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Owing to stability of the superconducting state with respect to small fluctuations of the order­
ing parameter, transitions to the mixed state in superconductors of the second kind occur in 
magnetic fields as a result of sufficiently large fluctuations. The vortex lines in this case are 
produced near the surface and penetrate into the superconductor. A minimal critical size ex­
ists, at which the vortex nucleus does not "close up" and continues to develop further. It is 
shown that the shape of the vortex line and the magnitude of the energy barrier for the nucleus 
are determined by two main factors: by the interaction between the vortex and magnetic field 
and by the elasticity of the vortex line. In this case the vortex line forms a semicircle the ends 
of which touch the superconductor surface. The energy barrier surmounted during formation of 
the vortex is calculated and it is shown that the barrier vanishes for a critical current on the 
surface, that is, when the superconducting state becomes unstable with respect to small fluc­
tuations. 

TURNING on of a magnetic field Ho > Hc1 in su­
perconductors of the second kind is usually accom­
panied by a phase transition from the supercon­
ducting state to the mixed one. [1] The magnetic 
flux partially penetrates in this case into the bulky 
superconductor in the form of quantized vortex 
filaments, which in the equilibrium state make up 
a regular lattice. At the same time, the metastable 
superconducting state continues to remain stable 
relative to slow fluctuations of the superconducting 
ordering parameter ~. creating by the same token 
the possibility of "overheating" of this state for 
fields Ho > Hci· This stability is retained up to a 
certain field H~1 > Hcto the magnitude of which 
can be calculated from the condition for the van­
ishing of the second variation (o2F = 0) of the free 
energy of the superconductor as a functional of 
D.. r 21 For fields H0 > Hb, we have 62 < 0 and 
small fluctuations destroy the superconducting 
state. Obviously, the instability occurs on the 
boundary of the superconductor, where the mag­
netic field is maximal. 

For extremely hard superconductors (K >>1)1> 

1>Here K- 80(0)/ ~0 - eHcB' is the parameter of the Ginz­
burg-Landau theory [3], 8 is the depth of penetration of the 
field, 80(0) the depth of penetration of the weak field at tem­
perature T E 0, ~0 - v0/T c the correlation radius of the elec­
trons (v0 -Fermi velocity, Tc -critical temperature), He the 
thermodynamic critical field, and e and m the charge and mass 
of the electrons; all quantities are given in units ii = c = 1. 

the stability limit of the superconducting state H~1 
corresponds, as can be verified by direct calcula­
tions, to a critical current stater 41 on the boundary 
of the superconductor, that is, in this case dj I dv s 
= 0 and the current j is maximal. Here v s 
= (V'x - 2eA)/2m is the velocity of the supercon­
ducting condensate, A is the vector potential of 
the magnetic field (H =curl A= -e-1m curl Vs), 
and X is the phase of the ordering parameter 
D. = I D. I eiX . Physically, this is connected with the 
fact that when the fluctuation scale is ""0/K « o, 
the changes of the magnetic energy are insignifi­
cant, and the superconducting current can be re­
garded at such distances as a homogeneous current 
state, the thermodynamic-stability criterion of 
which is the inequality dj/dvs > 0. 

When Ho < Hb the penetration of the vortices 
into the superconductor and the transition to the 
mixed state are due to fluctuations. A detailed de­
scription of this process is a problem in physical 
kinetics, but within the framework of equilibrium 
statistical physics[ 5l we can calculate the critical 
dimensions and the shape of the vortex nucleus 
that is produced near the surface of the supercon­
ductor, and also the energy barrier corresponding 
to the nucleus. 

Since the barrier should be minimal, the state 
containing the nucleus realizes the minimax of 
the free energy F{D.} and consequently it can be 
described by the equilibrium equations of electro­
dynamics, which give an extremum for F{D.}. The 
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solution of these equations under the same bound­
ary conditions is non-unique, in view of the possi­
bility of "superheating" of the superconducting 
state. Formally this non-uniqueness is connected 
with the violation of the singly-connected charac­
ter of the superconductor, owing to the occurrence 
of vortices, which are specified mathematically as 
lines of singularities of the quantity Vs, such that 
the velocity circulation over an infinitesimally 
small contour enclosing the filament obeys the re­
lation [ 11 

~ v.dl = __::. 
m 

The position, form, and the number of these fila­
ments should be determined from the following 
supplementary conditions: in the case of the equi­
librium state-from the condition of minimality 
of the free energy F{~}, and in the case of a 
state containing a nucleus-from the conditions of 
minimax of F { ~} . In the latter case it is clear 
from energy cons ide rations that there should be 
one vortex. By virtue of the continuity of the mag­
netic flux, the ends of the vortex will emerge to 
the surface, and from symmetry considerations it 
follows that the vortex filament should lie in a 
plane perpendicular to the surface of the super­
conductor and parallel to the external magnetic 
field H0 (see the figure). Solving the equations of 
electrodynamics under these conditions and calcu­
lating the free energy F, we can then determine 
the form of the filament from the condition that F 
be stationary. 

An essential circumstance for what is to follow 
is that for extremely hard superconductors the 
circulation § v s • dl and accordingly the magnetic 
field of the filament are small (~1/K in dimen­
sionless variables[1J). Therefore in a sufficiently 
strong external field Ho the solution describing 
the superconducting state with a vortex filament 
differs by only a small correction from the solu-

z; 

z 

tion without the vortex. Let us expand in powers 
of this correction the free energy of the supercon­
ductor in an external field[ 6• 7] Ho: 

\ (H- H0)2 -:HIT 
F=Fa+JdV Bn , Fa=-TlnSpe 

(tiC is the Hamiltonian of this system). Accurate to 
second-order terms we have 

!1F = bF + tJZF, 

(' {H-Ho } bF=.) dV ~6H-j6A 

\ { H-H0 m } = J dV 431 6H +---;- j6v. , 

tJZF = \ dV{ (bH) 2 + ~(6j) (6v.)} 
J 8n 2e 

(divj = div(bj) = 0). (1) 

Here H and j are the field and the current de­
scribing the superconducting state without the vor­
tex (curl H = 471-j, div H = 0; H(z) = 0) = Ho, H(z 
= oo) = 0); oH, oj, and ov s are the corrections to 
this solution, due to the vortex (curl (6H) = 47r(Oj), 
div (6H) = 0, 6H(oo) = 0). 

As will be made evident shortly, the character­
istic dimension R of the filament satisfies the in­
equalities 0/K « R « o, where 0/K is the radius 
of the core of the filament, within which the non­
locality of the electrodynamic equations for the 
superconductor is essential. Taking these inequal­
ities into account and integrating in (1) by parts 
with the aid of the relation H = -e-1 m curl Vs, we 
obtain, owing to the presence of the singularity 

1 r {( dH) dx !1F=- _\ dt - z-
4e •0 dz o dt 

1 [( dx )z ( dz )2]'/'} 
+2(6Hm) dt + {it, · (2) 

Here oHm is the field in the center of the vortex, 
and (dH/dz)0 = -47rj. The integration in (2) is car­
ried along the filament in such a way that dx/dt > 0. 

Variation of (2) under the condition z(O) = z(1) 
= 0 yields 

dz -R d2x _ 0 
dz dl2 - ' 

dx (O) = dx (l) = 0 
dl dl ' 

(3) 

where R = 6Hm/87rj and dl = v'(dx) 2 + (dz) 2 is the 
element of length of the filament. From (3) it fol­
lows that the filament forms a semicircle of ra­
dius R, with x2 + z2 = R2• 
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It remains to determine the field oHm in the 
center of the filament. At distances satisfying the 
inequality o I K « r « R, the following equations 
are valid 

rot(,6H) = 4n(6j), div (6H) = 0; 

div(6j) = 0, rot(6vs) ~ 0; (4)* 

• j ( dj j \ 6J = -6vs + --- ;e(e6v8 ), 
Vs dvs Vs 

vs 
e=-. 

Vs 
(5) 

The latter equality (5) for the current was obtained 
neglecting the nonlocality, that is, oj i = 

= ovskdh(vs)/dvsk· 
From the second pair of equations in (4) it fol­

lows that** 

( 1/ Vs dj ) 
X = arctg v T dvs tg e , 

where the polar angle e of the cylindrical coordi­
nate system r, e, t is measured from the e di­
rection, and the t axis is directed along the fila­
ment. Obviously, 

1 1 I i di ( di i )-1 6v,e = -- y --- --sin2 8 + -cos2 8 . 
2mr v, dv, dv. v, 

Let us substitute these values in (5) and in the 
first pair of equations of (4) (the equation div (oH) 
= 0 is identically satisfied because oHr = oHe = 0): 

a(6Hr.) __ 2n y j dj 1 
---;;r - ;;;: ~ dv. r , 

a({)Hr,) = - 2n v, _!:____( _!_) sin Scos 8 ax . 
ae m dvs Vs ae 

From this it follows with logarithmic accuracy[ tJ 

that 

2n v j dj 
6Hm=- --d lnx. 

m v, v, 

An estimate of the radius of the filament 

yields 

1 1/ dj 1 R=--y-- lnx 
4m dv, v,j 

R "' ln x "' ln x {). 
mv8 x 

Substituting the obtained values of z (l ) , x (l ) , 
R, and oHm in (2) and integrating, we obtain the 
energy barrier surmounted when the nucleus is 
produced: 

*rot= curl. 
**tg = tan, arctg = tan"'. 

nz ( 1 dj ) !!..F = --2- -- (ln x)2. 
32em V8 dvs 

As seen from this formula, the barrier actually 
vanishes for the external field Hc1 corresponding 
to the critical current on the surface: dj /dv s = 0. 
Away from the field H6t we have 

!!..F "' Hc2 ( 6 / x)3 (ln x) 2• 

For T = 0 we have 

!!..F .- !l (;c) (ln x) 2 ( mv02 ) fl=-2- . 

The physical picture contained in the foregoing 
calculation is simple. The critical dimensions and 
shape of the nucleus are determined by two funda­
mental factors: the interaction of the vortex with 
the external field, which repels the filament into 
the superconductor, and the elasticity of the fila­
ment, 2> which is equal to the self-energy oHm/8e 
of the vortex per unit length. The interaction with 
the field is proportional to the difference Ho - H(z) 
per unit length of the projection of the filament on 
the direction on the magnetic field. Since the elas­
ticity of the filament is relatively small, the ra­
dius of the nucleus is small compared with depth 
of penetration of the field. From this we get that 
in first approximation the magnetic energy of the 
vortex is proportional to the area under the z (x) 
curve, whereas the elastic energy is proportional 
to the length of the filament. This indeed deter­
mines that the nucleus has a semicircular shape. 
In view of the nonlinearity of the equations of elec­
trodynamics, the elasticity of the filament depends 
greatly on the magnitude of the homogeneous cur­
rent in which the vortex is produced. When the 
current reaches the critical value, the elasticity 
vanishes and the radius of the nucleus vanishes to­
gether with the value of the energy barrier. 

The foregoing raises the question regarding the 
character of the phase transition from the super­
conducting to the mixed state. Because of the con­
tinuity of the vortex-density function on the phase 
transition line (Ho = Hc1 (T)), this transition is ob­
viously second-order. [1J Therefore the possibility 
of "superheating" of the superconducting state is 
unexpected. Actually, however, the following must 

2 )We note that the calculation of the "delay" of the pene­
tration of the vortex in the superconductor and the correspond­
ing physical picture as presented in the paper by Bean and 
Li vingston[•] are incorrect. The interaction between the vortex 
and its image, being small compared with the elastic energy of 
the filament, does not play any role in the formation of the 
energy barrier that separates the superconducting and the mixed 
states. 
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be taken into account: 3> in ordinary phase transi­
tions the formation of a new phase takes place 
homogeneously over the entire volume. If the very 
process of nucleation of a new phase is continuous 
(second order transition), then the energy barrier 
between the phases, naturally, is equal to zero and 
no "superheating" or "supercooling" is possible. 
An important circumstance in the case of transi­
tion from the superconducting state into the mixed 
state is that the formation of the new phase takes 
place from the surface of the sample, due to pene­
tration of quantum vortex filaments. Therefore in 
a bulky semiconductor, where it is possible to in­
troduce the concept of a homogeneous mixed phase, 
the change in the state proceeds continuously and 
the transition as a whole is of second order. On 
the other hand, because of the finiteness of the 

3 lFormally the presence of "superheating" of one phase 
does not contradict the continuity of the first derivatives of 
the thermodynamic potential in second-order transitions, if the 
"supercooling" of the second phase is impossible. In this 
case the mixed state is stable in the entire region of its exist­
ence, and its "supercooling" boundary coincides formally with 
the line of equilibrium transition H0 = Hc 1(T). 

magnetic-flux quantum, there exists a certain min­
imal energy barrier, which must be overcome by 
the vortex penetrating into the superconductor. 

The author thanks I. M. Lifshitz for a discus­
sion of the work and for useful remarks. 
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