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The space-time development of a giant light pulse from a Q-switched laser has been investi
gated. It is shown that the observed giant pulse is due to the superposition of a series of 
closely spaced pulses generated by neighboring regions in the laser. The effect of an inhomo
geneous distribution of population inversion density upon the giant pulse structure has also 
been investigated. 

THE most effective method of generating giant 
pulses of coherent light, known as the method of Q
switching the laser, was submitted by Hellwarth.[ 41 

The early theoretical investigations of the energy, 
peak power, and rise and fall rates of the giant 
pulse[ t-sl were based on balance equations for the 
total energy of the radiation field and for the total 
number of active particles in the resonator. These 
equations describe a simple model assuming that 
the population inversion density and the energy 
density of the radiation field are uniform within 
the cavity. Consequently, such a model fails to 
take into account electromagnetic effects that de
termine the space-time development of the gener
ated field, as well as the effect of the initial spatial 
distribution of population inversion and cavity ge
ometry upon the pulse generation dynamics. The 
delay time, length, and shape of the giant pulse, as 
computed from the simplified model, may strongly 
differ (even from the qualitative point of view[S, 71 ) 

from actual values, because, as the following will 
show, the observed pulse is due to the superposi
tion of a series of closely-spaced pulses generated 
by neighboring regions of the laser. The necessity 
to consider the spatial development of the genera
tion region when Q-switching is present was 
pointed out in [ 8 1 • 

Orderly theoretical analysis of the space-time 
process of generating a giant pulse of light should 
take into account the essentially nonlinear, nonsta
tionary interaction of many modes in a resonator 
with an inhomogeneous population inversion, whose 
dimensions are much larger than the emitted wave
length. The space-time development of the giant 
pulse is essentially determined by population in
version inhomogeneities that are transverse to the 
laser axis. An effective method of investigating 
nonlinear, nonstationary interaction of many modes 

in the presence of an inhomogeneous population in
version was developed and used to study passive 
Q-switching laser processes in solids. [ 91 The 
present work makes use of the same method to 
study Q-switched laser dynamics. 

1. DEFINlriON OF THE PROBLEM. BASIC 
EQUATIONS 

Let us consider the following model of a Q
switched laser which will completely describe the 
electrodynamics of a giant pulse development. The 
active medium is confined by totally reflecting 
plane-parallel mirrors, spaced at a distance L 
from one another, along the z-axis (laser axis). 
The real losses in the laser (absorption and radia
tion transfer) are considered uniformly distributed 
within the cavity. Let us assume further that the 
active medium is characterized by a complex di
electric permittivity, uniform along the y axis, 
but variable along the x axis which is perpendicular 
to the laser axis: 

{ e + ie " - ie" (x t) 
( t) = 0 0 ' ' e x, 1 

' 

i.ti~ a 

ixi>a (1) 

Here E6', designating radiation losses, is related 
to the photon lifetime, T 0, in the resonator by: 

Bu" = 1 I Towo, (2) 

while E"(x, t) designates emission gain and is re
lated to population inversion density, N(x, t), by: 

2" (x, t) = {'A I 2n) aN (x, t), (3) 

where w0 and A. are frequency and wavelength, 
respectively, of the output emission, and a = a (w0) 

is the radiative transition cross section. 
Q-switched lasers generate many longitudinal 

(axial) modes and, therefore, the periodic variation 
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in population inversion is quite smooth along the 
axis. As a result, the conditions governing the de
velopment of various longitudinal modes are prac
tically the same. Consequently, an analysis of the 
significant effects of a transverse development of 
the giant pulse can be limited to the case of a sin
gle longitudinal mode. 

The electric field, ~ (x, t), in the resonator is 
defined by the equation: [ 91 

8~ (x, t) . c2 {}2~ (x, t) 
-...,-f}t-- = 1 -2e_o<o_o --,8,.;-x-::-2~ 

+ 2coo [eo"- e" (x, t)] lW (x, t), 
eo 

(4) 

where ~ (x, t) = U(x, t)e-ia x, t; U(x, t) and a(x, t) 
are the "slowly" varying amplitude and phase of 
the field at the mirror of the laser, while the field 
within the cavity has the form, 

E(x, z, t) = Re{ lW (x, t)sin co: e-i.,,t}. 

where w0 = 1rnc /L, n is the longitudinal mode in
dex, and c is the velocity of light in the medium. 

Variation of E11 (x, t) is defined by the equation: 

8e" (x, t) _ _ 2cr "( t)/( t) 
---- 8 x, x, ' 

f}t licoo 
(5) 

where I = cE0E2f87T is beam density (in erg/cm2 

• sec). The following processes, which are slow in 
comparison to the development time of a giant 
pulse, have been neglected in (5): spontaneous de
cay of population inversion and changes in inver
sion due to pumping. 

We solve (4) and (5) with boundary conditions at 
the lateral surface of the active medium, ~(±a, t) 
= 0, corresponding to total reflection from the lat
eral surface. Using these boundary conditions, we 
neglect the mirror edge diffraction effect upon the 
field distribution and losses. Neglect of the contri
bution of mirror edge diffraction to field distribu
tion is well justified, since the chief role in the 
spatial development of a giant pulse is played by 
inhomogeneities (initial and those formed during 
generation) of the population inversion density. 
The contribution of diffraction to radiation losses 
is readily accounted for by introducing an addi
tional diffraction term into Eo' (which, incidentally, 
has but a slight effect upon the solution). 

When solving the system (4) and (5), it is con
venient to express the electromagnetic field inside 
the laser in the form of a superposition of trans
verse (corner) modes with time-dependent complex 
amplitudes: 

co 

~ (x, t) = ~al< (t) ljl< (x) e-W.t, (6) 
1<=1 

where Uk(x) and Qk are eigenfunctions and eigen-

values of (4) with E 11 (x, t) = 0, given the above 
boundary conditions. Substituting (6) in (4) in the 
usual manner yields a system of equations for am
plitudes ak(t), which can be conveniently repre
sented by 

a,.(t)ei(U,-!lA)t = A"'(t)+ iA~<"(t). (6a) 

A system of an infinite number of equations is 
obtained as the result: 

Ak'(t) = ~ ~ Am'(t)ekm"(t)+(!;h- Qi)Ak"(t), 
2eo m=1 

co 

.th" (t) =~~Am" (t) ekm11 (t)- (Qk- Qi)A~t' (t), (7) 
2eo m=i 

II where k = 1, 2, ... , co; matrix elements Ekm are 
defined by the expression 

e,.m"(t)=6~tm( (J)~T0 +Ak 2~coo) 
a 

- ~ Uk(x)e"(x, t)Um(x)dx, (8) 
-a 

.Ak is the magnitude of diffraction losses per pass 
for a plane mirror resonator, obtained by Va!n
shtem, [ 10 1 and okm is the Kronecker delta. 

Initial conditions must be specified for the solu
tion of (5) and (7). 

2. INITIAL CONDITIONS 

The amplitude and phase of the initial field in 
every mode are determined by spontaneous emis
sion at the instant the Q is restored. The average 
number of spontaneous photons in a single mode 
(no) is determined by the expression 

(no) ~ - 1- (!: )2 I N2 dv, 
8n T1!!v a J 

(9) 

where J N2dv is the total number of excited atoms 
in the resonator, ~vis the linewidth of spontaneous 
emission of the atoms, T 1 is the lifetime of an ex
cited atom with respect to a spontaneous transition 
to a lower level, and (A./a) 2 is the solid angle sub
tending the wave vectors of a single mode. The 
mean square of field intensity of spontaneous emis
sion, (E~) in a mode will then equal 

(10) 

where N2 is the average density of excited atoms 
in the resonator, and V is the resonator volume. 

Spontaneous emission is somewhat enhanced by 
population inversion. Therefore, the gain per pass 
of the resonator, ko, should be added to the expres
sions for (n 0) and (E6). In the case of parameters 
characteristic of Q-switched lasers, (n 0) » 1. 

The statistics of spontaneous emission of a me
dium without feedback should approach the statis-
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tics of equilibrium radiation. [ 11J Consequently, the 
probability that a single mode will be filled with n 
photons is given by the Bose-Einstein distribution 
which, in the classical limit under consideration, 
(n 0) » 1, has the form (see, for example, l 11 - 12 J): 

p(n) = --1- exp (- _n_\. 
<no> <no> J 

(11) 

Consequently, the initial field amplitudes per mode 
should be selected at random with a considerable 
dispersion about the mean value. The initial field 
phases in various modes are totally independent 
and are uniformly distributed. 

The initial spatial distribution of E" (x) is in
homogeneous. The population inversion is usually 
highest at the crystal axis and falls off consider
ably (becomes several times smaller) near the 
lateral surface. [ 13 - 15 ] The degree of inhomogene
ity in the distribution of E"(x) is determined by the 
design of the pump, the finish of the lateral crys
tal surface which affects the focusing of the pump
ing radiation by the crystal, etc. However, it 
seems that a 20-30% variation in E "(x) from the 
center to the edge of the crystal is unavoid
able.[14, 15J 

3. SOLUTION OF THE EQUATIONS. 
PULSE DEVELOPMENT 

The solution of the system of equations (5) and 
(7), together with the boundary conditions, com
pletely describes the space-time development of 
the giant pulse. However, since it cannot be ob
tained by analytic means, an electronic computer 
was used for numerical integration of the equa
tions. The results of numerical integration provide 
a sufficiently clear picture of laser processes sub
ject to instantaneous Q-switching. 

The field distribution generated in the resona
tor is to a certain degree "smooth" in the trans
verse dimension. From the physical point of view 
this means a preponderance of lower order modes. 
At the instant the Q is restored, all the modes are 
under the same conditions, since the mean initial 
amplitude, (E5), does not depend upon the modal 
order. However, as generation proceeds, only a 
few modes are effectively excited. 

The inhomogeneities of E"(x) play the principal 
role in the preferential excitation of lower order 
modes. Even a 20-30% variation in E"(x) from the 
center to the edge of the mirror (or of the crystal 
end surface) in a filled resonator results in a field 
distribution characterized by a maximum in the 
center and a marked drop towards the edge[ 16 J and 
containing mainly lower order modes. Conse
quently, the process of solving the infinite number 
of equations (7) can be limited to a finite number 
of modes, kmax• which is determined in each case 

R(t)jR0 l5 
10 II :r0(t)1 a 
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FIG. 1. Development of a giant light pulse. P- power, 
R- total number of active particles in the resonator, 2x0 -

half-power width of the generated region ("jet"), <p0 - diver· 
gence of emission, tp 1 - divergence of lowest mode. 

by the actual parameters of the laser (crystal di
ameter, resonator length, and degree of inhomo
geneity of the population inversion). 

Figure 1 shows the development of a giant pulse 
for a ruby laser having the following typical param
eters: L =50 em; 2a = 7 mm; A. = 7 x 10-5 em; 
u = 4 x 10-20 cm2; r 1r 217 2 = 0.15 (rio r 2 are reflec
tion coefficients of the mirrors); 17 is the trans
parency of the laser crystal and shutter; the gain 
per pass is ecxl = 12. The total initial distribution 
of the population inversion decreased smoothly 
from the center to the edge by a factor of two. The 
solution was obtained for the case of kmax 
= 14 modes. The truncation of the infinite system 
to a finite number of equations was always mon
itored by following the variation of the solution 
with increasing number of modes. The final solu
tion of the problem was reached when it no longer 
depended upon kmax· The following characteris
tics were computed: giant pulse power, Pout , and 
the total number of atoms with population inver
sion, R(t): 

P = P lnrtrz R(t) = (" N(t)dv, (lla) 
out In r1r2 1] 2 ' J 

as well as the field distribution over the crystal 
end surface and in the far field. The far field dis
tribution, E(t, ([)), which determines the divergence 
of the giant pulse, was computed according to the 
equation 

E(t,<p)= ~ v~~An(t)sinn£cosk<p£d£ 
n=1 rr; 0 

= ~ v~ [ A2m sin(:rtk<p/2)~ 
,~1 :rt m 1-(k<p/2m)2 

. Azm-t eos(:rtk<p/2) ] 
+L m+th 1-(k<p/(2m+tff2 ' 

(12) 

where k = 4a/A. 
The generation process in Fig. 2 is completely 

described in terms of field intensity distribution, 
I(x), over the crystal end surface, and the trans-
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FIG. 2. Instantaneous distributions of emission intensity, 
I(x), over crystal end surface (top), and population inver
sion, N(x), (bottom). 

verse distribution of population inversion, N(x) in 
the most typical time instants. Figure 3 shows the 
distributions of squared mode amplitudes, I Ak 12, 

for all phases of pulse development, demonstrating 
that the number of modes used is entirely sufficient 
for a self-consistent description of the generated 
field. 

The solution given is typical and contains all 
the essential time instants of the space-time de
velopment of a giant pulse. At the instant the Q is 
restored (t = 0), the mode amplitude and field dis
tribution over the end surface are random, while 
the population inversion is maximum in the center 
of the crystal. After a short time (~ 10-20 nsec), 
the generated field assumes a characteristic pat
tern (Fig. 2) showing a maximum in the center and 
a narrow "jet" shape. The "jet" signifies a spe
cific distribution of mode amplitudes (Fig. 3). 
Further development of generation, accompanied 
by a practically unchanged number of active parti
cles, R, causes the "jet" to broaden to a quasi
stationary value (t ~ 40 nsec, Fig. 1), i.e., the 
natural mode of the filled resonator has been es
tablished. If the delay time exceeds the time re
quired for the "jet" to establish itself, generation 
is independent of the initial values of mode ampli
tudes. The lowest mode has the maximum ampli
tude in an established "jet" (t = 40 nsec, Fig. 3). 
The start of the giant pulse itself is accompanied 
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FIG. 3. Instantaneous distributions of mode intensity. 
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FIG. 4. Fine structure of a giant pulse. Curve 1- pulse 
generated by the entire crystal end surface, curves 2, 3, 4-
pulses generated by crystal points x = 0, a/2, 3a/4, re
spectively, x0 - half-width of generated region. 

by a sharp broadening of the "jet": the field 
washes out towards the edges of the crystal. At 
that time, the divergence decreases at first, only 
to increase again towards the end of the pulse. The 
fall of the pulse is characterized by increasing 
amplitudes of higher modes. 

4. FINE STRUCTURE OF THE GIANT PULSE 

The above solution shows that the giant pulse is 
at first emitted by the central region of the crys
tal; the generation then spreads transversely to
wards the edges of the crystal in a time interval 
comparable to the pulse length. Consequently, the 
length of the pulse emitted by the entire crystal 
end surface is larger than that emitted by any one 
point in the end surface. Such phenomena have 
been experimentally observect. 1> Figure 4 shows 
pulses generated by the entire crystal end surface 
(curve 1), central point x = 0 (curve 2), and points 
x equal to a/2 and 3a/4 (curves 3, 4) near the 
edge of the crystal. At the same time, the figure 
shows broadening of the generation region Xo· The 
length of pulses generated by the elements of the 
crystal end surface reaches 5 nsec. The edge re
gions of the crystal emit with a delay of ~ 10 nsec 
in comparison with the center of the crystal. The 
length of the delay depends on the degree of inhomo
geneity of population inversion. The present theo
ries of Q-switched lasers fail to take this fact into 
account and are therefore not capable of arriving 
at the correct value of the giant pulse length. 2> 

The inhomogeneity of population inversion can 
substantially change the shape of the giant pulse. 

1>communication from V. S. Zuev to the Nonlinear Optics 
Symposium, Naroch', 1965. 

2)The fact that the usual theoretical value of the giant 
pulse length is noticeably shorter than the experimental value 
was pointed out by N. G. Basov. 
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As an example, Fig. 5 shows the shape of a pulse 
in which the initial distribution of the inversion has 
two maxima. The generation at first begins in the 
region of the highest gain; spreading transversely, 
it then reaches a second inversion maximum. A 
second intensity peak occurs as the result. Hell
warth [ TJ reported to the Third Quantum Elec
tronics Conference on giant pulses with a second 
maximum in the trailing slope of the first pulse, 
but he failed to explain this phenomenon. The 
above example indicates that this phenomenon may 
possibly be related to inhomogeneity of population 
inversion. 
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