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The boundary conditions for the Ginzburg-Landau-Gor'kov [4,B,B] equations on the interface 
between two superconductors, and also between a superconducting and normal metal, are 
found. In particular, the limiting cases of pure or very impure metals are considered. 
Boundary conditions for an arbitrary impurity concentration can also be derived by means 
of a simple generalization. The quasi-classical trajectory method employed in the paper can 
be used for determining the boundary condition for a plane or a rough surface. The critical 
field for a system consisting of a superconducting and normal metal is calculated; it slightly 
exceeds the second critical field Hc 2 of a bulk superconductor. 

1. INTRODUCTION 

THE boundary conditions on a surface between two 
superconductors, and also between a superconduc
tor and a normal metal, were obtained in [1] under 
certain simplifying assumptions. It was assumed 
there that the metals differ only in the magnitude 
of the interaction (g) between the electrons, and 
that the boundary is a plane. For a quantitative 
comparison between theory and experiment it is 
necessary to take into account the difference in 
the electron velocities on the Fermi surface ( v 1 

and v2 ), the difference of the mean free paths l 1 

and l 2 if the metals contain impurities, and also 
the reflection of the electrons from the boundary 
(specular for a plane boundary and diffuse for a 
rough boundary). We consider in this paper the 
case when the metals are not separated at all, that 
is, there is no potential barrier at all on the 
boundary (direct contact), and the coefficient of 
transmission of the electrons through the boundary 
is arbitrary. 

The boundary conditions obtained are expressed 
in terms of the quantities used in the phenomeno
logical theory of Ginzburg and Landau. At the end 
of the paper we calculate the third critical 
field [2, 3], the existence of which is directly con
nected with the boundary conditions. 

2. FUNDAMENTAL EQUATION 

Let a superconducting metal I occupy the half
space z > 0, and metal II the half-space z < 0. 
We assume that the temperature T is close to the 
critical temperature of the metal I. The critical 
temperature of the second metal is lower than that 
of the first, so that the latter can be either super
conducting or normal. 

As shown by Gor'kov 1l (see also [t] ), to obtain 
the boundary conditions it is sufficient to confine 
oneself to an approximation linear in .6., which is 
valid at distances lz I« ~ 0 /[Tc- T)/TcP12 

from the boundary2 l : 

+co 

tl (z) = - g (z) T ~ ~ Gwo (r', r) tl (z') G _"'o (r', r) dr'. ( 1) 
UJ -oo 

Here G~ ( r, r') is the Green's function of the 
system without allowance for the interaction be
tween the electrons; this function satisfies the 
equation 

[iw + V2 /2m+ J.t- cp(r)]Gw0 (r, r') = 6(r- r'), (2) 

where J1 is the chemical potential of the system 
and cp ( r) is the potential. 

Near the boundary, the potential cp varies over 
distances of the order of the interatomic spacing, 
with 

qJ(r)-+J.t-mv12 /2 as z-++oo, 
qJ(r)-+J.t-mv22 /2 as z-+-oo. 

It will be shown below that terms of the order 
[(Tc- T)/TcJ112 , (Tc- T)/Tc, and higher arise 
in Eq. (1), whereas terms of the next approxima
tions in .6. are of the order of [(Tc- T )/Tc ]312• 

To determine the boundary conditions it is there
fore sufficient to solve Eq. (1) and to discard 
quantities of order higher than ( Tc - T )/Tc· 

l)The author is grateful to L. P. Gor'kov for reporting the 
results of his unpublished paper. 

2>To obtain Eq. (1) from Gor'kov's equations [4] it is neces
sary to ~ssume that on the boundary the functions Gw(r, r') and 
F w +(r, r') are continuous together with their normal derivatives. 
This requirement is certainly satisfied when the metals are in 
direct contact. 
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3. BOUNDARY CONDITIONS FOR PURE METALS 

To calculate the kernel of the integral equation 
(1) 

+oo 
Km(z,z')= ~ GmO(r',r)G-mO(r',r)dx'dy' 

-oo 

we use the method of quasiclassical trajector
ies [5, S], which is applicable to our problem if 
there is no potential barrier on the boundary. 
Carrying out the usual transformations, we obtain 
for z > 0 

00 

are the average reflection and refraction coeffi
cients; the factor PdPt can be obtained from the 
obvious condition K12 (z, z') = K21 (z', z). 

Carrying out the averaging with the aid of the 
distribution functions (5), we obtain the kernel 
Kw(z,z'): 

K 11 ( ')- m2{r ds ( 2lrollz-z'l) ., z, z -- J- exp - ---=----=--=-----"-
2n 0 S SVt 

+ 2R (~ exp (- 21roE__ 21rolz') dsdt}, 
0 SVt tVt 

Km (z, z') = 2n~1 ~ ~ e-2lmlt 6 [z'- z (t)] dt)., (3) m2D r1i ( 2jrojz 2jrojz') 
Km12(z, z') =- J J exp ---+ -- ds dt. (6) 

n 0 s~ t~ 

where t 1 is the level density on the Fermi sur
face of the first metal, z ( t) is the equation of the 
electron trajectory along the z axis with initial 
conditions z ( 0) = z and z' ( 0) = v 1z; the average 
is taken over all the directions of the initial ve
locity of the electron on the Fermi surface of the 
first metal. 

From this we obtain immediately the kernel 
Kw for the case of a plane boundary. When z > 0 
and z' > 0 we have 

+co 
( m )2 r dv;xdv Km(z, z') = KmH(z, z') = - J ___ Y 

2n -oo Viz2 

X [ exp ( __ 2-=---1 ro--'-1.:._1 z_-_z-'-' I ) 
V1z ' 

+R(v)exp (- 21ro I ~1-:- z') ) J; (4a) 

when z > 0 and z' < 0 we get 

K ( ') _ K 12( ') _ ( m )2 r.eo dvx dvy 
"' z, z - "' z, z - -2 ' ---

1t ~ 00 VjzV2z 

( 2jrojz 2jrojz') 
XD(v)exp -~+~1 • (4b) 

Here R and D are the coefficients of reflection 
and transmission of an electron with initial veloc
ity v 1z. The kernels K~ and K~ are obtained 
from Kt..} and K~ by making the substitution 

z-+ -z, z'-+ -z', 1 =+% 2. 

If the boundary is diffuse, then the distribution 
function for the reflected electrons [ 5] takes the 
form 

R cos fltdnt/n (5a) 

and for ''refracted'' electrons 

(5b) 

Here () is the angle between the direction of the 
electron and the normal to the surface; R and D 

We rewrite Eq. (1) in a more convenient form: 

00 

1:! (z) =- g1T ~ \ KmU(z, z') 1:! (z')dz' 
"' 0 

0 

- g1T ~ ~ Km12(z, z') 1:! (z')dz' (7a) 
!Jl -oo 

for z > 0 and 
00 

1:! (z) = - g2T ~ \ Km21(z, z') 1:! (z')dz' 
"' 0 

0 

- g2T~ ~ Km22(z, z')ll (z')dz' (7b) 
"' -co 

for z < 0. 
We solve the equations in (7) by a variational 

method C7J, choosing as trial functions the asymp
totic expansions of the exact solution (7) for 
R = 0 and K21 = K12 = K11 = K22 (see [1J). 

Let us assume that the second metal has a 
transition temperature equal to zero, i.e., g2 = 0. 
We seek the solution of (7) in the form 

ll(z) = ~61 + z (z > 0); ll{z) = 0 (z < 0). (8) 

Substituting (8) into the system (7) and integrating 
with respect to z, we readily obtain the value of 
{3 (for diffuse reflection): 

~ = 14~(3) (1 + R) /3n2D. (9) 

In the case of a plane boundary it is necessary to 
make in (9) the substitutions 

The quantity {3 enters in the boundary condition: 

(11) 

From (9) and (10) we see that when D - 0 we 
get {3 - oo, so that the boundary condition (11) 
goes over into the "natural" Ginzburg-Landau 
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condition for a superconductor bordering on 
vacuum or on an insulator. It is important to note 
that this result does not depend on the character of 
reflection of the electrons from the boundary 
(L. P. Gor'kov, private communication). 

When D = 1 we obtain {3 ~ 0.6, which differs 
insignificantly from the exact value of {3 for this 
case ({J ~ 0.7)[1J. 

Let us assume now that the temperature is 
close not only to the transition temperature of 
superconductor I, but also to the transition tem
perature of the second metal 

I Tc2-!_~ ~i, TctT-T ~1. 
Tc2 cl 

Whether the second metal is normal ( T > T c2) or 
superconducting ( T < Tc 2 ) is immaterial in this 
case. The asymptotic expansions then take the 
form 

ll(z) = A,z + B~, z > 0; ll(z) = -A2z + Bz, z < 0. 

(12) 

Substituting (12) in the system (7) we obtain the 
following boundary conditions. For a diffuse 
boundary 

~,ll(O+)- TJt~t~tll'(O+) =: ~zll(O-) + TJz~62:ll'(O-), 

N,ll'(O+)= N2ll'(O-), TJ = 14~(~)R; (13) 
~~ ~2 3n 1J 

for a plane boundary 

ll(O+)- TJtstll'(O+) = ll(O-) + TJzszll'(O-), 

N,!l'(O+) = N2ll'(O-), 

TJ = n(3) ~. R(v)v,dvxdVy I n2vo ~ D(v)dvxdVy. (14) 

In (13) and (14) N is the electron density, t. ( 0+) 
is the value of t. ( z ) to the right of the boundary 
(on the side of metal I), t. ( 0- )-to the left (on 
the side of metal II); the notation for the derivative 
t.' is similar. 

Inasmuch as the function t. varies slowly 
(t.' ~ [(Tc- T)/TcJ112 t.), for not too small a 
transmission coefficient 

D ~ [ (Tc- T) I Tc]'" 

we can neglect the terms containing Tj under con
ditions (13) and (14). Then the boundary conditions 
simplify: for a plane boundary we have 

ll(O+) = ll(O-), N,ll'(O+) = Nz/1'(0-); (15) 

and for a rough one 

~,ll(o+> = ~(o->. N,!l'(o+> 1 ~~ = N2ll'(o-) n2. 
(16) 

In the opposite limiting case D « [( Tc - T )/T cJ112 
we obtain the 'natural' boundary conditions: 

ll'(O+) = A'(O-) = 0. 

4. BOUNDARY CONDITIONS FOR CONTAMINATED 
METALS 

If the metals contain impurities, then Eq. (1) 
must be averaged over the positions of the impur
ity atoms [s,a]. For strongly contaminated metals 
( l « ~ 0 ) and for not too small a transmission co
efficient D » l (/ ~ 0 ) the result does not depend 
on the magnitude of the latter, but depends on the 
form of the boundary. 

It is shown in the Appendix that for a plane 
boundary the kernel Kw coincides with the ex
pression obtained by deGennes [to]: 

Ku(z, z') = ~~·~t [ exp(- p,jz- z'l) 

+ ~tP2-~2Pt exp(- Pt(z+z'))J' 
~1P2 + ~2P1 

, n~1~2P1P2 , 
K12(z, z) = lwl (~tP 2 + ~2Pt) exp(- p,z + p2z ), (17) 

where {3 ( 6 I w I/ Zv0 ) 1/2 and l is the mean free 
path. 

For a diffuse boundary, the result is somewhat 
different: 

n~,p, [ ~2P2- ~,p, 
Ku(z, z') = -21 I exp(- Pdz- z'l )+. 

w ~2P2 + ~tPt 

X exp(- Pt(Z + z'))}. 

, n~1~2PtP2 
Kt2(z,z)= jwj(~tPt+~2p2) exp(-ptz+p2z'). (18) 

The functions K 11 and K 12 coincide in form 
with the corresponding expressions for pure 
metals, so that as a result of analogous operations 
we obtain the following boundary conditions. 

For Tc2 = 0 the function ~ satisfies the con
dition 

-fWt(nVA) =A, (19) 

where q = Z1vd67rT, and the value of {3 for the 
plane boundary is equal to 

n2~tDt 

and for a diffuse boundary 

n2~Dt 

p = -2~-(3-/2-) (4 -)'2)~tD2 (21) 

When T ~ T c 1 ~ T c2 the continuity conditions 
are again valid 

A(O+) = ll(O-), ~tDt2A'(O+) = ~zfl22ll'(O-) (22) 

for a plane boundary and 
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~~~(O+) = ~(0-), Dl·L\'(O+) = D22~'(0-) (23) 

for a diffuse boundary. 

5. GENERALIZATION OF RESULTS 

Comparing (15) with (22) and (16) with (23), we 
observe that at not too small a transmission coef
ficient, for a plane boundary, the function 6 turns 
out to be continuous regardless of the impurity 
concentration. If the boundary is diffuse, then the 
quantity t; 6 is continuous. 

The condition for the derivative can be easily 
obtained from the requirement of continuity of the 
normal component of the current density[B]: 

. ={!!__( a~· _ ~· M \_ 4e2 A l~l 2} ( ) ~N 
]n ~ a a I n X p 16 2T2 ' m, z Zl me n~ 

where 

x<P>= n~3) (f){n; +;P [~({)-~(}+P)]}; 
p = 1l2nTr:tr, ~(x) = f'(x) lf(x). 

(X (p) -1 when p- 0 and x (p) RJ rr2/7t; (3) p 
when p- oo,) From this we find that for a plane 
boundary the quantities 

L\, N:x(p) ( n( V- 2: 6 A))~. 
should be continuous and for a rough one, 

~L\, N:xip) ( n( V- 2;e A))~. 

Let us rewrite these conditions in terms of the 
variables of the phenomenological theory: 

[Nt:X(Pt)]-'1• ~ (O+) = [N2:x(p2) ]-'I• ~ (0-), 

[Nt:X (PtH'• ( n ( V - ~ie A))~ (O+) 

=(N2:X(P2)]''•( n( V- ~ie A)) :x(O-), 

if the boundary is plane, and 

~t[Nt:X{Pt)]-'1~(0+) = ~2[N2:X(P2)]-'t.~{O-), 

(N1:x(p1)]''• (n, V _ 2ie A)~(O+) 
~~ c 

= [N2x,(p2)]''• (n( V _ 2ie A)) ~(O-), 
~ \ c 

if the boundary is diffuse. 
When the transmission coefficient is small, 

(24) 

(25) 

D « [( Tc - T )/TcJ112, the Ginzburg-Landau con
ditions hold (see [3, 11] ): 

When normal metals have a very low transition 
temperature ( Tc2 « T :S Tc 1 ), it is easy to write 
an expression generalizing (11) and (19): 

( A.r j''• · ( 2ie )) -~i 2m1 (n V--c-A ~(O+)=~(O+), (26) 

where 

A.r = A.o:x{p), A.o = 7~(3)p02 I 24n2T2m. 

The quantity /3 is proportional to {3: {3 = C z {3, 

where 
Cz={[12/n(3)]''• for l-++oo, 

2/:rt for Z<so. 
Let us rewrite conditions (26) in terms of the 

variables of the Ginzburg-Landau theory: 

-~6(:) ( Tc Tc T)"'( n( V -~:!:_A))¢=~; (27) 

6 ( T) is the depth of penetration at the given tem
perature, and is a constant of the phenomenological 
theory. 

6. CRITICAL FIELD 

. It is well known that an increase of the critical 
field, for superconductors of finite dimensions 
(surface superconductivity), is connected with the 
fulfillment of the condition l/!' = 0 on the boundary. 
It is therefore of interest to calculate the critical 
field for the case when the superconductor borders 
on another metal, so that a condition similar to 
(27) is satisfied. 

To calculate the critical field it is sufficient to 
solve the linear equation [2, 3] 

[ (p- 2iec-1A) 2 + (xI 6(T)2h = 0. (28) 

We take the potential A in the form Ay 
= -H ( z - z 0 ). The constant z 0 is chosen such 
that the function l/! is real and depends only on z. 
After making the substitution 

z- Zo-+ {c I 2eH) 'l•z 

we obtain the following equation 

~" + (E - z2) ~ = 0 (29) 

( E = HcdH, Hc2 is the second critical field). The 
boundary condition takes the form 

(1- T I Tc)'I•E-'"fl'l''(-zo) = ~{-zo). (30) 

It turns out that the minimum of the "energy" 
E, as a function of z 0, is attained when 

( n ( v- 2:6 A ))'¢(0+) = ( n ( V- 2:6 A)) '¢(0-) = 0. so that we can substitute in the condition (30) the 
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asymptotic expansion of the solution of (29), which 
attenuates as z - +ao: 

'ljl = exp ( -zo2 I 2) - n'lovzo-1 exp (zo2 I 2), 
v = (E -1) I 2. 

As a result we obtain the minimum value of E: 

(1- T/Tc)''• ~ [ -( T )] 
Emin = 1- exp -1/~2 1-- . 

2"fn Tc 

Thus, under boundary conditions (27), the third 
critical field practically coincides with the 
second: 

Hca=Hc2{1+ (1 -T/Tc)!l•p exp[ -1//f2(1-~)]}. 
2l'n Tc 

(31) 

,.., It is important that this result is valid if 
{3( 1- T/Pc )112 « 1. In the opposite case wear
rive at the condition l/J 1 = 0, so that, in accordance 
with the original paper of Saint-James and 
deGennes [2], Hc 3 ~ 1. 7Hc2• 

In conclusion I am grateful to Professor B. T. 
Ge1likman and A. I. Larkin for fruitful discussions 
and help with the work, and to E. G. Maksimov and 
A. I. Rusinov for a discussion of the results. 

APPENDIX 

Let us find the equation that must be satisfied 
by the quantity Kw ( z, z 1 ), averaged over the 
positions of the impurity atoms. We assume that 
the interaction with the impurities has a 6-func
tion character, and after averaging in the coordi
nate representation we obtain the following inte
gral equation [a, 1!]: 

+co 
K., (z, z1 ) = K.,O(z, z1 ) + ~ K.,O(z, z") n(z") uZ(z") 

X K.,(z",z1 )dz", (A1) 

where n ( z ) is the number of impurity atoms per 
unit volume, u ( z ) is the ''amplitude'' of scatter
ing by a 6-function potential; the quantity 
K~ ( z, z 1 ) is the product of the mean values of 
two Green's functions 

+co 

Kw0 (z, Z1 ) = ~ <Gw0 (r1 , r) > <G-.,0 (r1 , r) > dx1 dy1 , 

We note further that the mean value of the 
Green's function ( G~ ( r, r 1 )) satisfies the equa
tion 

[iw7J(r) + V2 12m + JL- <p(r)] <G.,0 (r, r1)) = 6(r- r1), 

1J (r) = {1 + 1/2lwl'tt for z> 1/po 
1+1/2lwl't2 for lzl>ifPo. (A. 2) 

Using this equation and carrying out the usual 
transformationsC5• s] we find that for z > 0 

K.,O(z, Z 1 ) = 2n~, < r e-f(t)i)(z1 - z(t) )dt >· 
0 

where 
t 

f(t) = \ 2lwi7J[r('t)]d't, 
0 

(A.3) 

z ( t) is the equation of motion of electron without 
account of the interaction with the impurities, and 
the averaging is carried out over all the directions 
of the initial velocity on the Fermi surface of the 
first metal. 

It follows therefore that the kernel K~ ( z, z') 
can be obtained from the corresponding expres
sions (4) and (6) for the pure metal with the aid of 
the substitutions 

If the metals are highly contaminated, 
l « ~ 0, then far from the boundary equation (A.1) 
reduces to a differential equation (see [to] ): 

[ lv0 d2 J 
2lwl-3 dzZ K.,(z, z1)= 2n~6(z-z1), (A.4) 

since the kernel K~ attenuates over distances of 
the order of l, while the kernel Ku; varies at 
large distances like ~ ( z~ 0) 112• 

Thus, the integral equation (A.1) also has the 
same relation to (A.4), as the Gor'kov equation 
has to the Ginzburg-Landau equations. It is 
therefore clear that we can use the method of 
Sec. 3 to find the boundary conditions in (A.4) (see 
also [7] ). Using as the trial function the solution 
of the equation (A.4), replacing the inhomogeneous 
part in (A.1) by a 6-function, and integrating this 
equation with respect to z 1 , we obtain the solution 
(17) and (18). 

This procedure enables us to find the boundary 
conditions for the equation (A.4). These conditions 
are 

U(O+,z1 ) _ K(O-,z1 ) 1 1 1 1 
~1 - ~ , v,l,K (0+, z ) = v2lzK (0-, z ) 

(A.5) 

for a flat boundary [to] and 

K(O+, z1 ) = K(O-, z1), l 1K1 (0+, z1 ) = l2 K1 (0-, z1 ) 

for a rough boundary. 
(A.6) 

It is necessary, of course, to recall that the 
obtained conditions are effective and give the 
solution accurate to terms of order l/ ~ 0• 

Note added in proof (5 March 1%6). We present without 
proof the boundary conditions which can be readily obtained if 
account is taken of the difference between the effective electron 
masses. For metals with nearly equal transition temperatures, 
the following quantities should be continuous: for a plane 
boundary. 
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Nx(p) ( 2ie ) 
1\ and ---;;; n'V --c-A Ll; 

and for a rough boundary 

pi\ and Nx~(p) ( nv- :ie A )I\. 
If the normal metal has a low transition temperature, then 

condition (26) is again satisfied, with m the effective electron 
mass of the superconductor. 

The values of the constant {3 (9), (10), and (20) do not 
change. For contaminated metals with rough boundary, however, 
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