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The interaction of traveling-wave modes in a gas laser with a ring resonator is considered. 
The interaction is based upon the nonlinearity of the medium and the mode coupling by mirror 
reflection. The latter mechanism can be used to explain the effects of frequency pulling and 
suppression of one of the traveling-wave modes. 

A NUMBER of recent papers deal with the ring 
resonator laser capable of exciting traveling-wave 
modes. In solid-state lasers, a single traveling
wave mode may be stable. [ t-Sl In a gas laser, 
however, a single traveling-wave mode is unstable, 
the standing wave being the only stable mode. [21 It 
may seem strange, therefore, that the fairly weak 
feedback of a gas laser can be used to suppress 
one of the traveling-wave modes. [ 41 Another in
teresting effect, which may also be derived from 
the feedback between waves traveling in opposite 
directions, is frequency pulling in a rotating 
laser. [ 51 

The present paper deals with the interaction of 
opposed waves, based upon both the nonlinearity of 
the medium and the coupling between modes re
flected from the mirrors. The latter mechanism 
is described phenomenologically by Eq. (4). If the 
mirror coupling is due to diffraction effects, the 
coupling coefficient is € .:S 10-5• Uneven mirrors 
can considerably increase €; nevertheless, we as
sume here that € is fairly small. The area of in
terest of this paper is basically limited to the elec
trodynamic aspect of the problem, the active me
dium being defined by the polarization coefficient 
x. 

The first section of the paper presents equa
tions of motion for wave amplitude and phase in a 
rotating system of coordinates, taking account of 
reflective mode coupling. The second and third 
sections give solutions to these equations; these 
solutions describe the effects of frequency pulling 
and suppression of one of the modes. 

It should be noted that the order of magnitude of 
the frequency pulling region was estimated pre
viously by Bershte1n. [ 61 

1. In a slowly rotating coordinate system, Max
well's equations in a linear approximation with re
spect to {J ({J (r) is the linear velocity of rotation, 

c = 1) are of the form, 

~E-(~+21lV) aE = fJ2p 
&t at &t2 • 

where P is the polarization vector of the active 
medium (taking account of radiation losses). 

(1) 

The solution to (1) shall be sought in the form 
of a sum of opposed traveling waves with slowly 
varying amplitudes: 

E = ei"'t[E+(x, t)eikx + E_(x, t)e-i~<x] + compl. conj., 

P = ei"'t[P+(x, t)eikx + P_(x, t)e-ikx] + compl. conj. 
(2) 

where w = I k I is the natural frequency of the reso
nator, so that exp (± ikl) = 1, and l is the beam 
path length in the resonator. Considering that field 
amplitudes vary slowly. 

aE± I &t ~ wE±, &E± I &x ~ kE±, 

Eq. (1) yields 

(3) 

The coupling between modes E+ and E _ , arising 
on reflection from the mirror at the point x = 0, 
can be expressed by the equation 

The mode coupling coefficients with respect to 
amplitude, €±, are complex in general. However, 
it can be readily shown that in limiting cases of 
€ + = € _ , € + « € _ , which are cons ide red below, the 
argument €± causes only a certain constant rela
tive phase shift of the mode. Consequently, €± 
shall be considered real. The case of €+ ~ €_ ap
proximately corresponds to the case, cited in [ 41 , 

in which a portion of the energy is transferred 
from mode E 'f to mode E± via an additional mirror. 

The solutions to Eq. (3) must also satisfy the 
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periodicity condition: 

(5) 

The dependence of E± upon x can be found by per
turbation theory, as in the paper of Kuznetsova and 
Rautian. [ 11 When the reflection coefficient of the 
mirrors is close to unity, only the first two terms 
of the expansion can be considered: 

X 
E±(x, t) = E±<0>(t) ---,E±<t>(t}, 

±fJE±<O>jfJt + iiJkE±(O) =F UiJP±(O) = E±(1l/l, (6) 

where P~ > depends only upon E~ >. 
Substituting (6) into (5), and taking (4) into ac

count, 

l f}!± =F illE± - x-±E± + i~=F = 0, ~ = ~ ~ p dl; (7) 

A/l is the Doppler frequency shift due to rotation, 
and X± is the coefficient of polarization of the ac
tive medium with allowance for resonator losses. 

Lamb[ 81 computed X± for standing-wave modes. 
Similar computations for the case of traveling
wave modes of any amplitude lead to the following 
expression: 

(8) 

Here r is the mirror transmittance (r « 1), 
~ = 1/ Io - 1 is a so-called generation parameter 
defining the excess of pump energy I over the 
threshold value Io, o = (w - w0)T is a dimension
less detuning of field frequency w relative to the 
transition frequency w0, and 'T is the character
istic lifetime of an excited atom. The electric 
field amplitudes E± are dimensionless (a system 
of units is used where li/2Td = 1, d being the di
pole moment of transition). 

The criterion of validity of the formula for X± 
is based on the assumption that TdE:~:/dt « E±. In 
the case of field E±, constrained by the reflective 
wave coupling, this condition is practically met for 
E± .$ r. 

Let us note that when E± =A = 0, Eq. (7) re
duces to the usual laser equations; the wave ener
gies are then determined by the condition ReX±= 0 
and turn out to be equal, while lm X± determines 
the frequency pulling effect. In (7) it is convenient 
to separate the amplitudes and phases. Assuming 
that E± = P± exp (icp:~:) and substituting 0!± = E± /~r, 
~ = 2A /~ r and t - t l /~ r, we obtain 

P± = P±(1- P+2- P-2) + 1'12P±P=F2 =F <l:f:P=F sin cp, (9) 
. ll+P+2- a-p-2 

cp = Q + {) (p+2- P-2) + cos cp, (10) 
P+P-

. 1 P=F 
'P± = ± - Q - {)p'l'2- <l:f- cos cp, cp = 'P+- 'P-· (11) 

2 P± 

Equations (9)-(11) contain an expansion in terms 
of o, since the effects discussed below basically 
occur only when the detuning is small. 

2. When the radiation energies are not exces
sively low, one can assume that a±« 1. Since the 
frequency pulling effect occurs when ~ .$ ~, we 
have also ~ « 1. 

In terms of (9) and (10), frequency pulling means 
that cp = const and P± = const. Let us consider the 
conditions under which such a mode can be real
ized. The problem basically depends upon the mag
nitude o of detuning. Let us first note the import
ant property of the wave gain Re X±: when of. 0 
it follows from (8) that Re X+> Rex_ if I E_l2 

> IE+ 12, and vice versa. This means that the active 
medium tends to equalize energy among the modes. 
The larger o, the larger is this effect. On the 
other hand, the rotation and various coefficients 
of mode coupling a± cause a non-uniform distri
bution of energy among the modes. It can be 
readily shown that both effects are of the same 
order when o2 ,..., 0!±- Therefore, when o2 » a±, we 
have p~ Rl p~Rl 1/ 2• The value of p~- p~ can be 
found from (9) neglecting p ± ,..., a 2• As a result, we 
have 

~ = Q- {)-1 {a++«-) ~in cp + (a+- «-)cos cp. (12) 

This equation will obviously have the solution 
cp = const only when I~ I < ~c• where 

Qc = [(a++ «-) 2 / 62 + («+- «-)2]''•. (13) 

When I~ I > ~c• oscillations appear which, in the 
limit of I Q I » Oc, describe the usual Doppler 
frequency shift. 

In the second limiting case o2 « a±, the wave 
amplitudes p :1: differ in general. One can merely 
assert that p~ + p~ = 1. Assuming that P+ 
=cos (1/J/2) and p_ = sin (1/J/2), the following equa
tions will be obtained for l/J and cp: 

¢ = [(a++«-) + (a+- «-)cos 1Jl] sin cp 

+ {)2 sin 1jJ cos 'ljl, (14) 

. cos cp 
cp = Q + {) cos1Jl+-.-[(a+- «-)+(a++ «-)cos'ljl]. (15) 

sm'ljl 

If the small term with o2 is dropped from (14), 
several oscillating solutions are possible for (14) 
and (15); the term with o2 determines which of 
these solutions are stable. 

Let us consider the stability of stationary states 
defined by the equations ~ = lp = 0, for a+ = a _ 
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= a/2. Linearizing (14) and (15) near the equilib
rium point, we obtain the following dispersion re
lation for perturbations of the exp (rt) type: 

+(.s+~)(___E_+bcos2 '1jJ) =0, 
COS 'ljJ COS'IjJ 

(16) 

sin cp = 0, Q + 6 cos 'ljJ + acot'ljJ = 0. (17) 

When Q = 0, there are two equilibrium positions: 
cos 1/J = 0 <P+ = p_), and sin 1/J = la/ol, if lol >a. 
The first solution is stable, while the second is not. 
As a consequence of rotation, the first equilibrium 
position changes, the amplitudes are no longer 
equal, and the equilibrium becomes unstable. 

We determine the critical value rlc at which 
instability sets in from the condition Re r(Qc) = 0, 
so that the frequency pulling region will, as before, 
be defined by the condition I Q I< rlc· From (16) 
and (17) it follows that 

(18) 

It should be noted that within the frequency region 
62 « a under consideration, cos2 1/J = 1/ 3 at the 
stability limit, and the wave energies differ by an 
amount of the order of unity. 

The dependence of rlc upon detuning is quali
tatively shown in Fig. 1. This type of relationship 
can be explained as follows. In the stationary state, 
frequency shift due to rotation is compensated by 
unequal frequency pulling for various modes, in
sofar as the latter effect is determined by the op~ 
term in Eq. (11). The approximate equilibrium 
condition is 

(19) 

When I o I « .,fc;, the mode energies may markedly 
differ from one another, so that p~- p2_ ,$ 1, and 
the frequency pulling effect will be possible only 
when Q ,$ o. When I o I » Va, the mode energies 
are almost the same: p~- p~ ~ ao-2 sin cp. In this 
case rlc = I a/ o 1. It should be noted for large and 
small o, the critical velocity of rotation does not 
depend upon the radiation energy. Indeed, when 
expressed in dimensional units, ~c~ E for I o I 
« Enr and ~c ~ E/6 for loi»VE/~r. However, 
the peak value of ~c is proportional to the root of 
radiation energy: ~c ~ VE~r for I o I~ VE /~r. 

According to [ 5J, frequency pulling occurs with
in a region of several hundred cps, so that 
(~w/w)c ~ 10-12 • The same order of magnitude can 
be obtained from the above formulas, taking 
E ~ 10- 5, kl~ 5 x 106 and 6 ~ 1. 

3. Let us now consider the effect of suppress
ing one of the modes. To be more explicit, let us 

FIG. 1 FIG. 2 

consider that the minus mode (1/J « 1) is being sup
pressed. This can occur only if a_ » a+ and 
6 «a_. Considering that .../a+/a_ « 1/! «1, Eqs. 
(14) and (15) can be simplified: 

'ljJ = 1/2a-'¢2 sin cp + 6~, 
<P = 6 - 1/2a_'¢ cos cp. 

(20) 
(21) 

The stationary solution of these equations is rep
resented by 1/J = 21 6/a_l and cp ~- 6. The energy 
ratio of traveling waves in dimensional units is 

(22) 

Linearizing (20) and (21) in terms of small per
turbations, we can readily show that solution (22) 
is stable. The small-oscillation damping incre
ment, r, will in this case be 

r = -62 ± i6. (23) 

When 6 ,$ .J a+a_, expression (22) becomes in
valid and should be replaced by the relation 

(24) 

The variation in energy ratio of two modes as 
a function of 6 is shown schematically in Fig. 2. 

The authors thank Yu. V. Troitskil for a useful 
review. 
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