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A new mechanism of acceleration of charged particles by a plane electromagnetic wave, which 
does not require the decelerating systems characteristic of linear accelerators, is proposed. 
Owing to the action of a so-called synchronizing magnetic field with a special spatial distribu
tion, the particle moves along such a trajectory that on the average the electric field does 
positive work on it. The relations between the particle energy and longitudinal coordinate and 
the conditions which the synchronizing field must satisfy are determined. The time invariance 
of the latter facilitates its realization and seems to ensure a high mean intensity of the accel
erated particle beam. 

THE appreciable increase attained recently in the 
power of microwave sources, and especially of op
tical sources, makes it expedient to search for 
new schemes of interaction between waves and 
particles, particularly for the purpose of particle 
acceleration. In addition, as is well known, the in
verse problem (slowing down of particles) has a 
direct bearing on the generation of electromagnetic 
oscillations in different frequency ranges. In view 
of the known difficulties of producing slow-wave 
and waveguide systems for short waves, it is of 
interest to investigate as fully as possible the pos
sibility of using plane free waves whose phase ve
locity is equal to the velocity of light c. This en
tails at least two fundamental difficulties: 

a) The high frequency of the wave makes it dif
ficult to realize resonant interaction without re
sorting to very strong magnetic fields and conse
quently to large gyromagnetic frequencies. This 
difficulty can be overcome to a certain degree by 
using the Doppler effect, when the relativistic par
ticle moves essentially along the wave vector. 

b) The already noted directivity of the motion 
reduces the efficiency of the interaction, since the 
wave is transverse and consequently only a small 
component of the electric field participates in the 
acceleration. This circumstance influences, in 
particular, the efficiency of the autoresonant mech
anism of acceleration, considered by the authors 
earlier. [ 1 1 

In this paper, which is in some respect an ex
tension of [ 11 , we propose a new mechanism for 
accelerating charged particles in the field of a 
plane electromagnetic wave. The general idea is 

to choose the spatial dependence of the time
invariant magnetic field B(r), which we shall call 
the synchronizing field, in such a way that the par
ticle will move on a trajectory such that the elec
tric field E of the wave performs on the average 
positive work on the particle. To find this B(r) 
with allowance for the wave field, it is advanta
geous to specify the trajectory which is most fa
vorable from the point of view of the gain in work, 
and then determine the synchronizing field for this 
trajectory. We must bear in mind here, of course, 
conditions such as the analyticity of the field in the 
interaction space, and also the requirement that 
its spatial period not be too small, an important 
factor in the case when very short waves are used 
(for example, light waves). 

Let us consider the simplest system, when the 
particle moves during the acceleration process 
in one plane (y, z) perpendicular to the synchro
nizing field B 0 , which is directed along the x 
axis: B0 =Box( y, z). The accelerating plane
parallel wave is directed along the z axis in such 
a way that its magnetic field B is parallel to B0, 

and its electric field is parallel to the y axis: 

B = Bx = -Em sin lp, E = Ey =Em sin lp, (1) 

1p = wt-kz, (2) 

w and k = w/c are respectively the frequency and 
the wave number. Then the phase of the particles, 
which has a velocity component Vz = c{3z, can be 
written in the form 

1- f3z 
lp = k ~ - 13 - dz. (3) 
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In order for the particle to gain energy from 
the action of the wave in the magnetic field, it is 
natural to require that the transverse component 
of the particle velocity cf3y change in phase with 
the electric field; for example, 

~y=~J:(y)sinqJ=~J..(y)sink~ i-~zdz, (4) 
~z 

where f31(Y) is a slowly varying function of the par
ticle energy y (expressed in fractions of m0c2) or 
of the distance z. Then, using only the kinematic 
relation f3} + f3i = 1 - y - 2 and the particle energy 
balance, we can readily obtain 

dyldqJ = G~J..sin2<p[1- (i-y-2_ ~J..2sin2qJ)'i•]-t, (5) 

where the independent variable is chosen to be the 
phase cp, and the dimensionless quantity G 
= eEm/m0c2k characterizes the efficiency of en
ergy transfer from the wave to the particle. The 
phase cp is connected with the distance z by the 
relation (3). If we express y as a function of cp 
with the aid of (5), then 

dqJ / dz = k[ (1- y-2- ~.1..2 sin2 ~p)-'"- 1]. (6) 

Since the term in the round brackets in (6) is 
always smaller than unity, the phase of the parti
cle does not remain constant, as can happen in or
dinary linear accelerators that use slow longitudi
nal waves. Therefore, approximate solutions of 
(5) and (6) can be obtained by averaging these equa
tions over the rapidly varying phase cp, which gen
erally speaking is justified when G « 1, i.e., in 
the case of sufficiently short waves and not too 
strong a field. Physically this condition denotes 
that the particle energy changes little over a dis
tance of the order of the wavelength. 

Let us consider now two limiting cases-nonrel
ativistic motion and strongly relativistic motion, 
directed essentially along the wave propagation di
rection. 

A. Nonrelativistic Case 

In this approximation the term in the round 
brackets is much smaller than unity, so that after 
averaging we obtain 

dz 2~ 
-~-E(a), 
dqJ rck 

~J.. a=-
~ ' 

(7) 

where E(O!) is a complete elliptic integral of the 
second kind. The quantity 0! has the meaning of 
the sine of the maximum angle of inclination of the 
particle trajectory to the wave propagation direc
tion, and from the nature of the problem 0! < 1. 
Integrating the pair of equations (7), we obtain the 

connection between the energy and the distance 
1' 

Gkz = ~ ~ E(a) dy, (8) 
:rt a 

'\'! 

where 'Yi corresponds to the initial particle 
energy. 

In particular, if the amplitude of the oscillations 
of the transverse velocity constitutes the constant 
part of the total particle velocity, then 0! is con
stant and 

V = y; + nGkza I 4E(a). (9) 

When 0! « 1, i.e., when the motion is very dis
tinctly directed along the wave, we obtain from 
this 

y = y; + Gkza I 2, (10) 

so that the increment of the kinetic energy of the 
particle is 

~W = eEmaz I 2. (11) 

A characteristic feature is that this quantity 
does not depend on the wavelength. Compared with 
a linear accelerator having a longitudinal compo
nent Em, the increment decreases by approxi
mately a factor 0!-1, but the value of Em itself 
can in our case be much larger than in ordinary 
accelerators. 

B. Relativistic Case 

We now consider the case of relativistic motion 
directed essentially along the wave, this being a 
natural limitation when using narrow beams of 
short-wave radiation. Assuming that f3l « 1, we 
have from (5) and (6) the following averaged equa
tions 

dy I d<p ~ 2G~J..-t[1- (1 + yz~J..2)-''•], 

dzldqJ ~ 2-yZk-1 (1 +VZ~J..2)-'h, 

from which we get 

(12) 
(13) 

(14) 

Let us consider first the case of very small 
transverse velocity oscillations, when we can put 
y2 f3l « 1. It then follows from formula (14) that 

1' 

Gkz ~ 2 ~ ~J.. - 1 dy, (15) 

or for f3l = canst « 1 

v = y; + Gkz~J.. I 2. (16) 

We note that this formula has the same form as 
the nonrelativistic approximation (10) obtained un-
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der the assumption a = const « 1, which coincides 
with the condition {31 = const « 1, since the total 
velocity of the particle is in practice equal to c. 
From expression (16), and incidentally also from 
physical considerations, it follows that the effi
ciency of interaction increases with increasing {31 , 
so that it is advantageous to consider also the 
case 'Y 2f3 2 » 1. Then formula (14) yields 

y = [ vl· + Gkz ]''·· (17) 

Thus, in the range 'Y - 1 « f31 « 1 the efficiency of 
interaction turns out to be independent of f31· 

For the distance over which the energy in
creases by a factor n it follows from (17) that 

(18) 

where lif'O and lSi are respectively the rest energy 
and the total initial energy of the particle. It is 
interesting to note that the length of acceleration 
to a given energy (for 'Y » 'Y i) is inversely propor
tional to the mass of the accelerated particle. 

Let us consider now those requirements which 
the synchronizing magnetic field must satisfy. So 
far we have used only the energy balance, i.e., one 
of the first integrals of the equation of motion. 
Using the fact that the magnetic and the electric 
field of a plane wave are related by 

B = k-1[kx E], (19) 

we can represent the longitudinal component of the 
equation of motion in the form (see [ 11 ) 

~z d Q=cTu dz[y(1-~z)], 

or, after simple transformations 

~ = ~.-1{ 'V~.L(1- ~.)cos cp 

• [ 2 dlny~.L]} 
- G sm cp 1 - ~. - ~Y d ln V ' 

(20) 

(21) 

where g = eBo/Illi)C. Inasmuch as cp, 'Y. f3z and f3y 
were obtained above as functions of z, Eq. (21) 
can be considered as a definition of the synchro
nizing magnetic field specified along the trajec
tory. In the particular case considered above, 
f31 = a{3, a « 1, expression (21) simplifies some
what: 

~- ~ _.!.- ~. {ay~coscp- G(1- y~a2sin2 cp)sincp}. (22) 
W f3z 

In the nonrelativistic and relativistic ( a 2'Y 2 » 1) 
cases this yields 

Q G' - - ~ a cos cp - sm cp, 
w 

cp = cp; + G-la-1((~;2 + Gkza)'l•- (3;], (3~ 1, (23) 

It must be borne in mind that these expressions 
give the field along the particle trajectory and 
therefore, in particular, depend on the initial en
try phase cpi. The trajectories themselves can be 
readily obtained in the cases in question from the 
equation dy /dz = f3ylf3z, and are of the form 

k(y- y;) ~ a();{ cos cp;- cos cp) 

+ Ga2 [sin cp- sin cp;- (cp- cp;}cos cp], ~~ 1, (25) 

k(y- y;} ~ 2av;2 [cos cp;- cos cp exp (2G(cp- cp;})] 

= 2a [y;2 cos cp; - y2 cos q>], a2y2 ~ 1. (26) 

By varying the relation n(y, z) (but maintaining 
the function n(z) the same along the trajectory), 
we can choose in optimal fashion the region of ini
tial conditions for which the given field will actu
ally be synchronizing. Thus, for example, if we 
stipulate that particles with arbitrary Yi enter in 
the acceleration mode, then the field must be cho
sen independent of y; however, in this case only 
particles with initial phase cpi will enter into syn
chronism (see (23) and (24)). On the other hand, we 
can increase to 27r the region of initial phases cor
responding to synchronization, but only at the ex
pense of causing the acceleration of only particles 
with y lz =o = Yi· It is necessary then to express 
cpi from (25) or (26) as a function of y - Yi and 
substitute in the expressions (23) and (24) for the 
field. In this case, for example, for relativistic 
motion the value of cp in (24) will depend not only 
on z, but also on y, being a solution of the equa
tion 

( Gkz) k (Y - y;) 
= y;2 1 + -.2 cos cp + 2 . y, a 

(27) 

Thus the magnetic field is specified only in those 
regions of space where the particles can be situ
ated physically. 

We note that any relation for n(y, z) agrees 
with Maxwell's equations and does not ca,ll for in
troduction of additional currents in the interaction 
space. The magnetic field is in this case purely 
potential with a symmetry plane (y, z). In this 
plane there is only an x-component equal to 
aq,;ax lx = 0 = n(y, z). This relation can be re-
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garded as a boundary condition of the second 
boundary-value problem for the Laplace equation, 
the solution of which always leads to a physically 
realizable magnetic potential ci> (as is the case in 
ordinary cyclic accelerators). 

It is easy to see that the absolute magnitude of 
the synchronizing magnetic field is much smaller 
(when a « 1) than the field necessary for equality 
of the gyromagnetic frequency and of the frequency 
w of the wave. Thus, in the relativistic case, as
suming for an estimate of a~ y - 1, we obtain 
fl/w ~ y-2 « 1, and in the nonrelativistic case 
fl/w ~ (a2 + G2)112• The spatial period of the field 
along the z axis increases with increasing z, but 
for relativistic motion it is much greater than the 
wavelength 27!" /k even for the initial section: 

(28) 

In the nonrelativistic case, naturally, the period of 
the field should be smaller than the wavelength. 

It must be borne in mind that the expressions 
for the field were obtained above only for a parti
cle which is in synchronism with the wave at all 
times, i.e., the so-called equilibrium particle. 
Such rigorous resonance conditions correspond, 
naturally (within the framework of the averaged 
equations), to a zero volume in the initial-condition 
space (yicpi), just as in ordinary accelerators. 
Therefore the next step in the investigation of the 
possibilities of this scheme is to consider parti
cles that differ little from equilibrium and move 
in a specified magnetic field of the form (23) or 
(24). We recall that the freedom we have to vary 
the law governing fl(y, z) makes it possible to 

vary over a wide range the initial conditions cor
responding to the exact or approximate resonance. 
In particular, by suitable choice of the field it is 
possible to obtain not only phase stability for par
ticles that differ little in their initial conditions 
from equilibrium, but to increase to a maximum 
degree the region of initial conditions correspond
ing to stability, i.e., the acceptance of the system. 

In this paper we consider one of the physically 
simplest variants of acceleration of particles by a 
wave in a synchronizing magnetic field. The next 
required step is to investigate the possibility of 
other more effective variants and to consider in 
greater detail the question of the stability of the 
acceleration process. The considerable further 
increase in the power of the microwave and light 
beams, on which we can already count, leads us to 
expect practical applications for the method. 

Without touching here on the practical aspects 
of the matter, we note only that the time-invariance 
of the synchronizing field greatly facilitates its 
realization and at the same time makes it possible 
in principle, to capture the particles in the accel
eration mode by injection in each period of the 
high frequency field of the wave. The latter cir
cumstance makes it possible to expect a large 
average intensity of the accelerated particle beam. 

1 A. A. Kolomenskil and A. N. Lebedev, JETP 
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