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A theory of electric conductivity of a metal with impurities is developed which consistently 
takes into account deformation of the phonon spectrum due to introduction of impurity atoms 
and also the arbitrary variation of the amplitude of electron scattering by a separate ion. The 
impurity part of the resistance is found for the entire temperature interval. It is shown that 
in the low-temperature range electron scattering by an oscillating impurity ion leads to the 
appearance of a term proportional to T2, interference between scattering by an impurity ion 
and by a perturbed phonon spectrum to a term proportional to T4, and scattering by a de
formed phonon spectrum to a term proportional to T 5• (At low impurity concentrations all of 
these terms are proportional to the concentration.) The further temperature variation of the 
impurity resistance exhibits a number of anomalies, especially in the case of heavy impurity 
atoms when a quasilocal level appears. At high temperatures the impurity part of the resist
ance varies linearly with the temperature, the sign of the derivative being positive or nega
tive. It is demonstrated that a simple relation holds approximately between the sign of the 
derivative and the relative positions of the impurity and matrix atoms in the periodic system. 
Comparison with the experimental data yields qualitative agreement with the theory. 

1. INTRODUCTION 

IN the usual analysis of the electric conductivity 
of metals, the impurity atoms are regarded as 
static defects. This leads to a temperature
independent residual resistance and, in first ap
proximation, to the well known Mathiessen rule. 
Such a picture, however, is in the general case far 
from the truth. Actually, the impurity atoms oscil
late. Furthermore, the character of their oscilla
tions may differ greatly from the oscillations of 
the atoms of the host lattice. The electrons will 
then experience additional inelastic scattering not 
only from the impurity atom itself, but also from 
a noticeable number of atoms that surround the 
impurity atom and whose oscillations are per
turbed. 

Thus, incoherent inelastic scattering of the 
electrons by randomly located perturbation regions 
takes place when the impurity atom concentration 
is low. As a result, the impurity part of there
sistance (which is proportional to the concentra
tion) will depend essentially on the temperature, 
and this leads to violation of the Mathiessen rule; 
it will be shown in this paper that this violation 
is appreciable and of arbitrary sign. In the low
temperature region this should become particularly 
strongly manifest in the case of heavy impurity 

atoms, when strong deformation of the vibrational 
spectrum takes place in the region of low fre
quencies and a quasilocal frequency appears (see 
[ u and also [ 2- 4] ). This deformation of the spec
trum is clearly manifest in the very strong anom
aly of the lattice specific heat, [ SJ which was re
cently observed experimentally[SJ (see also [?J). 

It has been known from experiment for a long 
time that the Mathiessen rule is violated in weak 
solid solutions and the temperature dependence of 
the impurity resistance, and in any case also of 
the total resistance, has an anomalous character 
(see [SJ and also the recent papers [S-1iJ). All the 
more-or-less effective attempts at explaining the 
deviations from this rule pertained only to transi
tion-element impurities and were associated with 
the presence of an uncompensated spin. However, 
the anomalous behavior of the resistance is clearly 
manifest also in the case of nontransition-element 
impurities. In the present paper we are interested 
only in this latter case. We shall show that a con
sistant allowance for the deformation of the vibra
tional spectrum and for the true picture of the in
elastic scattering makes it possible to predict and 
explain a number of anomalies in the temperature 
behavior of the resistance, especially its impurity 
part. 

In order to present all the results in very lucid 
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form, we confine ourselves to the free-electron 
approximation and neglect the electron-spectrum 
variation which can arise when impurity atoms are 
introduced. In addition, we assume the "rigid ion" 
model for the electron-ion interaction and confine 
ourselves in the analysis of the electron scattering 
to the Born approximation. In the case of an alloy 
we assume that we are dealing with a substitu
tional solution and that we can thus neglect the 
variation of the force constants in the dynamic 
matrix of the oscillations. As is well known (see, 
for example [ 12 • 131 ), measurements of the Moss
bauer-effect probability have shown that the latter 
assumption is well satisfied in metals. Finally, 
the crystal lattice is assumed to be monatomic 
and cubic. 

We note that almost all the assumptions made 
are not critical and do not change the qualitative 
picture. Only the change of the electron spectrum 
with introduction of the impurity component can 
become significant in certain cases, especially 
when the concentration is insufficiently small. 

Within the framework of the assumptions made, 
the problems of determining the probability of 
electron and neutron scattering in crystals of the 
same type become similar. For neutrons this 
problem was solved in [ 141, the results of which 
could be used in principle. However, bearing in 
mind the averaging of the final results of the ki
netic problem over the positions of the impurity 
atoms, it is more convenient to use the relations 
obtained with the aid of the Green's function for
malism in the coordinate representation for a fixed 
impurity configuration. Two-time Green's func
tions in the coordinate representation were first 
used for analysis of problems connected with os
cillations of impurity atoms in [ 15- 161 (see also 
[171). 

2. DETERMINATION OF THE TRANSITION 
PROBABILITY 

A. The solution of the kinetic equation leads to 
the following general expression for the resist
ance: 

p=[2~~~ dkdk'(cpk-fPk')2/k0(1-fi,,O)Wkk'(q,w)] 

(2.1) 

Here Cfk is the nonequilibrium correction to the 
electron distribution function fk, defined by the 
relation 

/k = /k0 ·- (afk I iJek)cpk; 

Wkk' is the probability that scattering causes the 

transition of the electron from a state with wave 
vector k into a state with wave vector k' ; 

q = k-k'; (2.2) 

T is the temperature in energy units. 
Within the framework of the assumptions made, 

the probability Wkk' is uniquely related with the 
scattering correlation function S(q, w), first intro
duced by Van Hove:[ 181 

(2tt) 3 
Wkk' = --2V-S(q, w), 

m. o 
(2. 3a) 

X exp [- iqR11 (t)] exp [ + iqRn' (0)] ), (2.3b) 

where m* is the effective mass of the electron, 
Rn = R~ + Un is the radius vector of the n-th ion, 
Un is the operator of displacement from the equi
librium position, an(q) is the amplitude of the scat
tering of the electron by the n-th ion, N is the 
number of ions in the crystal, and V0 the unit:-cell 
volume. The symbol () denotes statistical aver
aging with a Hamiltonian describing the system of 
the ions. 

Considering the problem of crystal oscillations 
in the harmonic approximation and confining our
selves to single-quantum transitions in the inelas
tic scattering of the electrons, we obtain for the 
scattering function (2. 3b) the following expression: 

S(q,w)= ~ ~exp[iq(R~-R.~')]a11 (q)an'(q) 
n,n' 

( Wn liVn') .. X exp - 2 --2- {2ttu(w) 

+ ((qu11 (t)) (qun'(O)))c.,}, 

Wn(q) =((qu0(0))2). 

(2.4) 

(2.5) 

Here Wn is the Debye-Waller factor and the index 
w denotes the Fourier component of the corre
sponding correlation function. 

The expression for the resistance (2.1) should 
be averaged over all possible configurations of the 
impurity atoms (the corresponding operation will 
be denoted by the symbol Oc ). If we choose Cfk 
in a form which is standard for the first approxi
mation 

fPk = kx (2.6) 

( IC is a unit vector), then the operation of aver
aging is entirely transferred to Wkk'• and by the 
same token to the scattering function. 

We shall denote by the indices 0 and 1 quanti
ties pertaining respectively to the atoms of the 
host lattice and to the impurity atoms. In this case 
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an= ao + ,L1ac0 , L1a = a1 - a0, (2.7) 

Cn takes the value 1 at the impurity lattice points 
and 0 in the remaining points. 

We substitute (2. 7) in (2. 4) and carry out the 
averaging, retaining only the terms that are linear 
in the concentration c. Using the fact that Wn for 
the electrons in the metal is practically always 
noticeably smaller than unity, we obtain after cal
culations 

<S (q, ro))c = 2:rtc (L1b (q))2 {J (ro) + (b0 (q))2 

X ~ <~ exp [iq (Rno- R0 •0 )] ((qu11 (t)) (qu0 • (0))).,)
0 

nn' 
+ c (M (q))2 (((qu1 (t)) (qu1 (O))).,)c + 2b0 (q) L1b (q) 

X ~ <~ Cn exp [iq (Rno- Rn·O)] 
nn' 

X ((qu11 (t)) (qu11• (O))).,)c· (2.8) 

In this expression we use the notation 

bo,1 = ao,t exp (-Wo,t I 2), M = bt - bo; (2.9) 

W0 and W1 are the mean values of the factor (2.5) 
in the approximation that is linear in the concen
tration. 

In expression (2.8), the first term describes the 
elastic scattering and gives rise to the residual 
resistance. The remaining terms describe the in
elastic scattering. The second term represents 
scattering by the deformed phonon spectrum of the 
lattice, the third direct scattering by the impurity 
atoms, and finally the fourth the interference scat
tering (in (2. 8) we have left out a term proportional 
to <5 (q), since it does not lead to scattering). 

B. The correlation functions in (2.8) can be con
nected with retarded (or advanced) Green's func
tions of the form 

G~~· (t- t') =-iS (t- t') (u~ (t) u~· (t')- u~· (t')u~ (t)). 
(2.10) 

Indeed, in accordance with the well known rela
tions for the Green's functions (see, for example, 
[ 191 ), we have 

2 Im G~~· (ro + is) 
(Un" (t) Un•fl (t'))., =- i- fr"'/T 

(henceforth 1i = 1). 

(2.11) 

The expressions for the Fourier components 
of the Green's function G~g,(w) and the corre
sponding correlators are derived in the Appendix. 
Using the results obtained there for the determin
ation of (2.8), we write out the final relations for 
the transition probability Wkk' (see (2.3) and (2.8)): 

(2.12) 

lV(O) ( ) _ (2:rt)3 ( bo(q) )2 Sign (I) 

kk' q,·ro - MV0m.2 1- e-O>/T 

(2.13) 

(1) (2:rt)3 { 
Wkk'(q, ro) = c-2'1 (M(q) )26(ro) 

m. • o 

+ signro ~ (qvqJ)2 
1- e-ro/T . M 

J 

x[.!. boq))2(~ scro2y(ro2) 
c ( ( n [ro2(-1- scl1(ro2))- OOqj2]2 + {scro2y(ro2)]2 

- 6(ro2- roq ·2)) + (M(q) )2 g(ro2_ 
3 R ( ro2) 

+ 2bo(q)M(q) ~[ y(ro2)P 002 ~ ffiqj2 

+ nl1(ro2)6(ro2- roqn ]]}. (2.14) 

(All the symbols are defined in the Appendix.) 
Expression (2.13) determines the probability of 

the single-phonon scattering of the electron in an 
ideal crystal. If we substitute (2.13) in (2.1), then 
we arrive at the expression for the resistance of 
an ideal crystal, obtained within the framework of 
the standard theory. [ 81 Relation (2.14) describes 
the probability of the electron scattering due en
tirely to the presence of the impurity atoms. It is 
obvious that this part of the probability is of de
cisive interest for the problem in question. 

3. RESISTANCE OF A METAL IN THE 
PRESENCE OF IMPURITY ATOMS~ 
DISCUSSION OF RESULTS 

A. We proceed to determine the resistance, to 
which end we substitute (2.12) -(2.14) in (2.1). In 
the direct calculations we make assumptions that 
are not critical for the qualitative results (and are 
the same as in Bloch's classical theory of electric 
conductivity[ 81). Namely, we assume that the dis
persion law is isotropic in all those cases when the 
explicit connection between w and q is essential 
for the phonon spectrum. In addition, for simplic
ity in determining the upper limit of integration 
with respect to dq, we assume that 2kF and 
kmax(=q0) are nearly equal and make no distinc
tion between these parameters. 

Recognizing that the amplitudes b0 1(q) depend 
only on the modulus I q I , we arrive alter direct 
calculations at the relation 

p =Po+ p1, P1 = Pt + P2 + P3 + p, = 11p + Pt, 
(3.1) 

!lt 

po = 2~ ~ dq q5 (bo(q))2n(q)'(n(q)+ 1), 
0 

(3.2) 
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(3. 3) 

q, 00 

p2 = c ~ ~ dqq5(b0 (q))2 ~ dwwn(w) (n(w)+ 1) 
0 0 

X __!_ ( _! ecw2y ( w2} 

c \ n {w2{1- ec~(w2 ) )- wq2)2 + {ecw2y(w2))2 

(3.4) 

q, 00 

TJ I \ g(w 2) 
p3 = cT ~ dq qs[ ~b(q)j2; dw wn(w)[n(w) + 1]I1'(w2) , 

(3.5) 

2 q, 00 

()4=C; ~ dqq5(bo(q)~b(q)] ~ dwwn(w)[n(w)+1] 
0 0 

X_!_ [y(w2)P 2 ~ 2 + n~(w2}1\(w2 - ulq2 ) J, (3.6) 
1t (!) Wq 

where n(w) = (exp [w/T] - 1) -i; by TJ we denote 

(vF is the velocity of the electron on the Fermi 
surface). We note that Po and Pi determine re
spectively the resistance of the ideal lattice and 
the impurity resistance. 

If we replace b0(q) in (3.2) by ao(O), then the 
expressions obtained coincide with the well-known 
Bloch-Gruneisen formula. 

Let us consider the part of the resistance Pi 
which is due to the elastic scattering (Eq. (3. 3)). 
As T- 0 the quantity Pi determines the residual 
resistance, since all the remaining terms in ( 3.1) 
vanish. It is interesting that when T- 0 the re
sistance Pi begins to depend on the temperature 
via the Debye-Waller factors (see (2.9)), which in 
our case are 

2 00 ( 2) 
W 0 (q} = !!._ ~ dw2~[2n(w)+ 1] 

2M 0 w 

This dependence is due to the decrease of the am
plitude of pure elastic scattering with increasing 
temperature, that is, scattering without emission 
or absorption of phonons, and can lead to either 
a decrease or an increase of Pi with increasing T. 
The magnitude itself of this change, however, is 
as a rule small and may manifest itself only in 
the region of very low temperatures by virtue of 
the fact that it leads to a quadratic temperature 
dependence (as in the case of p3-see below). 

We note that the presence of zero-point oscilla
tions may cause the residual resistance to differ 
from zero, even if the impurity atoms have the 
same scattering amplitude as the atoms of the 
host lattice. 

B. Let us proceed to consider ilp -the impurity 
resistance due to inelastic processes. We con
sider the region of low temperatures. We assume 
further not only that ®/T » 1 but also w*/T » 1, 
where ® = vacq0 and 

(3.8) 

is the frequency of the quasilocal level occurring 
when IE I » 1 (see [ i 1); 0 denotes averaging 
over the phonon spectrum of the matrix. 

After calculating (3. 4) -(3. 6) in this limit and 
retaining the fundamental terms, we obtain di
rectly 
pz= clspe(-2e}(TI8}\ 
P3 = 2cdlzpe (T I 8)2gt[ 1 - 2< 1 I w2 )EP{h I l 2}e (T I 8)2), 
()4 = 4cdhgape ( -.e)·(T /8) 4 + 2chpeg2(T I 8)5. (3_9) 

For comparison we present the value of Po in this 
limit: 

Po= ls(T I 8)5pe. (3.10) 

In these expressions 

pe = TJ (ao (0) )2qo6 I 28, lv = v!s (v}, 

where t is the Riemann zeta function. In addition, 
d is a numerical coefficient in the low-frequency 
representation for the distribution function of the 
squared frequencies of the phonon spectrum of the 
matrix: g(w2) = dw/®3• We have introduced also 
the following symbols: 

(3.11) 

It is important that in the region of low temper
atures p 2, just like p0, is determined in terms of 
the scattering amplitudes corresponding to q - 0, 
whereas p3 and p4 depend on the behavior of the 
scattering amplitudes in the entire momentum
transfer interval. To estimate gi, g2, and g3 we 
can use the value of the scattering amplitudes in 
the Born approximation, assuming an electron-ion 
interaction in the form obtained when a pseudopo
tential is employed (see, for example [ 201 ), or in 
some more traditional form (see [BJ ). 

We now analyze expression (3.9). We consider 
first the case when the scattering amplitudes b0 

and bi are practically equal to each other, and by 
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the same token t:.p is determined entirely by the 
value of p2• As seen from (3.9), the inelastic im
purity resistance t:.p has at sufficiently low tern
peratures the same temperature dependence as p0, 

a positive sign if the impurity atom is heavier than 
the atom of the matrix (E < 0), and a negative sign 
in the opposite case (E >0). This result has a clear
cut physical meaning. Indeed, when M1 > M0 the 
deformation of the vibrational spectrum leads to 
an increase in the density of the frequencies in the 
region of low w, and by the same token increases 
the probability of scattering at low temperatures. 
When M1 < M0, the density of the frequencies in 
the region of low w decreases, and we have the 
opposite picture. (We note that the appearance of 
a local frequency does not change anything quali
tatively.) In the limit as T- 0 we have 

~p I Po-+ -2ec. (3.12) 

Thus, the relative change in the resistance for 
heavy impurity atoms turns out to be 21 E I times 
larger than the concentration. 

With increasing temperature, this ratio begins 
to increase rapidly when I E I » 1. In order to 
trace this result in explicit form, we assume for 
simplicity strong screening (b0(q) ~ b0(0)) and a 
linear dispersion for the phonons. Expression (3.4) 
is then transformed at low temperatures into 

P2=chpe(-2e)( 1+(-e)~ 16 !._)('1'__) 5
, 

8 15 8 8 
(3.13) 

and when -E » 1 there is actually a strong in
crease in the ratio !::.p/p0• 

With further increase in temperature, the 
strong deformation of the vibrational spectrum, 
due to the presence of the quasilocal level, causes 
t:.p(T)/p0(T) to go through a maximum at T < w, 
and then to start decreasing relatively rapidly. It 
is easy to find the value of p2 at a temperature of 
the order of w*. To this end it is sufficient to use 
in the calculation of (2. 4) the resonant character 
of the behavior of the function 'Y ( w2) (A. 8) (see, 
for example, [1l). As a result we find 

(3.14) 

For purpose of illustration, Fig. 1 shows a plot 
of Ap(T)/cp0(T) against T /®, calculated for 
IE I = 7. For comparison we present also the curve 
for IE I= 3. 

We now consider the general case, when Ab 
t= 0. Then contributions are made to Ap not only 
by p2 but also by p3 and p4 which in accord with 
(3.9) have an entirely different temperature de-

!Jp T}/Cp,(T) 
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FIG. 1 

pendence. At extremely low temperature the pre
dominant role will be played in Ap by p3-the re
sistance due to inelastic scattering by the impurity 
atoms themselves. Nonconservation of the momen
tum in such collisions causes a quadratic temper
ature dependence. p3 always makes a positive 
contribution to Ap, i.e., it increases the resist
ance and differs from zero even in the absence of 
phonon-spectrum deformation, i.e., as E- 0 (it 
is precisely the latter case which was the subject 
of a relatively recent discussion [ 21 • 221). 

The region of temperatures where p3 plays the 
main role in the general temperature-dependent 
part of the resistance (including p0) is usually 
relatively small and amounts to several degrees at 
a concentration of the order of 1%. (With regard to 
the impurity part of the resistance, this tempera
ture interval turns out to be, naturally, much 
larger and independent of the concentration.) This 
is connected to a decisive degree with the fact that 
p3 contains a factor gh which according to the 
customary rough estimates is of the order of sev
eral times 10-2• It must be emphasized, however, 
that the specific behavior of the Fourier compo
nent of the pseudopotential at large momentum 
transfers can in some cases lead to large values 
of gh thus increasing the temperature interval in 
which the quadratic temperature dependence pre
dominates in the total resistance. 

It must be noted that it is actually necessary to 
consider simultaneously with p3 also the resist
ance p 1 (3.3) which, as already noted, depends on 
the temperature via the Debye-Waller factors (3. 7). 
We separate in (3. 3) the resistance component pf 
which depends on the vibrational spectrum. Using 
expression (2. 9) and assuming, as usual, that 
W0 1 are small compared with unity, we get 

' 
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- ao(q)~a(q) (W1 - W0)}. (3.15) 

It is easy to find the first temperature term in 
the expansion of p{ at low temperatures. In ac
cord with (3. 7), it is equal to 

(3.15') 

Thus, allowance for this term decreases p3 (3.9) 
by one half. 

We note that when IE I » 1 the appearance of 
the quasilocal level leads, as in the case of p2 , to 
a strong increase of p3 + p{, and the ratio 
(Po + p{)/(T /®)2 passes through a sharp maximum 
at temperatures lower than w* given by (3.8). 

Finally, let us consider the interference term 
P<t· As follows from (3.6), p 4 is the sum of two 
terms, the first of which is connected simultane
ously with the difference in the scattering ampli
tudes and with the deformation of the vibrational 
spectrum (the first term in the square brackets). 
It vanishes both when !:!.. b- 0 and when E - 0. 
The second term, on the other hand, which is due 
to the interference between the scattering by the 
impurity atom and by the unperturbed phonon spec
trum, differs from zero even when E- 0. This 
situation is reflected also in the low-temperature 
representation for p4 (3.9). 

The expansion of p 4 begins with a term propor
tional to T4• This term contains a factor g3 (3.11) 
which, like gh is usually much smaller than unity. 
If this is so, then this term has the same order of 
magnitude as the second term in the expansion of 
Ps (see (3.9)), and at low temperatures it will ac
tually play the role of a correction to p3 (compare 
Ps and p4 in (3.9)). 

The first term in p 4, which is proportional to 
T5, depends only on the scattering amplitude as 
q- 0, and therefore contains no small parameter 
whatever. In the general case it is of the same or
der as p2• It is very important that for fixed E 

this term can have an arbitrary sign, depending on 
the sign of !:!.b. Thus, if g1 and g3 are really 
small, then we have approximately for the impurity 
resistance in the low-temperature region 

~ ( T )2 ( Z1 - Zo ) ( T )s ~p ~ cdl2pegt e + 2c/5pe - e + Zo e . 
(3.16) 

We use here the result obtained for electron-ion 
interaction in metals in the framework of the usual 
theories: 

.£\a (0) I ao(O) = (Zt- Zo) I Zo 

(Z0 and Z1 is the charge of the ion in the matrix 

and the charge of the impurity ion in the given 
matrix); and in addition, we took into account p{, 
so that Ap = !:!.p +Pi· 

The first term in (3.16) is always positive, and 
the sign of the second is determined simply by the 
sign of the quantity 

S + Zt - Zo Mt - Mo Zt- Zo = -e = +---. (3.17) 
Zo Mo Zo 

Thus, if S < 0, then the impurity resistance as a 
function of the temperature passes through a max
imum. The position of this maximum can be read
ily obtained from (3.16): 

(3.18) 

Here 

~p(Tmax) = 3c(-S)po(Tmax). (3.19) 

When S > 0 the quantity S'P increases monotonic
ally with the temperature. 

We note that the change in the electron spectrum 
can lead also to an additional term in l:!.p, propor
tional to (T /®) 5, and consequently, to a change of 
S. This change, however, is apparently small, and 
qualitatively the entire picture should remain the 
same. (Thus, in the approximation of the quasifree 
electrons, if we assume that k~ is proportional to 
the overall density of the electrons and a0 (0) 
"' E F· [ 81 then a coefficient 2/ 3 appears in the sec
ond term of (3.17).) 

The described picture can experience appreci
able changes if it turns out in some cases that g1 

and g2, although smaller than unity, are still ap
preciable. This will particularly come into play 
when lEI» 1, since, as seen from (3.9) and (3.13), 
the discarded terms contain the factor E. It turns 
out that this may even give rise to a minimum in 
the dependence of the total resistance on the tern
perature. To demonstrate this, let us consider the 
temperature region T ;G w*/2 (see (3.8)). In this 
region, the sum of p3 and of the first term in 
(3.15) 

q, "" 

c; ~ dqq5(~a(q))2 ~ droro ~((ro;) { n(ro)[n(ro)+ 1] 
0 0 (t) 

- : 00 [2n(ro)+ 11} (3.20) 

vanishes if we take into account the sharply reso
nant character of the function g/R near the quasi
local frequency w*. The second term in (3.15), on 
the other hand, differs from zero, for in the tem
perature region under consideration the classical 
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limit sets in only for the function W1• As a result 
we obtain 

Pa + pt' = -Cpeg,82( 11 w2 )(T I e), 
1 'lo 

g4 = ao6(ao(0))2) dqqsao(q)Aa(q). (3.21) 

Under the conditions in question, the main contri
bution to p 4 is made by the first term in (3.6). The 
resonant behavior of y(w2) (A.8) makes it possible 
to obtain immediately the explicit form of the ex
pression for the resistance: 

(3.22) 

With regard to p2, we have already obtained 
earlier the corresponding expression (3.14). This 
expression should really contain a certain numeri
cal factor {3 < 1 by virtue of the fact that it was 
assumed in its derivation that bo(q) ~::J b0(0). Thus, 
taking (3.21), (3.22), (3.14), and expression (3.10) 
for Po into account, we have for the temperature
dependent part of the total resistance: 

pIPe = ls (T I 8)5 + co (T / 8), 

(3.23) 

If o < 0, then it follows immediately from (3.23) 
that the total resistance can pass through a mini
mum, the position of which is determined in trivial 
manner: 

T min= 8{ loll 5Js) 'i•c'1•. (3.24) 

It must be noted that inasmuch as it was as
sumed in the derivation of (3.24) that T is at least 
of the order of w*/2, the obtained results can be 
really valid when c ~ 1%. However, at lower tem
peratures all three terms which make up the part 
of p that depends linearly on T begin to increase 
rapidly in approximately the same temperature in
terval, when the discarded term (3.20) is still 
small. As a result the minimum of the total re
sistance may appear also at noticeably smaller 
values of concentration and temperature. 

C. Let us consider now the region of high tem
peratures. As is well known (see Cll), we have 

r dw2 g(w2) = ~ dw2g(w2) 
0 w2R ( w2) 0 w2 

and in the classical limit with respect to tempera
ture we have W0 = W1• Hence, taking into consid
eration (3.5), (3.15), and (3.20), we readily obtain 

Ps + Pt'->-0. (3.25) 

Thus, in the region of high temperatures part of 

the impurity resistance, due to scattering by the 
impurity atoms themselves, ceases to depend on 
the temperature at all (a similar result was ob
tained by Taylorc 221 , who neglected the difference 
between the masses Mo and M1 and the deforma
tion of the vibrational spectrum). 

We show now that p2 also vanishes at high tem
peratures. To this end we consider the first term 
in (3.4) and transform the integral into 

1 00 1 1 
J, = -- rdw2-{ 

4ni ~ w2 w2(1-ecA(w2))-wi+iew2cy(w2) 

1 ""dx 1 
- c.c.} =- 4ni ~ x {x- wq2-P(x) - c.c.}, 

1 

F(x)=ecx[1-ex \ dx' g(x'). J-1 =cex¢(x). 
J x-x' + lO 
0 (3.26) 

We consider first the case when there is no 
local level. Then this integral can be represented 
in the form of an integral in the complex domain, 
along a contour C consisting of two horizontal 
lines from ~ + io to oo + io in the upper half plane 
and from oo - io to ~ - io in the lower half-plane 
<~. o-+o): 

1 
<D ( z) = ----::-----=c~ 

z-wq2-F(z) 

It is easy to verify that the function cl>(z) outside 
the segment of the real axis from 0 to 1 is an ana
lytic function. Therefore the integration can be 
carried out along the contour C1 shown in Fig. 2a 
by the continuous line. 

Closing the contour with a circle of radius ~ 

around the point x = 0 (dashed contour C~), we 
have 

1 r dz 1 idz 
/ 1 = --. J -<D(z)+-. J -<D(z), 

4m c a+c t+c, z 4n£ c a+c, z 

where CR is a circle of radius R - oo traced in a 
counterclockwise direction. The first integral ob
viously vanishes. We easily see that the integral 
along the contour CR is also equal to zero. As a 
result we are left only with the integral along C~, 
and we readily obtain 

(3.27) 

Substituting this result in (3.4),we find directly 
that p2 actually vanishes. This result remains un
changed also in the presence of a local level. In
deed, in this case y (x) and F(x) have a singularity 
on the real axis at the point where x coincides 
with the local frequency. But this point is bypassed 
automatically when the initial contour C is chosen 

' 



744 Yu. KAGAN and A. P. ZHERNOV 

a 

b 

F1G. 2 

(see Fig. 2b). We note that the transition from 
(A. 9) to (A.lO) in the presence of a local level ac
tually presupposes the existence of a small but 
finite smearing of this level, which always exists, 
if for no other reason than anharmonicity. In this 
case there would appear in place of the circular 
contour on Fig. 2b a closed contour which sur
rounds a finite segment of the real axis x, corre
sponding to the smeared local level, but the result 
(3.27) would remain the same. 

We now proceed to p4• We consider the first 
term in (3.6), and rewrite, using (3.26), the inte
gral with respect to frequency in the form 

GO 

1 8 dx 1 = --. - --(w(x)-¢*(x)). 
4m x x-w2 

0 q 

Going over to integration in the complex domain, 
similar to that used in the calculation of I 1, we 
obtain immediately 

12 =-~\dx 1 'IJ(x)-Rew(wtl, 
4m J x x - wl 2wq2 

c. 

where the contour C1 coincides with the continuous 
contour on Fig. 2b. After similar calculations, we 
obtain 

12 = [1- L\(wi) J /2wq2• 

Substituting this result in (3.6), we obtain the value 
of p 4, and at the same time also the temperature
dependent part of the impurity resistance in the 
classical temperature region T > ® /2: 

qo 1 
p~(T) = (~p)T = 2cTJT ~ dq q5b0 (q)M(q)2;"2 

0 q 

T 
= 2cgspee 

(see the notation in (3.11)). 

(3.28) 

Thus, at high temperatures the impurity resist
ance tends to a constant limit only when ~a - 0 
(in the classical limit ~ b(q) = exp [-W0 (q)/2]~a(q)). 
If ~at: 0, then the impurity resistance, just as 

the resistance of a pure metal, depends linearly on 
the temperature, and (~Ph can have an arbitrary 
sign, depending on the sign of ~a or, more rigor
ously, on the sign of g3• We note that the deforma
tion of the electron spectrum can in some cases 
complicate this result. 

4. COMPARISON WITH EXPERIMENT 

The results obtained in the preceding section 
enable us to analyze the character of the depend-
ence 

(L\p)T = ~p(T) - ~p(O) 

on T in the entire interval of temperatures for ar
bitrary values of E and ~a. It should be noted 
here that whereas the sign of ~a(q) as q- 0 is 
determined essentially by the difference in the 
charges of the ions, the same cannot be said con
cerning the region of large q. Indeed, the features 
of the behavior of the pseudopotential in this re
gion are such that one cannot exclude the possibil
ity of reversal of the sign of ~a(q) at large q in 
the case of atoms belonging to different periods of 
the periodic system. Bearing this in mind, we 
shall speak during the analysis of the results sim
ply to the sign of ~a. but refer in this case essen
tially to the sign of the quantity g3 (3.11), which 
determines the asymptotic temperature behavior 
of (~p )T· In comparison with experiment, on the 
other hand, we shall always assume that the signs 
of ~a and of g3 are determined when Z1 t: Z0 by 
the sign of the difference z1 - Z0, that is, they co
incide with the sign of ~a when q- 0. 

A. ~a < 0. As follows from the results of the 
preceding section, when ~a- 0 the impurity re
sistance always increases with increasing T in 
the initial temperature region; on the other hand, 
in the high-temperature region the condition ~a <0 
leads to negative (~P)T, which decreases linearly 
with the temperature (see (3.28)). Thus, (~p)T as 
a function of the temperature will always go 
through a maximum, and then through zero at a 
certain temperature, retaining a negative sign at 
high temperatures. This result is clearly illus
trated in Fig. 3, where we present for purposes of 
illustration plots of (~p )T = f(T) calculated under 
the assumption of strong screening and for a 1 (0) 
= (%)a0(0) at three values of E: -7, -3, and 0. 7. 
For the phonon spectrum of the matrix, we as
sumed the Debye approximation. A similar tem
perature dependence of the impurity resistance 
was recently observed experimentally with Mg 
alloys with small contents of Ag (Z 1 - z0 = 1).[9-101 

An analogous result was obtained also for an alloy 
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of Mg with Li (Z 1 - Z0 = 1). uo 1 The fact that an 
entirely different result was obtained in [ 91 for a 
similar alloy is due, in all probability, to the large 
content of Li (4.4 at. %). 

B. Aa > 0. In this case (Ap)T has the same 
(positive) sign both at low and at high temperatures. 
In the intermediate temperature region the curve 
may be quite complicated, with one or more in
flection points, and even with loss of monotonicity 
in some cases. Common to all cases is the linear 
increase of the impurity resistance in the classi
cal region of temperatures. 

There are quite many experimental results that 
confirm the described picture. Mention should be 
made first of the classical work of Linde[ 231 (see 
also [ 241 , which contains part of Linde's unpub
lished results), in which the linear growth of (Ap)T 
with temperature was observed for alloys of Au 
with Sn and In, for alloys of Cu with In, Sb, and 
Sn, [ 231 and also alloys of Cu with Ga, Ge, As, and 
Be, AI, Si, P [241 (in all cases Z1 - Z0 > 0). Simi
lar results were obtained recently[ 111 for alloys of 
Au with Zn and of Au with AI (Z1 - Z0 > 0). It must 
be stated that in all the results even satisfy the 
following approximate condition: the greater the 
difference Z1 - Z0 the larger the slope of Ap (T)/c 
in the classical region. 

Alloys of Mg with different contents of Sn im
purity were investigated in [10 1. The observed pic
ture varied strongly with the concentration. The 
assumptions on which the present paper is based 
are satisfied all the better, the lower the concen
tration of the impurity component. Indeed, for the 
alloy with minimum content of Sn (~ 0.1 at. %) the 
obtained dependence of (Ap)T on T does not con
tradict the theoretical results. 

The only case which cannot be explained in 
these investigations, assuming that the signs of g3 

and Z1 - Z0 coincide, is the case of the alloy of 
Mg with AI. [ 91 The observed picture is close to 
that obtained when g3 < 0. Whether this is the con
sequence of the specific nature of the pseudopoten
tial for large q or whether the initial premises 
are violated cannot be decided readily without ad
ditional experimental information. 

C. Z1 = Z0. This case is quite complicated to 
analyze, since it is not clear how to determine con
sistently the signs of b.a and g3 for two elements 
pertaining to the same group but to different pe
riods of the periodic system. The opposite is more 
likely to occur, and this sign may be determined 
from an analysis of the behavior of Ap at high 
temperatures. 

If Aa turns out to be very small, then (Ap)T 
will assume in the classical temperature limit a 
constant value. In the intermediate region (Ap)T 
will then go through a maximum or a minimum, 
depending on the sign of E, as is clearly demon
strated the curves of Fig. 4, calculated under the 
same assumptions as in the case of Fig. 3 but for 
A1 = A0• In the general case the picture will be 
much more complicated, since one cannot neglect 
the difference Aa of the scattering amplitudes. 

0.010 

0.005 

0~~~--~~~~~~~~~~~8~ 
-o.oos / 
-o.oto 
-0,0/5 

-0,020 

FlG. 4 

The fact that (Ap)T is approximately constant 
at high temperatures was observed experimentally 
for an alloy of Au with Cu in [ 111 and in less pro
nounced form in [ 231. A similar result was ob
tained for alloys of Au containing small amounts 
of Ag (and vice versa) in [ 251 , and also in [ 231 . The 
behavior of (Ap)T in the transition region of tem
peratures is difficult to analyze without exact 
knowledge of b.a(q). 

In addition to these alloys, an alloy of Mg and 
Cd (Z1 = Z0) was also investigated. [9• 101 This al
loy exhibited clearly a temperature dependence of 
(Ap)T perfectly analogous to the case when b.a 
< 0. This possibly leads to conclusions concerning 
the sign of Aa(q) in the main part of the phase 
space, characteristic of the integral (3.11). 

' 
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Thus, the results obtained in the present paper 
explain qualitatively most known experimental 
data pertaining principally to the regions of high 
and intermediate temperatures. Unfortunately, the 
lack of precise measurements of the impurity re
sistance in the region of low temperatures prevents 
a comparison with the theoretical results obtained 
for this temperature region. It is also very im
portant to obtain experimental results with partic
ular attention to the nontrivial character of the 
temperature dependence of (Llp )T and its sensi
tivity to the parameters of the alloy. 

APPENDIX 

In the case under consideration the Hamiltonian 
of the system can be represented in the form 

func:tions in (2. 8), bearing relation (2.11) in mind. 
We begin with the simplest case, corresponding to 
the third term in (2.8). Since this term is already 
linear in the concentration, we must determine the 
corresponding Green's function only in the approx
imation that is of zero order in the concentration, 
that is, it is sufficient to take into account only the 
first term in (A.4). Taking into account (2.11) and 
the explicit form of (A. 3), we obtain 

r> ( , 2n 6cxp sign rog (ro2) 
«un" (t) Un• t ))w)c = 1 _ e-w/T ~ R (ro2) 

(A.5) 

where 

C g(z) 
J(w2} = Jdz---

t> {o)2- Z 
(A.6) 

(g(w2) is the distribution function of the squares 
(A.1) of the frequencies of the phonon spectrum of the 

matrix). 
where Mn = (1- Ecn)M, M is the mass of the 
ideal-lattice atom, Pn and Un are the momentum 
and displacement operators of the n-th nucleus, 
and <P~, is the dynamic matrix of interaction of 
the alloy atoms. 

Using this expression for the Hamiltonian, we 
can derive for the frequency Fourier component 
of the Green's function (2.10) an analog of the Dy
son equation in the coordinate representation: 

G~!· (ro) = G~!·.o(ro)+ Mro2s ~ G~~ .. o (ro) c11,G~~n' (ro}, (A.2) 

(A.3) 

Wfj and v fj denote here the natural frequency and 
the polarization vector for the ideal lattice, corre
sponding to the wave vector f and to the branch 
number j. 

We confine ourselves to a cubic crystal and 
rewrite Dyson's equation in the case when one of 
the indices (for example, n) coincides with the 
impurity lattice point: 

G~!· (ro) = J1G~!·, 0(w}+!l1. ~ G~~~ (ro) c11,G~~n' (ro). (A.4) 

We have introduced here the notation 

f.=Muh, Jl=(1-A.G~~.0 (ro)fl, 

G~!· = G~!·.o- 6nn'6cxpG~!·,o· 

Substituting the obtained equation in the second 
term of (A.2), we can construct an iteration series 
with respect to the concentration c. 

We now proceed to determine the correlation 

We proceed next to determine the last term in 
(2. 8). To this end, limiting ourselves only to the 
approximation linear in the concentration, we again 
use only the first term in (A.4). Then 

<~ ~exp [iq (R11°- R 11•0 )] C11 (un"(t) Un•P (t'))w)c 
nn' 

= 2nc ~ Vqj"Vql 1 [P sign ror ( ro2) 

1 - e-w/T .Ll M n ,,,2 _ ,,,2. 
i - ~v 

+ n sign ro6 ( w2-wql) .'1( w2) J, 
where 

(A. 7) 

We consider finally the second term in (2.8). In 
this case the lower indices of the Green's function 
are arbitrary, and we should use the general equa
tion (A.2). For the Green's function in the right 
side of (A.2) we use the representation (A.4). Then 
the zeroth and first-order terms in the concentra
tion turn out to be expressed only in terms of the 
zero-order Green's functions, and the iteration 
series begins with terms of order c2• Using (A.3), 
we obtain in the approximation linear in the con
centration 

<~ ~ exp [iq(R .. o-Rn·O)]G~~·(ro))c= ~ ~ (G~!·(ro})c 
n,n' n,n' 

(A.9) 
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In the same approximation or, more rigorously, 
carrying out selective summation of the pole terms 
of the iteration series, we have 

<~ 2] exp [iq (Rn°- Rn'0)] (Unoc (t) Un'~ (t')).,)c 
nn' 
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