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A new type of galvanomagnetic effect in ferromagnetic metals is considered. This effect con
sists of the fact that in a sample which is situated in a magnetic field and which carries a cur
rent the resultant transverse electric field lies in the same plane as the direction of the current 
and of the magnetic field. Therefore it can be named the plane Hall effect. Experimentally the 
plane Hall effect has been observed in a bulky nickel sample. The value of the constant for this 
effect in nickel is given. A theory is presented of the plane Hall effect due to the spin-orbit in
teraction for electrons in ferromagnetic metals. The density matrix method and the effective 
mass approximation are utilized. A quadratic dependence of the effect on the magnetization is 
obtained and this is in agreement with the phenomenological theory. It is shown that at low tem
peratures the plane Hall effect constant is proportional to the specific resistance. 

1. INTRODUCTION 

IN contrast to the well known Hall effect1> when 
the transverse electric field appearing in the sam
ple is perpendicular to the magnetic field and to 
the current, in the case of the new galvanomag
netic effect discussed in this paper the resultant 
electric field which is transverse with respect to 
the current lies in the same plane as the direc
tions of the current and of the magnetic field. In 
the case when the sample is in the form of a plate 
lying in the xy plane, when a current is sent 
through it in the x direction and the resultant 
transverse field is measured in the y direction 
the ordinary Hall effect occurs when the magnetic 
field is perpendicular to the plane of the sample. 
But if the magnetic field lies in the plane of the 
sample we have the new galvanomagnetic effect 
referred to above, which we can call the plane Hall 
effect. 

Starting from the phenomenological theory it 
can be shown that for an isotropic sample the fol
lowing relation holds 

By= Ey / jx = ~B2 sin So cos So, (1) 

where Ey is the resultant transverse electric field 
in the direction of the y-axis expressed per unit 
current density, e0 is the angle between j and B, 
B is the magnetic induction, {3 is a constant. 

1 )Here and subsequently we shall mean by ''Hall effect'' the 
well known Hall effect when the magnetic field is perpendicular 
to the plane of the sample. 

From the theory of galvanomagnetic effects in 
metals [ l-al it follows that in weak fields f3....., T /nm* 
(Tis the relaxation time, n is the density of con
duction electrons, m* is the effective mass). This 
effect can be easily observed in semiconductors 
(n is small) and in metals at low temperatures 
(T is large). [ 4- 61 At room temperature the con
stant f3 is too small in metals and the effect is not 
observed in practice. 

However, it was found that at room temperature 
in ferromagnetic metals and in alloys the plane ef
fect is sufficiently large-its magnitude is of the 
same order as for the ordinary Hall effect. In par
ticular, in permalloy alloys the plane Hall effect 
exceeds the ordinary effect by a factor of several 
fold. Apparently here, just as in other galvano
magnetic phenomena, in ferromagnetics at tern
peratures considerably lower than the Curie tern
perature, the effect is mainly due to the magneti
zation. 

On the basis of the phenomenological theory[ 8 1 

the following expression was obtained for the plane 
Hall effect in an isotropic single domain ferromag
netic sample 

By = P .1112 sin S cos S, (2) 

where M is the spontaneous magnetization, e is 
the angle between j and M, P s is a constant. 

The plane Hall effect in ferromagnetic metals 
has received little study so far both theoretically 
and experimentally. In the present paper experi
mental results are quoted and a quantum theory of 
the plane Hall effect in ferromagnetic metals is 
given. 
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2. EXPERIMENT 

The method of making measurements of the or
dinary Hall effect and the plane Hall effect is 
basically the same. But in the latter case the mag
netic field is parallel to the plane of the sample 
and, consequently, owing to the smaller magneti
zation factor, saturation is attained in smaller 
fields. 

Obviously the plane Hall effect can be easily 
investigated in thin ferromagnetic films [7 - 9 J in 
which the vector M lies largely in the plane of the 
film. However, the plane Hall effect occurs not 
only in films, but can also be observed in bulky 
samples. In order to do this in the present work 
we have prepared samples of pure nickel (99.99%) 
of dimensions 32 x 8 x 0.1 mm. The probes for 
determining the tranL·:erse potential difference 
were made by spot welding. With the aid of a spe
cial holder the samples were placed into the homo
geneous field of an electromagnet in such a man
ner that it was guaranteed that the field and the 
plane of the sample were parallel. The holder en
abled us to vary the direction of the field in the 
plane of the sample with the angle of rotation be
ing capable of being determined with an accuracy 
of up to 0.5°. Measurements were carried out on 
five samples. The scatter in the experimental 
data lay within the limits of error for the measure
ment. 

The transverse potential difference was deter
mined by the potentiometer method. With the aid 
of a photo-optical amplifier it was possible to ob
tain a sensitivity of 10-8 V. Such accuracy was 
not always needed, since the plane effect in nickel 
is quite large (by a factor of several fold greater 
than the ordinary effect). In the present case when 
the current through the sample was ~ 1 A the max
imum resultant transverse potential difference 
was of the order of tens of microvolts (for e = 1r /4). 
It should be noted that in the measurement of the 
plane Hall effect there is no distortion due to the 
thermomagnetic Ettingshausen effect which is 
present in the measurement of the ordinary Hall 
effect when the field is perpendicular to the plane 
of the sample. 

As regards the !:1p/p effect (i.e., the change of 
resistance in a magnetic field) its influence can be 
neglected. The point is that the initial difference 
of potential due to the asymmetry in the position 
of the transverse probe can vary due to the !:1p/p 
effect. In our experiment this initial difference of 
potential v is of the order of a microvolt for a 
current of...., 1A, and, therefore, its variation is 
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Dependence of Ey on fJ for a bulky nickel sample in the 
following fields: D- 500 Oe, x - 2000 Oe, •- 5000 Oe, 
solid curve is the theoretical curve. 

not greater than a few hundredths of a microvolt, 
since it is well known that in nickel !:1p/p:::::: 2%. 
Moreover, this distortion can be eliminated by 
measuring for each (} the values of v(- e) and 
v(+ e), and then calculating by means of the for
mula v(e) = 1/dv(+e) -v(-fJ)], since the !:1p/p ef
fect is the same for + e and - fJ for a given value 
of the intensity of the field. The current was kept 
constant with a high degree of accuracy, since its 
source was a high-capacity bank of storage bat
teries. The sample was shielded from air currents 
and measurements were carried out under com
plete thermal equilibrium. 

The figure shows the dependence of Ey on e 
for a constant field. It can be seen that the plane 
Hall effect is an even effect. It can be seen from 
the diagram that relation (2) is the better satisfied 
the higher the field, i.e., the closer the state of 
the sample is to saturation. The maximum value 
of Ey is :::::: 8 x 10-8 V -em/A. It should be noted 
that for nickel under the same conditions (in the 
saturated state) in the case of the ordinary Hall 
effect Ey:::::: 4 x 10-8 V-ern/A, i.e., smaller by a 
factor of two. From the graph one can determine 
the constant Ps for nickel. It turns out to be equal 
to ....,7 x 10-13 V-cm/AG2• 
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3. THEORY 

The ferromagnetic Hall effect was studied the
oretically in a number of papers. [ 10 - 141 It was 
shown that the spin-orbit interaction for electrons 
participating in the conduction process is the 
cause of the ferromagnetic Hall effect. The scat
tering of electrons by inhomogeneities of various 
types in the lattice of the ferromagnetic was con
sidered (by impurities, by phonons and by mag
netic inhomogeneities). 

In the papers cited above the density matrix 
method was utilized. It is convenient first to 
evaluate the matrix elements of the operators in 
the H-representation (cf., below (3)) (H = Ho 
+ Hs.o; Hs.o is the operator for the spin-orbit in
teraction for the electrons). Then in order to ob
tain the dependence of the kinetic coefficients on 
the magnetization the various matrix elements 
were expanded in series in terms of Hs.o. In cal
culations involving the ferromagnetic Hall effect 
proportional to the magnetization such expansions 
were usually restricted to terms of the first order 
in Hs. 0 • It is evident that for the plane Hall effect 
in ferromagnetic metals which depends quadratic
ally on the magnetization (cf., (2)) one must take 
into account terms of the second order in Hs. 0 in 
the expansions indicated above. 

We shall not discuss the plane Hall effect due 
to a magnetic field, but only the ferromagnetic 
plane Hall effect due to the magnetization. In doing 
so we shall take into account only the scattering of 
electrons by impurities. 

Following Luttinger[ 101 we shall take the initial 
Hamiltonian in the form 

where 
p2 

H0 = 2m +U, H•·o=(4m2c2)-1([oVU]p}, 

N 

H'= ~!Jl(r-Ri), HE=-eEu.ra., (3)* 
i=1 

U is the periodic field in the lattice, m is the 
electron mass, Hs.o is the spin-orbit interaction, 
H' is the interaction with the impurities. 

A system of units is utilized in which n = 1. 
Setting Ea = E~>est we have the complete density 
matrix in the form p T = F +fest, where F is the 
equilibrium density matrix, feSt is the deviation 
from it of the first order in the electric field, 

*[u'VU ] = u x Vu. 

s > 0 is the adiabatic parameter (in the final re
sult s - 0), t is the time. 

Since the plane Hall effect can be obtained in 
the lowest order approximation with respect to 
A (A is a dimensionless parameter the smallness 
of which is determined by the smallness of H') it 
is sufficient to take into account the terms in the 
expansion f~-2 ) and ft1) in the expression for the 
average velocity of the electrons V[J = Sp(fv[J) 
(~ - 2> and f:-1> are respectively proportional to 

A - 2 and A -1, the subscript l denotes (n, k)). 
Expanding v~, ft 2> and f~-1> in series with re-

spect to Hs.o and substituting in the expression 
for v {3 we shall find for the part of v {3 which is 
of interest to us in the case of a crystal with a 
center of inversion: 

vp<2> = vp<-22> + vp<-12>, (4a) 

v fl(-22) = ~ (fz<-20) vp(2)! + tz<-22) vp<O>I), ( 4b) 
l 

v 11c-t2) = ~ (fz<-10J v11(2)! + Jz<-12) vp<OJI), ( 4c) 

v~>l' ft 20 l, ft 10 ) are zero order quantities, 

v~2 >l, ft22>, f~- 12 ) are quantities of the second or

der with respect to Hs.o. Noting that for a crystal 
with a center of inversion E l = E 1° > + E ~2 >, and 
utilizing the well known formula v{J = 8Ez /8k[3 (we 
shall assume, as in [ 10 - 111 , wfz' = (Epo>- E~0/) 2 

~ t::.2, where t::.2 is some average value) we obtain 
with the aid of standard perturbation theory (un
der the condition that Hs.o is a small perturba
tion): 

where 

1 
r:P·> = "2B1 [ (Mk) 2 - M 2k2], 

vp<2)1 = B1[Mp(Mk)- M2kp], 

, r <0)• au aq 
qz = J Cilnk (r) -a -a (J)nk<0>(r)dr0, 

rv rv 

(5a) 

(5b) 

Ms is the maximum value of M at T = 0 o K, q is 
the charge density determining the potential U. 

In the lowest approximation the kinetic equation 
has the form: [ 10 1 

eEu.<O> aFz(ez) + ~ Lu,<o>(fz<-2>- tz,<-2>) = 0. (6) 
aku. 1, 

Expanding 8Fz (Ez)/8ka, f~-2 >, L!~~ in series in 
Hs.o, we obtain from (5a), (5b), and (6) 
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eEa.<o>F{v,,_<o)t + 2nN~' I Cjlkk' 12~(<Uw) (Jz<-20)- ft,C-20l) = 0, 

l' (7) 

eEa.<O>{F(B1[Ma.(Mk)- M2ka.]- 1j2B1F{' ({kM])2va.<o>z 

- tj3kp2ArF{([kM]) 2va.<0>1}+ 2nN ~ lcpkk'l 26(row) 

X (!z<-22)- tz,(-22l) = 0, 

where 

l' 

F{ = &F1(e1<0l)/&ez<o>, F{' = 8Fz'(e1<0>)/fJezCOl. 

(8) 

In the derivation of (7) and (8) we have utilized 
the expansion for cpzz,:[ 10 J 

Cjl!!' = Cjlkk'[l'lnn' + (k,/- k~t)JI'nn'(k) + ... ]. (9) 

The expression for J: (k) (n = n') is given in [ 10 -tt J: 

] 11n (k) = iAz[kM].", Az = ne2qz/3m3c?-MN::.2, 

r co>· co> qz = ) OOnk (r) q (r) OOnk (r) dro 

(here the integral is taken over the volume of an 
elementary cell). 

The solution of (7) in the effective mass approx
imation has the well-known form: uo J 

(10) 

To is the relaxation time determined by scattering 
by impurities. Similarly we obtain f~-22 > in the ef
fective mass approximation; substituting it into 
(4b) we obtain with the aid of (5b) and (10) the 
transverse conductivity 

nev (-22) { 
cr11x<-22> = 11 = - ne2-ro 2 ~ BzFz'kxvx(O)l 

Ex(O) l 

(11) 

We proceed to the next approximation in A.. The 
equation for f~ -1> has the form: [ 10 J 

~ Lu,(1) (!1<-2>- ft,C-2J) + ~ Lw<OJ (!1<-1>- ft,Hl) = 0, (12) 
!' F 

(13) 

dzz I= wzz, -is, where wzz, = E~O) - Ez0) 0 Expand

ing L~1/, and ft-1> in series in terms of Hs.o and 
substituting into (12) we obtain 

l' l' 

l' l' 

~ (10) "" (00) L..i Lw (/zC-22) _ tz,C-22l) + Li Lu. (jz<-12) _ ft,C-12)) 
l' l' 

l' l' 

(14c) 

where f~-to> and L~~o,> are of the first order, 

f~- 11 > and LW/ are of the first order in terms of 

Hs.o, etc. 

As is well known, from (14b) one can find the 
first nonvanishing contribution to the ferromag
netic Hall effect. We have to solve (14a) and (14c). 
We first note that from (9) and (13) we can easily 
obtain 

(15a) 

where 

N 
no=-g, 

(15b) 

P is the principal value of the inte~ral. From 
(14c) we obtain an expression for fz- 10 >. Substi
tuting it into (14c), taking into account (15a) and 
(10) we obtain f~- 12 > in the effective mass approxi
mation. Proceeding in this manner we obtain 

(-12) - nev 11(-12) - ~e1'oiil { 8C ~ B IF I k (O)l 
Uyx - Ex(O) - ( 2n)3 1 "? l l xVx 

(16) 

where 

IZ2 = ~ ( kxvx<0>1) b (row) dk1 • 

Utilizing relations (11) and (16) we can write 

( <-22> <-12l ) C 2 u M 
cryx = cryx + Uyx = ne 'tom X Y· 

Since ayx is very small compared to p -t (p is 
the specific resistance), then under the conditions 
h = j and jy = 0 we have Ey = -p2ayxj. Taking 
into account that M x = M cos e and My = M sin e, 
we obtain from (11) and (16) again the phenomeno
logical relation (2), with Ps = -Cne2 T0p2• 
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From (11) and (16) it can be seen that in the ex
pression for C the terms containing Az are de
termined by the correction of the second order in 
Hs.o to the second term of the kinetic equation, 
i.e., to the scattering potential, while terms con
taining Bz are determined by the correction of the 
second order in Hs.o to the first term of the 
kinetic equation. 

It is well known that the scattering of electrons 
by impurities plays an essential role for the con
duction process only at low temperatures when one 
can take p ~Pres· This means that the quantity Ps 
will be proportional to Pres at low temperatures. 
Such a result was also obtained for the ferromag
netic Hall constant Rs. [ 10 ] 

Just as in the case of the ferromagnetic Hall 
effect[ 10 -14J it is difficult to calculate the quantity 
Ps from (11) and (16) since the form of the Bloch 
electron wave functions and the electronic struc
ture in ferromagnetic metals is not accurately 
known. However, one can compare the values of 
the plane and the ordinary Hall effect. The point 
is that the plane Hall effect was obtained in the ap
proximation which is lower by one order in A. and 
higher by one order in Hs.o than the ordinary Hall 
effect. This can be seen from the expression for 
the first nonvanishing term for both effects (for
mula (11) in this paper and formula ( 4.17) in [ 10 J ). 

Therefore, we can take the ratio of the magnitudes 
of the plane and the ordinary Hall effect to be ap
proximately of the same order as the ratio of Hs.o 
to cp. We note that for nickel Hs.o~ 10-13 erg;[ 10J 

if we take for cp a value of 10-14-10-15 erg as in 
un, then we can see that the value of the plane Hall 
effect obtained in this paper exceeds the value of 
the ordinary effect by approximately a factor of 
two. 

It should be noted that the above calculations 
can be generalized to the case of scattering both 
by impurities and by phonons by means of the 
method described in [ 12 J. 

In conclusion the author expresses his gratitude 

toM. Ya. Azbel', R. V. Telesnin, and E. F. Kurit
syna for valuable remarks and for their interest 
in this work. 
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