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A theory is developed for the vibronic light-absorption spectra of molecular crystals, i.e., of 
spectra corresponding to simultaneous electronic and intramolecular vibrational excitations 
(an exciton and a phonon). The basic exciton-phonon interaction mechanism is assumed to be 
the change A v of vibrational frequencies in electronically excited molecules. For not too 
small Av in a crystal energy spectrum the two-particle excitation region is accompanied by 
a region of one-particle excitations in all or part of k space, corresponding to the concurrent 
motions of an exciton and phonon. Formulas are derived for the positions and intensities of 
absorption bands associated with one-particle excitations as functions of the structure of the 
exciton and phonon bands and the exciton-phonon coupling parameters. The physical mecha­
nisms are ascertained which predominantly influence the one-particle excitation band struc­
ture in different limiting cases. The intensity distribution is derived for a wide-band spec­
trum corresponding to two-particle excitations. 

The theory predicts the possibility of an entire system of crystal impurity bands. When the 
probability of phonon transfer from site to site is small the different bands can be interpreted 
as corresponding to exciton quantum states accompanying phonon excitations at different dis­
tances from an impurity molecule. A similar structure can also appear in the spectra of pure 
crystals in a region where several phonons are excited simultaneously with an exciton. Finally, 
in the current-carrier energy spectra of semiconductors having narrow allowed bands the 
properties are considered that result from changes of bond strength near excess charges and 
from the formation of coupled carrier-phonon pairs. 

INTRODUCTION 

THE general concept of excitons as the lowest 
electronic excitations in nonmetallic crystals was 
formulated by Frenkel and by Peierls, [ 1• 21 along 
with an approach to an analysis of exciton-phonon 
interactions. Excitons in molecular and atomic 
crystals have aroused considerably increased in­
terest following the discovery that the spectra of 
some organic crystals include multiplets consist­
ing of highly polarized bands (Davydov multi­
plets[ 3• 41 ). During the last few years the types of 
exciton excitations have been classified completely 
and rigorously as a function of the strength of ex­
citon-phonon coupling; a theory has also been de­
veloped for the forms of exciton absorption and 
luminescence bands. [ 5- 81 In all these studies it 
was assumed, essentially, that an exciton is a 
purely electronic intramolecular excitation propa­
gating through a crystal, and that phonons repre­
sent oscillations corresponding to the external 
molecular degrees of freedom (translation and ro-

tation). The basic interaction mechanism was the 
shifting of crystalline oscillator equilibrium posi­
tions induced by the presence of excitons. Also 
considered were changes induced in the energy 
spectrum of excitons "clothed" with (mainly vir­
tual) phonons, as well as the broadening of absorp­
tion and luminescence bands that is caused by pho­
non emission and absorption accompanying optical 
electronic transitions. 

Some authors have recently extended the fore­
going ideas to the interactions between electronic 
excitations and intramolecular vibrations. Simpli­
fication of the pertinent interaction Hamiltonian 
and new calculating methods have enabled the 
study of changes in the structure of an exciton band 
during the "clothing" process[ 9 J and the appear­
ance of new spectral branches, [ 101 which are being 
studied most at present in one-dimensional sys­
tems[S, 71 and with which [ 9• 101 we are mainly con­
cerned. We note, incidentally, that some of there­
sults obtained in [ 9, 101 also apply to interactions 
between excitons and lattice vibrations. 
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We shall consider here an entirely different as­
pect of the interaction between electronic excita­
tions and intramolecular vibrations, governed by 
the reduction of intramolecular vibrational fre­
quencies in electronically excited molecules. It 
will be shown that changes of vibrational frequen­
cies lead to a qualitative reorganization of the 
electronic-vibrational (vibronic) spectra for both 
pure and impure crystals. 

The foregoing effect, whose theory will be de­
veloped here, consists essentially in the following. 
Let us consider one crystalline molecule in a state 
of electronic-vibrational excitation, and let us 
study what happens to this excitation. In virtue of 
translational symmetry it can, of course, be trans­
ferred as a whole to a neighboring molecule etc., 
that is, it can travel along the crystal as an elec­
tronic-vibrational exciton. However, another pos­
sibility appears. Since there exists some probabil­
ity that the excited molecule can lose either its 
purely electronic or its purely vibrational excita­
tion independently, the electronic-vibrational exci­
tation can be decomposed into an electronic and a 
vibrational exciton that are propagated indepen­
dently. The outcome of the competition between 
these two processes is governed by the reduction 
of vibrational frequencies in electronically excited 
molecules. The frequency shift Av is not too 
small, being 50-100 cm-1 for aromatic molecules; 
this is of the order of exciton band widths in the 
corresponding crystals. 

The breakup of the electronic-vibrational exci­
tat ion is associated with a gain I Av I of ''potential'' 
energy that can compete with the loss of "kinetic" 
energy that usually accompanies the breakup. 
Therefore, when I Av I is not too small the lower 
portion of the energy spectrum will comprise a 
band of states corresponding to the combined prop­
agation of an electronic and a vibrational excita­
tion with the quasimomentum k. The two excita­
tions form a kind of bound state; they move rela­
tive to each other within a limited spatial region 
and remain at a single site during a portion of the 
time. The absorption bands that are interpreted as 
being electronic-vibrational in crystal spectra 
correspond to transitions into quantized states be­
longing to these bands. Dissociated states lie 
higher in the energy scale, in the region of two­
particle excitations corresponding to independent 
propagation of the electronic and vibrational exci­
tations. This region corresponds to broad-band 
absorption, which has not yet been investigated 
systematically and has evidently not been inter­
preted properly. 

1. HAMILTONIAN OF AN ELECTRONIC­
VIBRATIONAL SYSTEM 

In the Heitler- London approximation the Hamil­
tonian of noninteracting electronic excitations and 
intramolecular vibrations in an ideal crystal can 
be divided into two terms: 

Hoo = ~ [8o'IJl~"'ljl"" + 'Vo<Jl~/Pncxl' (1) 
D<X 

H res = ~· [M"" m{3 ¢~" 'llmi! + llncx m~ -~cx1Pm{3]. (2) 
na., mf3 ' ' 

Here lf!;a and cp·~w are the operators for the cre­
ation, at a site na, of a purely electronic excita­
tion, which will be called an exciton, and of an in­
tramolecular vibration, which will be called a 
phonon; a is the index of the sublattice containing 
the molecule, and n is the index number of this 
molecule within the sublattice. The coefficients M 
and J.J. in (2) are resonance integrals controlling 
the respective probabilities of excitation transfer 
from site to site, and are subject to the customary 
symmetry conditions that make Hres Hermitian. 
The operators cp obey the Bose commutation rules, 
and the operators lf! obey the Pauli rules; cp and lf! 
also commute among themselves. The primed 
summation in (2) will always denote na * m{3. 

The exciton-phonon interaction operator will be 
given the form 

fl. - H\r> + H\2> - ~.h+ •h [a (m+ + m ) tnt·- mt tnt - ..W 't'ncx't'ncx '~'noc '~'ncx 
D<X 

+ b (IP~" + 1Pncx)2 ] + H1~l (3) 

The first term in H\1~t represents the shifts of 
molecular oscillator equilibrium positions, and the 
second term represents the vibrational frequency 
shifts, in excited molecules; if a given vibration is 
incompletely symmetric we have a = 0. Hf~t in­
cludes exciton-phonon interaction terms containing 
indices of two different sites. 

The interaction Hamiltonian (3) is extremely 
complex. This can be seen from the mere fact that 
retention of only the first term of H1~t resembles 
the deformation potential approximation; we shall 
be interested primarily in the second term of 
Hf~{t. We therefore introduce an additional limita­
tion by assuming that M, J.J. , Av, and the shifts of 
exciton levels resulting from the "clothing" proc­
ess-all of which have comparable magnitudes­
are considerably smaller than the phonon frequenc~ 
vo. 

We temporarily retain in Hint on y the first 
term of H1~~ and make use of the matrix 

s = - _!!__ ~ •h+ •h ( - + 
'\/ ..:::.J 't'ncx't'ncx <ilncx ~PnJ 

O DOC 

(4) 
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to perform the canonical transformation 

(Hoo + H;nt) ~exp (S) (Hoo +Hint) exp (- S) = Hoo 

(5) 

It follows from (4) and (5) that the effect of Hint 
is then reduced to a renormalization of Eo by the 
factor -a2/v0 and to the addition of small correc­
tions ""' a/v0 in the transformed operator Hres· It 
can be shown, similarly, that all terms of Hint 
which do not conserve the number of phonons can 
be excluded with an error of the same order 
(""'JJ 0"1); we shall henceforth assume that all coef­
ficient renormalizations associated herewith have 
been performed. We can now understand the gov­
erning role of frequency changes in excited mole­
cules. While the first member of Hint (usually 
dominant in the "clothing" effect) is eliminated 
completely by the canonical transformation, the 
second member leaves the nondisappearing term 

(6) 

We now proceed to write Hl~t as consisting of 
fourfold products of l/J and cp that conserve the 
numbers of excitons and phonons and that contain 
the indices of two different sites. All independent 
terms of this kind can be represented by 

H(2) = ~· {J oh+ m+ m oh + K oh+ m+ •'' 
mt ot"mll not, mil 'Ynot'~'not'~'mi!'Ymll not, mll'~'n~t'~'m!>'Pnot'Ymll 

+ Q not, mll'i'~otq>i;,fl'Pmll'i'oot +Root, mfl'i'~ot (q>~ot'Pmll 

+ IJli;,llq>not) '~loot + T not, mll'P~ot (\jl~ot'i'mll + 'i'i;,ll'i'oot) 'Po,} (7) 

The first term here represents the transfer of an 
electronic-vibrational excitation as a whole; the 
second term represents the exchange of an exciton 
and phonon between two sites; the third term is a 
correction of the exciton energy resulting from the 
presence of a phonon at one of the nearest sites; 
the fourth and fifth terms are corrections to the 
resonance integrals of phonons and excitons, re­
spectively. 

It will be convenient henceforth to separate the 
first sum from (7) and to combine it with (6). This 
is accomplished easily by extending the summation 
formally to include na = m{3 and employing the 
definition 

Transforming to the momentum representation, 
we have 

(8) 

where N is the number of elementary cells in the 
fundamental volume, and na is the vector coordi­
nate of the na-th molecule; then 

Ho =Boo+ Hres = ~ [8~11(k)¢k~+¢kll + V~t~(k)q>k~+IJlkP], 
k~ll (10) 

where 

8 (k) J< + ~ M -ik(llot-m•) 
all = 8ouctll ""-l ""'• mile P ' (11) 

n-m 

and Vaf3 (k) is expressed completely analogously 
in terms of v0 and p,. Furthermore, 

(12) 

where 

J (k) _ ~ J e-ik(n..-m11) ctll - ""-l nct,mll • (13) 
o-m 

Finally, the last four terms of (7) are trans­
formed to give 

I 1 ~ + + 
H;nt = N 4.J {K~t~(kt + k2- k)¢k,~IJlk-k 1111Jlk-k,P¢k,P 

kk,J<. 
~~~ 

+ Q~ll(kt- k2)¢t,~IJlt-k,IIIJlk-k,ll¢k,~ 

+ wi.~IR~p(k- k2)<!'t-k,~IJlk-k,P 

+ R~p (kt - k) q>t-k,IIIJlk-k,~J ¢k,~ 

+ IJlt-k,~ [T ~~~ (k2) 1Jlt~1Jlk,ll + T ~~~ ( -kt) ¢i",ll¢k,~J IJlk-k,~}. 
(14) 

All coefficients in (14) are obtained from the cor­
responding quantities in the coordinate represen­
tation by means of sums that differ from (13) only 
through the absence of terms with na = m{3. The 
complete exciton-phonon interaction operator is 
Hint = HJ + H'int· 

2. CONDUCTIVITY TENSOR 

We now proceed to derive a formula for the con­
ductivity tensor at absolute zero (T = 0). In some 
instances we shall use formulas derived by us pre­
viously; [ 111 the numerical designations of these 
equations will be preceded by the Roman numeral 
"I." 

A general equation for the conductivity tensor is, 
with 1i = 1, 

a;z(k, w) = nw-1(h+D(k)6(w- H)jzO(k)>, (15) 

where H is the Hamiltonian of the crystal in the 
absence of electromagnetic fields, and j 0 (k) is a 
Fourier component of the current density opera­
tor, defined by (I.3) and (19). Averaging is per-
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formed over the ground state of the system, which 
is assumed to be at zero in the energy scale. 

The following comment must be made regarding 
(15). This equation was derived by assuming that 
the entire macrofield of the electromagnetic wave 
(including a longitudinal field generated by unre­
tarded Coulomb interactions) can be regarded as 
the external field acting on the crystal. 1l In this 
approach we exclude from (I. 36), for the direct 
Coulomb interaction between particles, the summa­
tion over the electrodynamic long wavelength re­
gion, replacing it with an interaction through a 
self-consistent macrofield. The effective Hamil­
tonians and the energy spectra of the quasiparti­
cles (excitons and phonons) are, of course, entirely 
different in these two regions, being regularized in 
the long-wave region and unregularized outside of 
this region (in the sense of [ 111 ). However, nothing 
arbitrary appears in the physical results, and all 
formulas are derived more simply than when the 
rigorous method of [ 111 is used. 

Using the definition 

1 00 

~ ( w - H) = n Re ~ ei(Ol-H)t dt, 
0 

(16) 

where it is understood that w contains the positive 
imaginary part (w - w + iO), we easily obtain 

ail (k, w) = ~ Rer dtei"'t <4+o (k, t)~0 (k, 0)); jO (k, t) 
0 

= eiHtjo (k) e-iHt. (17) 

Second quantization leads to 

jO(k)= 1 _!_~{k,._'e-ikn"'q> ¢ +k•feikn"'•••+m+} (18) 
yvN m;: DIX 0 "' "' 't'noc'~'noc ' 

where k~ are the matrix elements of the quasimo­
mentum for an intramolecular electronic-vibra­
tional transition, and v is the volume of a unit 
cell. Equation (18) includes only the portion of the 
operator j 0 that is associated with electronic­
vibrational transitions, because all other transi­
tions (such as those that are purely electronic) are 
not within the frequency region of our present in­
terest. 

After substituting (18) into (17), dropping terms 
equal to zero, and performing some simple trans­
formations, we obtain 

...... e2 ... 
a(k, w)= ---2 ImF(k, w), 

vwm 
(19) 

l)Different ways of defining the external macrofield (as the 
total field or its transverse part) were considered in[12- 14]. 

where 

+co 

Fcxl!(k,w) = ~ ~ dtFnoc,ml!(t-t')exp{-ik(noc-ml!) 
n-m-oo 

+ iw (t- t')}, (21) 

Fncx, ml! (t- t') =- i (P1jinoc (t) qinoc (t) q;:.l! (t') ~~ (t')). (22) 

Equations (19)-(22) express the conductivity 
tensor in terms of the exciton-phonon Green's 
function, which, as is shown especially clearly by 
(22), represents the propagation of an electronic­
vibrational excitation as a whole in a crystal. 
Equations (21) and (22) are transformed by means 
of (9) into 

Foci! {k, t- t') 

=- ~ ~ <P'iik,ot (t) q;k-k," (t) qi:-k,l! (t') 1i)~ (t')), (23) 
k,k, 

which will be important subsequently. 
Equation {19) shows that the segments of the 

real axis w where F is real correspond to the 
region of crystal transparency. If isolated poles 

A_/ 

of F are present here, narrow absorption peaks 
arise. The values of w corresponding to the poles 
can be interpreted as the energies of the corre­
sponding quasiparticles. 

The spectral representation of FnO', nO' is 

(24) 

where PnO' is the probability that an exciton and a 
phonon will be localized simultaneously in the 
quantized state A at the site nO'. The density p~O'' 
which is easily calculated for isolated poles as the 
residue of F 00 , nO'• is an important physical prop­
erty that describes the degree of exciton-phonon 
coupling. 

The transition to the interaction representation 
for the operator H0 and the calculation of the 
Green's functions is complicated by the Pauli 
commutation rules for the operators l/!nQI• How­
ever, since Ho +Hint conserves the total number 
of excitons, when we calculate the Green's func­
tions (22) containing a single exciton-creation op­
erator only a single exciton is present in each in­
termediate state; therefore the result is entirely 
unaffected by noncommutativity of !/!nO' and l/!~0'" 
Consequently we shall henceforth assume that the 
exciton operators are of Bose character. The 
transformation to the interaction representation is 
then accomplished conventionally, and P products 
are transformed into T products. 
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3. GRAPHICAL TECHNIQUE FOR THE GREEN'S 
FUNCTIONS 

The Green's function (23) includes summations 
over the momenta k1 and k2, with consequences 
that become clearer when we first limit ourselves 
to crystals having a single molecule in each unit 
cell. Then 

1 
H;nt = N ~ [/(k)+ W(klk1k2)+ V+(klk2) 

kk,k, 

(25) 

here the first term was obtained from (12), the 
second from the first two terms of (14), the third 
from the third and fifth terms of (14), and the last 
from the fourth and sixth terms of (14). Since the 
four coefficients in (25) have different arguments, 
they lead to terms of entirely different structures 
in a perturbation series. 

We use the definition 

+oo 
-i ) (T'Ijlk, (t)<pk,-k, (t) <p~-k, (t')'IJk,+(t')) eiw(t-t') dt 

(26) 

here <Pk(t) and 1/Jk(t) are interaction representa­
tion operators; therefore the left-hand side of (26) 
is obviously diagonal with respect to k1 and k2. 
The summation over k1 in fk . gives us the zeroth 
approximation Green's functi<~n F<o>. 

The first-order correction of the Green's func­
tion (23) is 

1 
F a~(i) (k, W) = jV2 ~ fk, (k, W )[J (k) + W (k I k1k2) + V + (k I k2) 

k,k, 

+ V_(klk!)J/k,(k, w) = F<Ol(k, w)/(k)F<Ol(k, w) 

+ W<0>(k, w)+F<Ol(k, w)V+<Ol(k, w) 

+ y_(Ol(k, ro)F<Ol(k, ro), (27) 
where 

Equation (27) shows that the different terms dif­
fer greatly in the number of functions F<o > that 
are derived from the summation. The entire first­
approximation correction is represented graphi­
cally in Fig. 1a. The rhombus and triangles rep­
resent quantities defined by (28). In this latter 
equation the cofactors in the sums have been writ­
ten in the same sequence as that in which they 

would naturally appear in a perturbation-series 
expansion. In the graphs for each sum a left-hand 
(or right-hand) vertex indicates that the corre­
sponding product in the sum begins (or ends) with 
the function f, while a vertical left-hand side of a 
triangle (or a right-hand side) indicates that the 
product begins with the coefficient V + (or ends 
with the coefficient V _ ). Therefore the F<o> lines 
are connected to vertical line segments and cannot 
be connected to the vertices of triangles. 

The basic rules for the construction of higher­
order graphs are contained in the foregoing. We 
need only to add the rule that the vertices of the 
rhombus and triangles can be contiguous with the 
vertical sides of a rectangle or triangle. For ex­
ample, Fig. 1b represents the sum of second-order 
diagrams which terminate at the right in an F<o > 

line, and which can thus be regarded as corrections 
to the last diagram of Fig. 1a. The first three 
graphs of Fig. 1b consist of elements that had al­
ready appeared in Fig. 1a; the fourth graph in­
cludes a new element corresponding to the analytic 
expression 

The higher orders will contain new sums including 
an increasingly large number of summations over 
k1o k2, ka, . . . . Therefore, because of the W term 
in (25) our problem has no exact solution. 2> 

<J-0-- + <l<J- + <>CJ +<a-
b 

FIG. 1. Perturbation theory corrections of the Green's func­
tion: (a) first order; (b) second order. 

By means of the aforementioned rules for con­
structing graphs we easily arrive at the system of 
equations shown graphically in Fig. 2. The double 
line represents the complete Green's function 
F(k, w); the heavy line represents :T, which is the 
sum of all diagrams terminating in F<o>(k, w) lines 

2lHowever, an exact solution can be derived in certain spe­
cial cases. For example, if in W we take into account only an 
interaction with molecules belonging to a few of the nearest 
configurational spheres, then sums such as (29) can be fac­
tored and the perturbation theory series will contain a finite 
number of different types of elements. This would be a problem 
in the theory of degenerate perturbations.["] 
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=-
F :r w v_ r v_ :r v .. 

a 

-=-+~ 
:r 

FIG. 2. Graphical system of equations. for Green's func­
tions. 

on either the left or right; the shaded polygons are 
the sums of blocks not containing F<o> lines. 

Figure 2b shows that 

( 1 )-1 
ff = F(O) -~ ' (30) 

and in virtue of Fig. 2a we have 

F=W+ff(1+V-)(1+V )=W+ (1+V-)(1+V+) 
+ 1/F<0l- ~ • 

(31) 

Equation (31) shows that the poles of ff are like­
wise poles of F with their positions depending on 
the total irreducible self-energy part ~(k. w). 

A similar analysis in the case of a crystal with 
several molecules per unit cell shows that the 
graphical system of equations in Fig. 2 remains 
entirely valid, although all quantities correspond­
ing to different elements of the graphs are now 
matrices. The indices of the different elements of 
these matrices are the indices of the molecules in 
a unit cell; these matrices will be denoted hence­
forth.by F, f etc. Equations (30) and (31) for 
F(k, w) and i' (k, w) are then replaced by 

g: = --l: v ( 1 v )-1 
]?<OJ ' 

"'-:r v v .., 1 'V v 

Jt = W + (/ + V ) v <o> , (/ + V+). (32) - <F r~-l: 

p<o> must now be determined explicitly. Let the 
eigenvectors and eigenvalues of the matrices 
€ (k) and ii(k) be obtained: 

~ 8ap(k)Bp'-(k) = e,.(k)Ba"(k), 
II 

~ Vap(k)Cp'-(k) = v,.(k)Ci·(k). (33) 
II 

We then have 

¢ka(t)= ~¢kpBa"(k)Bll*"(k)exp[-ie~,.(k)t] (34) 
'-II 

and IPka(t) similarly; from (21) and (22) we have 

F ali(O) (k, W) 

= ~ ~ Ba"(k1)Bp*'-(ki)Ca"'(k- k1)Cp*~-' (k- ki) 

N k,,,. w - e1.. (k1)- ""' (k- kt) 
(35) 

4. ENERGY AND ABSORPTION SPECTRA OF A 
PURE CRYSTAL 

We now proceed to analyze the energy spectrum 
of the system. For simplicity we again begin with 
a crystal having one molecule in each unit cell. 
The equation for the poles of the Green's function 
ff governing the energy spectrum of the system 
follows from (31) and (35): 

F<OJ (k (!)) = ~ ~ 1· = 1 
' Nk, w-e(kt)-v(k-k1) l:(k,w)' 

(36) 

For a fixed value of k Eq. (36) is the customary 
equation in the theory of degenerate perturbations 
for deriving the energy levels of a crystal contain­
ing a defect. [15• 16 • 11l A special feature remains, 
however, in that the right-hand member of (36) de­
pends on w, while the energy spectrum of an un­
perturbed system is represented by the sum 
Sl(k, k1) = E(k1) + v(k- k1 ). It is obvious, first of 
all, that with k fixed the roots of (36) will fill the 
entire variation interval ek of n (k, k1) as a func­
tion of k1• This portion of the spectrum corre­
sponds to states in which the exciton and phonon 
are not coupled (the region of two-particle excita­
tions). Outside of this interval we can also have 
isolated roots of w(k) corresponding to coupled 
states in which the exciton and phonon move to­
gether (the region of single-particle excitations). 

Even when for each fixed value of k the level 
w(k) lies outside ek, the region of w(k) values 
can overlap the total region e, of two-particle ex­
citations including all intervals ek. Since Sl and 
~ depend on k, the criterion for isolated roots of 
w(k) can be fulfilled in three-dimensional crystals 
generally only in a particular region of k values. 
Therefore the spectral branch corresponding to 
single-particle excitations can either be entirely 
absent, or can exist in the entire Brillouin zone, 
or can exist only in some part of the Brillouin 
zone. 

We shall consider different limiting cases in 
order to clarify the roles of different mechanisms 
of electronic-vibrational exciton motion. Assume 
that the term J(k) ~ Av is dominant in (25); this 
is entirely possible since A v is the only term in 
Hint that is associated completely with intramo­
lecular interactions; the other terms arise through 
intermolecular interactions. In the first approxi-
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rr,h D + D<J + C>CJ + D<>CJ 
FIG. 3. Self-energy part in first-order perturbation theory. 

mation with respect to small terms the self-energy 
part is the sum of the graphs in Fig. 3, or, in ana­
lytic form. 

~(1l(k, w) = J(k) + Av(V+<0l(k, w) + v_<0l(k, w)) 

(37) 

If I A v I greatly exceeds the width of the exciton 
and vibrational bands, the remaining terms of (37) 
are easily evaluated. Using (28) and the formula 
for fk as a separate component of the sum in (35), 
and as1suming the absence of the n = m term in 
(13) for K(k, w), Q(k, w), and V ± (k, w), it can be 
shown that 

K<Ol(k, ro), Q<0l(k, w) ....... (w- Eo- vo)-•, 

V±<0l(k,w) ....... (w-eo-vo)-2, (38) 

so that we may retain only the first term of (37), 
and 

F(k,w) ~ [w-e0 -v0 -J(k)]-1. (39) 

This last equation shows that for large I A vI the 
J mechanism of excitation motion is dominant, 
i.e., the resonance mechanism of the propagation 
of an electronic-vibrational excitation as a whole. 

We now consider the values of A v for which 
single-particle states arise near the edge Wlim of 
the spectrum of two-particle states of width AE, 
and when the width of the phonon band and all coef­
ficients in (37) except A v are sufficiently small. 
We assume specifically that 

lw(k)- wol ~ lwo- wlim I ~Ae. (40) 

Here w0 is the limiting value of w(k) when all the 
aforementioned small values approach zero. When 
we use the measure of smallness J.l(k) = v(k) - v0 

the left-hand side of (36) can be expanded in the 
series 

1 ~ J.L(k-k1) 
F<Ol(k,w)~G(w-vo)+N""[ (k) ]2' 

k, <0- E 1 - Vo 

1 1 
G(ro)= N~ ro-e(k). (41) 

If an extremum of E(k) is reached at Nextr points 
ki, then by virtue of (40) we can take J.l outside the 
summation in ( 41) for k = ki ; then 

1 ~ dG(w -vo) 
F<Ol(k, ro) ~ G(ro- v0)--- "'-! J.L(k- k;) d 

N extr . W 
' 

(42) 

In the same approximation we can neglect the de­
pendence on w in ~(k, w) and assume w = w lim;3> 
then ~ = A v + ~' (k). If w0 is determined from 
the condition AvG(w- v0) = 1 and p<o>(k, w) is ex­
panded near w0, then (36) is transformed as are­
sult of (42) into 

1 
w (k) =roo+ -N-- ~ J.L(k- k;) 

extr i 

[ d 1 J-1 
+~'(k) drooG(roo-vo), · ( 43) 

The coefficient of the last term in ( 43) has a 
clear physical meaning. Assuming IV ±(k, w) I « 1 
in the present approximation, the probability that 
an exciton and phonon are localized at a single site 
in the considered stationary state is calculated 
using (24), (21), and (31): 

[ d 1 J-1 
lal 2 = dw G(w- v0) • 

(44) 

The last term in (43) then becomes lal2 ~'(k). The 
frequency dependence of I a 12 depends on the struc­
ture of the exciton band. If a quadratic expansion 
is valid near the points ki for E(k), we then ob­
tain I a 12 "' I w- w lim 11/ 2• The last term in (43) 
vanishes in the limit and the J.l mechanism for the 
motion of an electronic-vibrational excitation be­
comes dominant. This mechanism consists in the 
movement of a phonon among unexcited sites, with 
the exciton following the phonon adiabatically like 
a light particle. If k i = 0 the dispersion laws of 
phonon and electronic-vibrational excitation coin­
cide; for ki * 0 they have the more complex re­
lationship (43). 

If ki = 0 and E(k) has a large discontinuity as­
sociated with distant interactions, it can be shown 
similarly[ 111 that I a 12 either approaches a finite 
limit or decreases logarithmically; therefore the 
last term of ( 43) remains real. We note, inciden­
tally, that even if I a 12 decreases as the square 
root of I w - w lim I in the actual interval its value 
remains quite large (of the order of several 
tenths[ 171 ), so that the last term of (43) is prac­
tically always real. 

We shall now discuss more thoroughly the roles 
of the different terms in ~(1) [Eq. (37)] from the 
point of view of their contributions to w (k). As in 

3)This approximation applies to three-dimensional cry­
stals, to which we confine ourselves here. For one-dimen­
sional systems ~diverges when w-> wlim; this case there­
fore requires a special analysis, which we intend to present 
in a separate communication along with an investigation of 
the analytic properties of W and V ± for crystals and chains. 
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the foregoing, we shall consider the case in which 
the combined probability of all processes associ­
ated with phonon propagation is small. This case 
is very important experimentally, especially for 
incompletely symmetric vibrations. It is clear 
from (7) that the Q- and T-terms are unimportant 
since they are not associated with phonon propa­
gation; their contribution reduces essentially to a 
correction of t.v. The R-terms, representing 
corrections of the phonon resonance integrals, are 
small. The coefficients J and K in (7) are deter­
mined by resonance integt·als of a single kind and 
should be comparable in magnitude. Equation (37) 
can therefore be simplified: 

~<l>(k, ro) ~ J(k) + LVK(k, ro). (45) 

It follows from this equation that the resonant ex­
change K mechanism is just as important as the 
aforementioned p, and J mechanisms. 

From (19), (20), and (24) we obtain a formula 
for conductivity in a single-particle band: 

The dependence of absorption intensity in a single­
particle band on the separation of the latter from 
the two-particle excitation spectrum is governed 
by the aforementioned spectral dependence of I a 12• 

We shall now consider crystals having several 
symmetrically dependent sublattices; we confine 
ourselves in (20) to k - 0, which is the most in­
teresting case with respect to optical properties. 
It follows from symmetry considerations that for 
k- 0 all matrices in (32) are diagonalized by a 
single transformation of the basis; for example, 
their common eigenvectors can be taken to be 
B~(O) [see Eq. (33)]. Equation (20) is then trans­
formed into 

(47) 

where 

F~.(w) = "'2,B,/"F ap,(ro)Bp,\ k1.f = ~ Ba"kai, (48) 
afj a 

and the k ~ vectors are obviously oriented along 
the symmetry elements of the crystal. With this 
basis the matrix equation (32) breaks up into a 
system of independent equations such as (31) with 
all quantities having the index A. However, F~> is 
not given by (36), but by a more complex formula 
that follows from (35) and (48). 

Each isolated root of this system corresponds 
to a narrow absorption band with polarization de­
termined by the corresponding kfA. However, 
since the equations for different values of A can 

differ considerably (which occurs when the proba­
bilities of vibrational-excitation propagation are 
comparable with the probability of exciton propa­
gation) some of them may have no isolated roots 
at all. Therefore the electronic-vibrational multi­
plets may be incomplete, unlike the purely elec­
tronic Davydov multiplets, [ 3] in which the number 
of bands depends exclusively on the number of 
molecules uc in a unit cell (and on the selection 
rules). 

If the probabilities of all processes associated 
with phonon propagation can be neglected, then 
vA(k) = Vo, ~ a{3 = .::lvO a{3, W = V ± = 0; and it follows 
from (32) and (35) that 

Fap,(k, ro) = F(w)6ap,, 
G(ro- vo) 

F(w) = 1 11 G( ) ' - v ro-vo 

G(ro) = _1_ ~ 1 . 
Nac k,J. ro- e~.(kt) 

(49) 

It can be seen from (20) and (49) that in this case 
the spectral polarization ratio is independent of 
frequency. To determine absorption in the two­
particle spectrum we write 

G(ro-vo)=A(ro)-iB(ro), A(ro)=_!_~ B(w') dw', 
:rt ~ ro -ro' 

(50) 

and then have, in accordance with (19), (20), and 
( 49)' 

h ( ) - _e2_ B (w) "'k'~'k•t 
a ro - vwm2 [1- flvA (ro)]2 + [flvB (ro)]2 f I. I.· (51) 

Equation (49) shows that B(w) is proportional to 
the density of states in exciton bands and can be 
determined independently-from the spectrum of 
1-0 transitions, [lSJ for example (i.e., transi­
tions from ground-state vibrational sublevels to 
exciton bands). Thus the dispersion relation (50) 
in conjunction with (51) relates the absorption in­
tensities in the two different spectra. 

It was shown at the beginning of Sec. 2 that we 
determined some physical properties of the sys­
tem differently for the narrow electrodynamic re­
gion (small k) than for the remainder of the Bril­
louin zone. Therefore the meanings of the quanti­
ties appearing in the foregoing formulas must be 
specified. It is easily understood that in (35) and 
(49), which contain summations, unregularized 
quantities can be used in all k space, (including 
distant interactions). However, when quantities 
corresponding to small k [such as w(k) in (46)] 
are discriminated by the selection rules their 
regularized values should be used. 
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5. ABSORPTION SPECTRUM OF IMPURITY 
CRYSTALS 

We shall now consider the electronic-vibra­
tional spectrum of crystals containing extremely 
small impurity concentrations. We shall confine 
ourselves, for simplicity, to the case of isotope 
shift, and shall assume the vanishing of all terms 
in the Hamiltonian that are associated with phonon 
propagation. The correction to the Hamiltonian 
that is associated with an impurity at the site IloO!o 
is given by 

(52) 

where D.e, D.v, and D-ev are the respective cor­
rections of the electronic term, vibrational fre­
quency, and excitation-induced frequency shift. 
The right-hand member of (19) must be multiplied 
by the number vNm of impurity molecules (where 
(m is the concentration~; this must be followed by 
averaging over IloO!o. 

As a consequence of phonon immobility it fol­
lows from (22) that 

Fna.,m~(t)=Fna.(t)c'lna.,m~. Fna.=-Fna.,na.· (53) 

In the present section the quantities marked by a 
tilde pertain to an impure crystal. 

If we at first omit the exciton-phonon interac­
tion (D.v = D-ev = 0), the right-hand side of (22) is 
factorizable and 

-co> .- ~ ~<o> Fna.(t) = zGn~~.(t)Dna.(t), or Fna.(w) 

(54) 

where Gn01 and Dn01 are the diagonal elements of 
the exciton and phonon Green's functions. When 
we consider the exciton Green's functions (G and 
G) of both a pure and impure crystal and also the 
perturbation operator 6.. e as matrices in the lat­
tice-site representation it is easily shown that 

G (w) = G (w) + G (w) J..c (w) 1 [1-ll.G (w)1, (55) 

where G(w) is defined by (49). Similarly, 

(56) 

The substitution of (55) and (56) into (54) de­
termines F~~(w). At the same time the complete 
Green's function Fn01 (w) is given by 

(57) 
which is analogous to (32). Finally, 

[ 1 - !leG ( Wna.) 1 [ 1 -!lna.G ( Wna.) ]-llellnocJ Gna.,n,a0 ( Wna.) 12 ' 

(58) 
,. 

and it follows from (33) that G(w) is given by 

1 B~ (k) B;A (k) . 
Gna.,m~(w)= Nl] w-sh(k) exp{lk(na.-m~)}. (59) 

kA 

It is easy to grasp the physical meaning of (58) 
as describing the exciton spectrum when a vibra­
tion ~s localized at a site n01. We obtain the exci­
ton energy spectrum by equating the denominator 
in (58) to zero: 

[ 1 - !leG ( Wna) 1 [ 1 -!lna.G ( Wna.)] = llellnoc J Gna.,n,a., ( Wna.) 12 • 

(60) 

If n01 = lloO!o, i.e., a phonon is localized in an 
impurity molecule, then (60) becomes 

(lle +llv + llev)G(w -'Vo -llv) = 1, (61) 

which is analogous to Eq. (49) for the poles of 
F(w), and to (1.56) for purely electronic impurity 
levels. 

u In- no 1- oo the right-hand side of (60) de­
creases exponentially, and the equation is factor­
izable. An isolated root of the first bracket in the 
left-hand member of (60) corresponds to states in 
which an exciton is localized near an impurity 
molecule while a vibration is localized in a distant 
solvent molecule. An isolated root of the second 
bracket corresponds to states in which an exciton 
is localized near a phonon at a great distance from 
an impurity, and thus corresponds to single­
particle excitations. 

Consider, to begin with, that both brackets have 
isolated roots. As In - no I decreases the two 
roots are displaced in opposite directions, thus 
increasing their mutual separation (see Fig. 4a; to 

a b c 

FIG. 4. Graphs of the left- and right-hand members of Eq. 
(60) for lle, llv < 0. Curves 1-left-hand side; curves 2,2'­
possible graphs of right-hand side for different values of 
n - n0 • The shaded region pertains to two-particle excitations. 
a-both factors in the left-hand member of (60) have an isolated 
root; b-only one of these factors has an isolated root; 
c-neither factor has an isolated root. 

w 



THEORY OF VIBRONIC SPECTRA OF MOLECULAR CRYSTALS 717 

be definite, it is assumed below that ~e. ~v < 0). 
Thus, for each value of n- no we have two dis­
crete levels of the system; the first root will be 
called the impurity component, and the second root 
will be called the vibrational component, of the 
impurity doublet. It follows from (58) that for 
large In -no I the impurity component has expo­
nentially small intensity. With decreasing In -no I 
the right-hand side of (60) increases; then one of 
the discrete roots approaches the region of two­
particle excitations and can disappear by merging 
with the latter (see curve 2' in Fig. 4a). In other 
possible cases one bracket in the left-hand side of 
(60), or even both brackets, will lack isolated 
roots; in the first case (60) possesses one isolated 
root, while in the second case it has one or none 
(Figs. 4b and 4c). 

It follows from (20), (21), (53), and (58) that in 
the present approximation the polarization ratio is 
constant over the entire electronic-vibrational 
spectrum. 

All of the mentioned levels form sequences that 
converge for In - no 1- oo, These can be compared 
with the analogous sequences in [ 19 1 for electronic 
spectra; the latter sequences differ by being of the 
order ,.., m2 and result from the formation of pairs 
of impurity centers, while the sequences in the 
electronic-vibrational spectrum are of the order 
,.., m. It must be mentioned that taking account of 
a finite phonon propagation rate should affect the 
spectrum most strongly in the region of large 
In-no!. 

6. MULTIPHONON SPECTRA 

It has been assumed throughout the foregoing 
treatment that light absorption results in one ex­
citon plus one phonon. However, well-developed 
vibrational series often are observed in the spec­
tra of molecular crystals. In accordance with the 
view expounded here the quantum states of such 
systems are superpositions of states in which an 
exciton and phonons are propagated differently 
among lattice sites. A many-body problem thus 
arises which is, of course, not soluble in the gen­
eral case, although the principal tendencies are 
clear from qualitative considerations. 

When we limit ourselves to two-phonon states 
and assume, moreover, that the probability of 
phonon propagation can be neglected, the problem 
resembles that of the preceding Section. In addi­
tion to states where both phonons are localized at 
a single site, an infinite set of states arises with 
separated phonons (at sites na and IloO!o); these 
states are described by (60) with ~e = ~n01 = ~ v 

and wn01 = w- 2v0• The energies of these states 
exceed the energies of states with spatially coinci­
dent phonons. The matrix elements for transitions 
to states with separated phonons are zero so long 
as the widths of the phonon bands are assumed to 
be negligibly small, but differ from zero in the 
next order of magnitude with respect to the ratio 
between this width and ~ v . 

The experimental detection of bands correspond­
ing to separate phonons in multiphonon spectra, 
and of additional bands in impurity spectra (Sec. 5), 
would stimulate the construction of a more com­
plete theory for these spectra. 

7, ENERGY SPECTRA OF SEMICONDUCTORS 
HAVING A NARROW ALLOWED BAND 

The foregoing exposition enables us to consider 
anew the possible structure of the energy spec­
trum in semiconductors having a narrow allowed 
band. Let the width J of the allowed band and the 
width J v of the phonon band be considerably less 
than the mean frequency v0 of optical phonons, 
which interact most strongly with electrons (J, 
Jv«v0). The presence of an excess electron or 
hole at one of the couplings (or sites) changes the 
strength of the coupling. Therefore the localiza­
tion of a vibration and excess electric charge at a 
single coupling results in a gain or loss of energy. 
This energy Hint has the same role as ~ v for ex­
citon levels. If Hint is comparable with J and J v• 
two-particle states may be accompanied by one­
particle states in which an electron and phonon are 
propagated together. When Hint< 0 the one-particle 
states lie below the two-particle states; the re­
verse holds for Hint > 0. When J » Jv the effec­
tive mass of this formation is considerably greater 
than the electron effective mass. Thus, above the 
electron band of width J there may arise current­
bearing states corresponding to the concurrent 
motion of an electron and phonon, with a band width 
depending on both J and J V' 

It is interesting to compare this picture with 
that appearing in polaron theory[ 201 as a result of 
"clothing" effects caused mainly by interaction 
with zero-point vibrations. As was first shown by 
Pekar in the continuous theory of polarons, [ 20 1 

and then by several authors for other models (for 
excitons, [ 1• 91 small polarons [ 21l etc.), the 
"clothing" process changes the effective mass 
throughout the entire spectrum; the change is ap­
preciable, however, only if I Hint I> v0• The mech­
anism discussed here for interaction between an 
electron and one real phonon alters the spectrum 
of the system greatly even if I Hint I « vo (if only 
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IHintl> J, Jv)· The change does not, of course, 
extend to the lower portion of the spectrum, where 
energies lie below v 0• 
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