab ab 

(13) 

We pick out from this expression the part asso­
ciated with the effect of only the forces x. In order 
to do this we assume that the system Y exists in 
a state of thermodynamic equilibrium and we 
utilize the fluctuation-dissipation theorem 

The dissipation of energy per unit time associ­
ated with the effect of only the forces x, can now 
be obtained from (13) and (14) if we set the tem­
perature of the system Y equal to zero. As a re­
sult of this we obtain 

Ox= i; ~ (Xab• (cu)- Xba(w) )<{Ab+Aa}- [AaAb+]> 
ab 

= iw ~ (Xab*(w)- Xba(w) )<Ab+Aa>. (15) 
ab 

An analogous expression could be set up for the 
power of the losses associated with y if we treat 
the latter as forces and introduce the correspond­
ing susceptibilities. One can easily verify that in 
the ground state of the system at T = 0 expres­
sion (15) vanishes. In order to do this it is suffi­
cient to establish the relation between the commu­
tators ([AaAl>l) and the anti-commutators 
({At; Aa}) in a state of thermodynamic equilibrium. 
Such a relation can be derived in a manner simi-
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lar to the fluctuation-dissipation theorem and has 
the form 

1 ( 1 1 ) 2({Ab+Aa}>= 2+ et~<ll/kT-,i <(AaAb+]>. (16) 

For T = 0 it follows from (15) and (16) that also 
Q = 0. 

The energy dissipation associated with the sys­
tem Y can be introduced both by means of an ex­
pression analogous to (15) (we have just referred 
to that), and also with the aid of (13) and (16) if we 
assume that the system X is in a state of thermo­
dynamic equilibrium: 

(17) 

From (14) it follows that this expression must van­
ish for T = 0. 

Equations (14) and (16) also guarantee the van­
ishing of expression (13) for 

Q=Qx+Qy, 

if the temperatures of the subsystems X and Y 
coincide, i.e., if the system X+ Y is in a state of 
thermodynamic equilibrium. 

In the case of interaction with a radiation field 
the quantities Aa and A~ are proportional to the 
photon annihilation and creation operators. In this 
case the right-hand side of (15) turns out to be pro­
proportional to the average number of photons of 
the v-th mode (nv) = (a~ av). Thus, in this case 
(15) describes the absorption of photons (or the 
stimulated emission). (For greater details cf. 
[1,21.) 

We carry out a comparison of expression (15} 
with the classical expression (3). These expres­
sions formally coincide if the quantities 1/ 2 f0a and 
1/ 2 fob are respectively replaced by the operators 
Aa and A b• if a definite order is adopted for these 
operators, and if an average is then taken. In the 
classical approximation the order of the operators 
in the product is not important, and (15) goes over 
into (3). If only one force acts on the system, then 
(15) goes over into 

Qx = rox"(ro} (<AA++A+A)- <(AA+]>) 

= rox" (ro) (<z2)- <[AA+]>), 

where (x2) = ( AA ;- + A;- A) is the square of the 
force x averaged over time and over the ensem-

ble, while X"(w) = Im X(w). Thus, the difference 
from the classical expression of type (1} consists 
of the additional term - wx" (w} ( [AA ;-1) which, as 
is well known, vanishes as the Planck constant li 
tends to zero. At the same time this additional 
term in the quantum case when T- 0 guarantees 
the vanishing of the quantities Qx. 

In conclusion we make some remarks on the 
interpretation of the relations obtained here. The 
question arises as to how valid it is to regard for­
mula (15} as a generalization of formula (3). In the 
classical domain when the average (AbAa) can be 
replaced by the product of the averages (A b)( Aa), 
formulas (15) and (3} coincide. Thus, when we in­
terpret relation (3) as the energy dissipation un­
der the influence of given forces, then essentially 
we have in mind that the average values of these 
forces (A~ are given in the unperturbed system 
(i.e., without taking into account the interaction 
between X and Y) (cf., Hamiltonian (7)), while 
their dispersions (A"bAa) - (Ab)(Aa) are negligi­
bly small. Since the energy dissipation is a quad­
ratic function of the acting forces, then in order to 
be able to utilize the concept of given forces also 
in the quantum domain, when the dispersions 
(AbAa) - (A"b)(Aa) are not small, it is necessary 
to generalize this concept. Such a generalization 
consists of the fact that we regard as given not 
the average values of the forces, but their quad­
ratic combinations (AbAa). In case of interaction 
with the radiation field this means that we regard 
the number of photons as given (and not the aver­
age values of the field operators). 

Once again we note that a more detailed illus­
tration of the relations obtained above for the case 
of interaction with radiation can be found in [ 1• 21 . 

The author regards it to be his pleasant duty to 
thank Professor I. L. Bershte1n for discussions 
which have stimulated the appearance of the pres­
ent paper. 
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