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An expression for the scattering cross section of relativistic electrons into fairly large 
angles is obtained. It takes account of the finite size of the nucleus and the effect of 
multiple scattering for the case when the correction to the single-scattering formula is 
relatively small. 

THE angular distribution of the large-angle scat
tering of fast electrons in matter can be calculated 
on the basis of the_ well developed theory of multi
ple scattering.[l- 3] However, this involves nu
merical computations which become more and 
more complex as the scattering angle increases. 
Below we shall use the Green's function method 
developed by Fradkin and Milekhin [4- 5] (cf. also 
the work of Kalashnikov and Ryazanov [s] ) . This 
allows us to obtain the final result in an explicit 
form, with logarithmic accuracy. 

For the following considerations it is important 
that for anL « 1, where a is the cross section 
for large angle scattering, n is the density of 
scattering centers, and L is the target thickness, 
single scattering into a large angle is much more 
probable than double or multiple scattering. The 
inequality just mentioned is usually fulfilled owing 
to the sharp anisotropy of the scattering of rela
tivistic electrons (we are here considering ener
gies of tens of MeV) and corresponds to the fact 
that the observed cross section differs little from 
the "tail" of the single scattering cross section. 
We shall therefore describe the behavior of the 
electron by a Green's function in which the inter
action of the electron with the medium comes 
about through the exchange of one hard ''photon'' 
and an arbitrary number of soft ones. If we de
note the initial and final momenta by p and k, 
respectively, this Green's function can be written 
for a Dirac electron [5] 

G(p, k) =- ie(iyvkv + m)yll(iyvPv + m) 

X ~ d4xei<p-kJxA~' (x) r ds1 ~ ds2 exp { -is1 (p2 + m2) 

0 0 

•• 
- is2(k2 + m2)- 2ie ~ dttPva..(x- 2ptt) 

0 

•• 
- 2ie ~ dt2 kvav ( x + 2kt2) } . 

0 

(1) 

Here AJJ. is the field of that atom which is re
sponsible for the main part of the scattering with 
large momentum transfers, and af.J. is the field of 
the remaining atoms: since the momentum trans
fer is much larger than the reciprocal dimensions 
of the atom, we must take for Af.J. only the field of 
the nucleus. In the following we shall consider 
only such target thicknesses L that anL « 1 as 
well as the condition na 2L » 1 are fulfilled, 
where a is a characteristic dimension of the 
atom. 

In formula (1), the principal scattering is in
cluded in Born approximation, which is valid only 
for light nuclei; it is therefore reasonable to 
generalize the expression Yf.J.Af.J. by replacing it by 
the complete invariant electron-nucleus scattering 
amplitude. In the following we restrict ourselves 
to electron energies E which do not exceed 50 to 
100 MeV; then only the nuclear charge distribution 
is important and we may take i y 4 4> instead of 
y f.J.Af.J." The Fourier transform of 4> is written in 
the form 

where F is the nuclear electric form factor and 
R is a characteristic dimension of the nucleus. In 
Born approximation the quantity F is equal to the 
square modulus of the Fourier transform of the 
nuclear charge density distribution. Inelastic 
processes can be neglected for E < 50 MeV [7] (a 
simple method for taking inelasticity into account 
by changing the form of F is presented in the work 
of Cooper and Rainwater [S] ). In the potentials af.J. 
one may take the fourth component a4 = icp as the 
only nonvanishing component. 

Multiplying (1) on the left by Uf ( k )(i Y 11 k 11 - m) 
and on the right by ( i Yv p 11 - m) Ui ( p) and taking 
the limit i Yvkv- i YvPv- m, we find an expres
sion for the scattering matrix element (Uf and ui 
are the spinors of the final and initial electron 
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states). Making the usual transition from the 
matrix element to the differential cross section 
and averaging over the spin orientations of the 
electron, we obtain 

dcr = p2(1- v2 sin2 e 1 2)IdQ 1 4n2v2, (3) 

I= ~ ~ d3x d3y exp [i (P- k) (x- y)] e2<t> (x) <t>* (Y) 

00 

X exp {2ieE ~ ds [<p(x- 2ps) + <p(x + 2ks) 
0 

- <p(y- 2ps)- <p(y + 2ks)]}. ( 4) 

Here 8 is the scattering angle of the electron, E 
is its energy, and v is the velocity in units of the 
light velocity. 

The potentials cp are composed of the potentials 
of the separate scattering centers 

N 

<p(x)= ~ V(jx-x;j) 
i=1 

and the cross section depends on the position of 
each atom. Naturally, we are interested in an 
averaged expression. We shall assume that the 
scatterers are distributed randomly, i.e., all co
ordinates within the boundaries of the target, a 
plate of thickness L, are equally probable for 
each Xi. Then the averaging can be carried out in 
the asymptotic limit ( N - oo ) and we obtain for 
the average of the last exponential in ( 4) 

exp{ n ~ d3z [ exp ( 2ieE I ds[V(x- 2ps- z) 
0 

- V(y-2ps-z)+ V(x+2ks-z) 

- V (y + 2ks- z)]) - 1]}. (5) 

It is easy to see that at the points where the 
exponent of the inner exponential in (5) is not 
close to zero, the integral over z has a negative 
real part which is equal in order of magnitude to 
na2L, where a is an atomic dimension, and thus 
much larger than unity. Therefore the main con
tribution to (I) comes from the region of integra
tion where the inner exponential is almost can
celed by unity. This, in turn, allows us to restrict 
ourselves to the first nonvanishing terms of the 
expansion of this exponential. Then it turns out 
that the first order terms do not contain L and 
can be discarded, neglecting quantities of order 
na 3. Computing the second order terms with the 
same accuracy, we obtain for (5) 

where 
200 00 00 

a = n;2e ~ du ~ dv ~ dw w 
0 0 0 

d --d -
X dw V (y'u2 + w2) dw V (y'v2 + w2) (7) 

(the momentum p and the 1 axis are perpendicular 
to the target plate). 

Substituting (6) and (7) in the expression for 
(I) and going to momentum space, we see that the 
characteristic momentum transfer corresponding 
to the combined effect of all scatterings with small 
momentum transfers is equal to ( a L) 1/ 2 in order 
of magnitude. In accordance with our basic as
sumptions, this means that the following inequality 
must be satisfied: 

aL~(p-k) 2 = (11p)2. (8) 

Taking this into account, we can, in the expression 
for ( I), expand the function ~ ( k - p + q) under 
the integral sign in powers of q, so that all nec
essary integrations can be carried out in elemen
tary fashion. Averaging, moreover, over all pos
sible positions of the principal scatterer, we ob
tain for the cross section 

{ aL 1 + cose 
dcr=dcrMottF(L1pR) 1+-( )2 z S (8(1+3cos8) 

L1p 'cos 

- (5 + 9 cos 8)11pRF' IF+ (1 +cos 8) (L1pR)2 F" /Fl}. 

(9) 
The second term in the curly bracket gives a 

correction due to the multiple scattering. It re
mains to give an explicit expression for the con
stant a. In general the integral (7) is logarith
mically divergent at small distances if one takes 
a screened atomic potential for V. We must, how
ever, recognize that a describes the scattering 
with momentum transfer qmax• which is smaller 
than ~p. Since ~ax enters in the result as an 
argument of a logarithm, we can replace it by ~P 
with logarithmic accuracy. Then we obtain from 
(7) 

a= (nn(Ze2 ) 2 I v2) ln (al1p). (10) 

Formulas (9) and (10) give the expression for 
the cross section. When the scattering angle is 
small ( 8 « 1) and the nucleus is regarded as 
poi~t-like ( F = 1 ), these two formulas go over, 
with logarithmic accuracy, into the known result 
of Moliere.CsJ 

The author is grateful to E. L. Fe'inberg for a 
discussion of this work. 

exp {-a[ (L + X1 + Yi) (x- y)2.Lp 

+ (L- X1- yi) (x- y) 2.LI<.I cos 8]}, 
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