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Stimulated emission and absorption of a relativistic electron in crossed electrostatic and mag
netic fields are studied by quantum-mechanical methods. The case when emission is greater 
than absorption is considered. An expression is deduced for the intensity of the stimulated 
radiation. 

INTEREST in the theory and practice of quantum
mechanical generators and amplifiers whose work
ing media are not atoms or molecules but electron 
beams controlled by electric and magnetic fields 
has increased recently. r i-sl 

Indeed, an electron executing a finite motion in 
electromagnetic fields should have discrete energy 
levels. It is important to note that in all cases of 
practical interest, such a "macroatom" is a qua
siclassical system, whose energy levels are equi
distant accurate to terms proportional to li. There
fore when radiation of definite frequency interacts 
with the external field, the electron can absorb a 
quantum and go over to a higher energy level, or, 
to the contrary, give up part of its energy and go 
over to lower levels. 

The really observable quantity is the total power 
radiated (or absorbed) by the electron as a result 
of the two processes. [7l If conditionS are produced, 
by suitable choice of the corresponding field con
figuration, whereby the probabili¢'es of the transi
tions to the lower levels are higher than the proba
bilities of the transitions to the higher levels, then 
emission prevails over absorption and the system 
works like a maser or a laser. 

In this paper we examine the radiation of a rel
ativistic electron in light of quantum theory, and 
show that in the fields used in the analysis of the 
operation of the magnetron[ 81 the electron is capa
ble of amplifying external radiation over a wide 
range of frequencies. 

To this end we investigate plane motion of an 
electron (charge e0) in a homogeneous magnetic 
field H (directed along the z axis) with a vector 
potential 

(1) 

To find the wave function of the electron we 
shall use the Klein equation, since inclusion of the 
spin properties of the electrons results in an in
significant contribution to the intensity of the radi
ation: 

(ina I at+ eaep)Z¢ = (m02c' + c2p2)'1Jl, (3) 

where p = -iliV + e0c-1A, and m0 and e_ = -e0 

are the mass and charge of the electron. 
We seek the solution of (3) in the form 

1 { iEt 
'ljl = ---=.exp il<p- -}R(r), 

)'2n: h 
(4) 

where E is the total energy and l the orbital num
ber. The function R satisfies the equation 

R" + ~R' + [ E2- mo2c'- 2 l- _!_ 
r ft2c2 Y r2 

( 4aE) J e02a2 - yz 1 - -- rz R = - --r'R 
eofl2 4c2ft2 ' 

eofl 
y = 2ch' (5) 

which has no exact solution. By regarding the term 
on the right side of (5) as a perturbation (the con
ditions necessary for this purpose are given later), 
we obtain the eigenfunctions in the zeroth approxi
mation: 

(6) 

Here 

Yt2 = y2 (1- 4aE~. 1 1 eofl2) > 0, 

n = 2s + Ill (n = 0, 1, 2, ... ) is the principal quan
tum number, s (equal to 0, 1, 2, ... ) is the radial 
quantum number, I~(x) is a function connected 
with the Laguerre polynomials by the relation 

V sl 
I l(x) = e-:r.l2:r;l/2L l(x) 

8 (s + l) ! • · 
(6a) 

and in an electrostatic field with potential 

<p = afl- I 2, flo = x2 + y2, a > 0. 
To determine the eigenvalues of the energy we 

(2) obtain the equation 

854 
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E2 = m02c~ + eollclil + eollcli(1- 4aE / eoiiZ) '"(n + 1}, 

(7) 
from which we get 

Enz = Enz0 - 1/2/i(Q- Q1) (n + 1), 

En1° = [mo2c~ + eollcli(n + l + 1)]''•, 
Q = eollc / Enz0, Q1 = Q:(1- 4aEnz0 / eoH2 ) '''· (7a) 

The condition for applicability of the zeroth ap
proximation is the inequality 

I eo
2
:

2 ~ Wn'l'+r4¢nzd3x I ~I Enz2- En'l'21· 

Let us calculate the frequency and intensity of 
radiation produced by transition of an electron 
from the ground state n, l to a state n' = n- vn, 
l' = l - vz. The radiation frequency is determined 
from the energy-momentum conservation law 

n'l' pz' = - liwnz c-1 cos e' (8) 

where Pz is the momentum along the z axis. In 
the vicinity of very large quantum numbers we can 
put (confining ourselves only to terms proportional 
to ti) 

(9) 

From (9) we see that in a small section of the 
quasiclassical part of the spectrum the energy 
levels are equidistant. From (8) and (9) we obtain 
finally 

n'l' Wnl = 1/2(Qvz + Qvn). (10) 

In the nonrelativistic case, formula (10) was 
derived by P. L. Kapitza with the aid of the classi
cal averaging method. [ 8 1 Great interest is attached 
to the conditions under which 

'V! =- Vn = VE, W~?' =:WE= VEWE0, WE0 = 1/2(Q- Qi); 

(11) 
':l.'l' 

Vt = Vn = VH, Wr.! =: WH = V HWH0, WHO= 1/2 (Q + Q!). 

(12) 

In the interaction between an electron and a 
plane electromagnetic wave (frequencies w, elec
tric field intensity EA., polarization A.) with a wave 
vector K(B, <p 1 ), the probability of the induced tran
sitions n l - n'l' per unit time is determined by 
the expression 

'l' n'l' 2 n'l' 
W~1 (w, 'lt., 1.-) = 2:rt (eo/ moiiw)2 1 M)., nzl gnl (w) U.c)., (13) 

n'l' 't 

gnz (w) = -t2(wn'!'-w)2+1f4 ' 
nl 

(14) 

where T is the lifetime of the initial state, which 
does not depend on the quantum numbers n, l, n', 
or l, 

(15) 

is the matrix element, aA. is the polarization vec
tor, and uK, A. the spectral density of the external 
radiation in the frequency interval dw and in the 
solid-angle interval do with polarization A.. The 
coefficient preceding ~K, A. in the right side of (13) 
is the well known Einstein differential coeffi
cient. [SJ 

To calculate the probability of the induced ab
sorption (transitions n, l - n", l") it is necessary 
to make in (15) the substitutions n,l'- n", l" and 
n', l' - n, l , and go over from the matrix element 
MA. to its adjoint. The matrix elements (15) are 
calculated in the Appendix. 

Assuming that the electron is first in a state 
with quantum numbers n and Z, let us consider 
the system of levels En", l" > En, z > En', l', the 
distances between which are equal to vEwk, that 
is 

n" = n- VE, l" = l + 'VE, 

n' = n + VE, l' = l- 'VE· 
(16) 

We write down further an expression for the 
total power PvE (w, IC, A.) absorbed by the electron 

in the frequency and angle intervals dw and do: 

P n 11l11 n 11l 11 n'l' n'l' 
"E (w, X, 1.-) = liwnz W nl -liWnz W nl • (17) 

Substituting in (17) the values of the probabili
ties of the transitions and taking formulas (A.15-
A.22), (11), and (16) into account, we obtain the 
power absorbed in the interaction of an electron 
with an unpolarized electromagnetic wave: 

:rteo2 ( WE0)3VE t' 

w2Q1En!o t'2 (w- VEWE0)2 + lj4 u,. 

VE2 COS2 8 "e "E } 0 
+ X [(/(n-!)/2} 2- (/(n-!)/2-~E)2] (/(n+!)/2} 2, (18) 

where 

w2sin2 e w21isin28 
x=---= . 

4'\'1 2Q1Enl 

For further analysis of formula (18), let us es
timate the quantum numbers. The solution of the 
classical equations of motion has in our approxi
mation the form 

X= R0 cos(wH0t + aH) + rocos(wE0t + aE), (19) 

Y = Ro sin(wH0t + aH) +rosin (wE0t + aE). (20) 

Comparing the expressions for the energy and 
momentum obtained by the quantum and classical 
theories, we get approximately 

R 2 _ (n + l + 1)/ic ro2 _ (n -l + i)lic (Z1) 
0 - e0H ' - eoH · 
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We note that R0 > r 0, when l > 0, and R0 < r 0 

when l < 0. The values of R0 and r 0 are deter
mined by initial conditions. For example, if an 
electron with energy E0 moved along a circle of 
radius d with frequency w prior to turning on the 
electric field, then 

CilHO CilEO 
Ro = d--g;, ro = d~. (22) 

For a= 1.6 X 104 V/cm2, H = 1.6 X 104 G, E0 

=50 MeV, and d = 10 em we get AE = 21rc/wE 
= 1800 v]i em, Ro = 10.3 em, r 0 = 0. 3 em, 
(n + Z)/2 = 1013 , and (n - Z)/2 = 1011• 

Since the quantum numbers are quite large, we 
can use the asymptotic formulas (A.13) and (A.14), 
taking into account the fact that I xI« 1. Expres
sion (18) takes the form 

x[(1- T)o:) + COS2 81 fvE (TJo) _de!:_ fvE (TJo), 
'VE -' TJo 

APPENDIX 

The function I~ (x) satisfies the equation 

d2J.z 1 dl,L [ 4s + 2l + 2 --+--+ dx2 x dx 4x 
1 [2 ] --- J.l = 0 (A.1) 
4 4x2 

We present below several relations which are use
ful in the calculations: 

- - !+i 
}'x ] 8 l = }'s + l + 1 181+1- ys 18 -i, (A.2) 

- -- -- 1-1 -yx l.Z = -ys + l 1.1-1- }'s + 1ls+1, A. 3) 

(__!:____- _z_- ~ )J.z = -1/ s + z + 1 J.z+~, (A. 4) 
dx 2x 2 V x 

(~+ _l +~)J.z = 1/ s + l l.z-t, (A. 5) 
dx 2x 2 Vx 

(__!:___- _l_ + __! )J.l = - 11 s 1:'!::, 
dx 2x 2 Vx 

( d z 1 ) 1 I s + 1 1-1 
dx + 2x -2 1"1 = V -x-1•+1· 

(A.6) 

(A. 7) 

r0ro sin 8 
TJo = c 

(23) From (A.4)-(A. 7) it follows that 

In the nonrelativistic case the maximum power 
is emitted in the case of dipole transitions with 
VE = 1[3] 

ne02 (roE0 )3 1 + cos2 8 P-- u 
1 - w2Qtm'r (w- WEo)2 +1;4,;2 x· 

(24) 

It follows from (23) and (24) that PvE < 0, which 
corresponds to negative resonant absorption. 

We have thus demonstrated in the approximation 
(9), which leads to an equidistant spectrum of the 
levels, the possibility of amplification of external 
radiation at the frequency vEwk. It is important 
to note that the intensity of the radiation does not 
contain Planck's constant, thus pointing to a classi
cal nature of the effect. We can show similarly 

0 that at the frequency VHWH, only resonant absorp-
tion is possible. 

In the case when a < 0 (cylindrical oscillator 
in a magnetic field), resonant absorption will be 
observed at frequencies that are multiples of 
(Q1 + Q)/2 and (Q1 - Q)/2. 

However, inclusion of terms proportional to n2 

in (9) leads to unequal spacing of the levels. In 
this case the corresponding calculation shows that 
at the frequencies w close to resonance an exter
nal radiation can be amplified (see also [ 1• 21 ) and 
that Planck's constant does not enter in the final 
expression for the radiation intensity. 

The author thanks A. A. Sokolov and I. M. Ter-
nov for a useful discussion. 

-- - dJ.I 
is+ l + 11.1+1- }'s + ll81-i = -2}'x dx , (A.8) 

is+ l + 1 /,1+1 +is+ lJ.l-i = l t x ]81, (A.9) 

-- !-i - l+i - dl.Z 
}'s + 1Is+t- is ls-i= 2 }'x dx , (A.10) 

-- 1-i -Hi l-x 1 
is+ 1Is+t + }'s ls-i= Txls, (A.ll) 

I.-1(x) = (-) 1 I!_z(x). (A.12) 

For small values of x the following relation-. 
ships are valid 

liml81(x)=lz(i2(n+1)x), n=2s+l, (A.13) 
n-+oo 

l. Jl( )=__!_ 1/ (s+l)! l/2 
liD 8 X ll V I X • 

x-+0 . S. 
(A.14) 

When investigating the polarization of the radi
ation we should substitute in (14) in lieu of aA. the 
values corresponding to two linear or two circular 
polarizations. 

For the u-component of the linear polarization 
(Eu lies in the xy plane) we have 

(A.15) 

For the u-components of the linear polarization 
(E7r parallel to the vector K x Eu) 

(A.16) 

For right-hand (m = 1) and left-hand (m = -1) 
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circular polarizations we have respectively 

Mm= (Ma+imMn)/i2. (A.17) 

In formulas (A.15)-(A.17) we used the following 
notation 

M± = ~'i'~'l'e-bcr(e-i"''p+±eicp'p_)1Jlnldsx, 

Mz = ~ "'~'l'e-ixrPz'i'nl dax, p ± = P,., ± ipy, 

M_ = -2ilimoc2 y"'X 
YYtEnz0En•z•0 

(A.18) 

(A.19) 

[ "'-l)/a-(n'-l')/2 d ~+l){a-(n'+l')/2 
X (y + Yt)l(n'-L'l/2 (x) -l(n'+L')/2 (x) 

dx 

+ ( ) d ln-l)/a-(n•-!')/2 ( ) ln+ll/a-(n'+l')/2 ( ) ] 
'V - 'Vi dx (n•-!')/2 X (n'+L')/2 X , 

(A.20) 

X I (n-l)fa-(n•-!')/2 ( ) J(n+l)/a-(n'+!')/2 ( ) 
(n•-l')/2 X (n•+!')/2 X , (A.21) 

Where the functions I~ are defined by relations 
(6a). Expressions (A.20)-(A.22) are valid for both 
positive and negative values of l. 
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