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When electrons are scattered by optical phonons of limiting frequency w0 at temperatures 
T« wo. the electron collision frequency is much larger in the active region, ~ > w0, than in 
the passive one, ~ < w0• Therefore, one has to distinguish the case when interelectron colli
sions predominate only in the passive region from predominance in the whole momentum 
space. Analysis of the kinetic equation with allowance for this fact shows that interelectron 
collisions open a new channel for the relaxation of energy and momentum gained by passive 
electrons from the field, via transfer of energy and momentum to the active region and from 
it to the lattice. Unlike the usual relaxation which takes place upon absorption and instantane
ous re-emission, the described energy relaxation is not associated with the dispersion of opti
cal phonons. 

1. INTRODUCTION 

!NTERELECTRON collisions have the peculiarity 
that they only redistribute the energy and mo
mentum between the electrons without changing the 
energy and momentum of the whole electron sys
tem. Therefore in most cases they do not substan
tially affect the balance of the energy and momen
tum acquired by the electrons from the field and 
given away to the lattice. Allowance for interelec
tron scattering in the solution of the kinetic equa
tion leads only to a change in shape of the maxi
mum of energy distribution, which does not sub
stantially influence the calculation of average val
ues. [ 1l This was shown by a direct calculation of 
the ohmic mobility 11- [ 2--l.l and of the non-ohmicity 
coefficient (3. [ 5• 41 An exception is the case of 
electron runaway, [ 61 in which the interelectron 
collisions completely rearrange the energy dis
tribution. [ 71 

Scattering of electrons by the lattice is usually 
described by the effective collision frequencies in 
energy, v, and momentum v; generally speaking, 
ii and v are unequal, and there are two possibili -· 
ties: ii R: v (inelastic scattering), and ii « v (al
most elastic scattering). Interelectron collisions 
lead to a redistribution of energy and momentum 
with the same frequency vee. The following limit
ing cases are considered: [ 8 1 

A. v, ii « vee -interelectron collisions com
pletely dominate, and the distribution function is a 
shifted Maxwellian function 

(1.1) 

where PE is the drift momentum and TE the elec
tron temperature; both depend on the electric 
field E. 

B. ii « vee « v (for elastic scattering only)
interelectron collisions dominate only over the 
energy dissipation, therefore only the isotropic 
part of the distribution is Maxwellian: 

/o(e) = C exp {-E/ TE}, (1.2) 

and the anisotropic part is found from the kinetic 
equation. 

C. vee « v, ii -the interelectron collisions 
may be completely disregarded. 

The situation should be entirely different for 
low-temperature scattering by optical phonons 
with limiting frequency Wo· At T « w0 the num
ber of phonons is small, therefore the spontaneous 
emission of phonons by electrons in the active re
gion, ~ > w0, is more probable than the induced 
absorption in the passive region, ~ < w0• As a re
sult it may appear that interelectron collisions 
dominate in the passive region but do not dominate 
in the active one, so that assumptions A, B, and C 
do not exhaust all cases of the competition between 
interelectron and lattice scattering. 

Another, even more substantial peculiarity of 
the considered lattice scattering mechanism can 
be perceived when one compares the results of 
Stratton[ 91 (approximation A) with those of Davy
dov and Shmushkevich[iOl (approximation C). In 
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case C the energy transfer to the lattice is possi
ble only because of optical phonon dispersion, 
while neglect of this dispersion does not cause any 
difficulties in case A. This means, as will be 
shown below, that interelectron collisions open a 
new channel for relaxation of the energy obtained 
from the field in the passive region, by means of 
transfer to the active region; from this region the 
energy is transmitted to the lattice. It will be 
shown, furthermore, that papers [ 91 and [ 10 1 do 
not cover all conditions of energy relaxation on 
optical phonons. 

We note that the inhibition of energy relaxation 
in the passive region leads, in a sense, to runaway, 
which explains the importance of interelectron 
collisions from another point of view. 

2. THE KINETIC EQUATION 

Let us write schematically the kinetic equation 
for the steady state 

(2.1) 

Here F is the field term, and the collision terms 
S and C correspond, to optical and interelectron 
scattering, respectively. We consider fields E 
for which (r.) « w0• However, it is necessary to 
consider the region f. > w0 too, because only there 
can the electrons transfer energy to the lattice. 
When estimating the dependence of the S term on 
the large parameter u = wofT, we separate only the 
most substantial factor e-u so as not to restrict 
ourselves to a consideration of a specific type of 
scattering (deformation or polarization), upon 
which a of the preexponential factor ua may de
pend. Then 

S(p) "'v+j(p), 

S(p) "'v-j(p), 

P >Po. 

p <po. 

(2.2) 

(2.3) 

Here Po= (2mw0)1/ 2, and v+ R: v0 and v- R: e-uvo 
are the phonon emission and absorption frequen
cies. Estimating with the same accuracy, we have 

(2.4) 

In the active region the scattering is inelastic, 
therefore there is a choice between approximations 
A and C only. We consider A first, for which it 
is necessary that 

(2.5) 

Then the interelectron collisions dominate in the 
passive region, too, so that distribution (1.1) may 
be used for all p. The parameters PE and TE of 
this distribution are obtained from the energy and 
momentum balance equations 

Here j and n are the current and the concentra
tion, and Q and N are the rates of loss of energy 
and directed momentum upon scattering by optical 
phonons. The characteristics of the test electron 
for both polarization and deformation scattering, 
necessary to compute Q and N are given in [ 111 

Let us now consider the criterion of applica
bility of the shifted Maxwell distribution, [ 9 1 re
stricting ourselves for simplicity to the case 
TE- T R: T. Representing Q and N in terms of 
the effective frequencies of energy and momentum 
relaxation, jj and v, and estimating them, we get 

(2.7) 

(2.8) 

This makes jj and v of the same order as v0ue -u; 
the presence of the factor e-u in such an integral 
estimate of the energy and momentum relaxation 
rate is obvious: in the passive region relaxation is 
due to absorption, the probability of which is 
"" e -u, and the active region, where the emission 
probability is ""1, contains a small fraction e-u 
of the electrons. (The momentum relaxation rate 
is estimated in [91 somewhat differently and leads 
to v R: v0 e -u, but this does not change the nature 
of the subsequent considerations.) The criterion 
for the applicability of the distribution (1.1) is 
claimed to be vee» v0 ue-u. Such an integral 
criterion is weaker than the necessary differential 
criterion (2.5) found by comparing the relaxation 
rates in every point of the momentum space, and 
does not yield a Maxwellian distribution in the ac
tive region; it is shown below that such a criterion 
leads to a Maxwellian distribution only in the pas-
s~eregioa . 

We note, furthermore, that in [9] Q and N are 
calculated by assumin~ a small anisotropy of the 
distribution function PE/2m « TE, which is not 
justified at noticeable heat rise TE- T ~ T, be
cause in this case the scattering is not elastic. 

We proceed now to the case C in the active re
gion, where 

(2.9) 

Following [ 101 , we will not, however, assume that 
the anisotropic part of the distribution function is 
small, because there is no justification for this as 
yet. We develop the collision term 

S=B-A, B=B++B-, A=A++A-, (2.10) 

where A and B designate the departure and arri
val, and the signs ± pertain to processes with 
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emission and absorption of phonons. The estimate 
of these terms in the active region is 

A±,.., v±j(e), B±,.., v±j(e + ro0). (2.11) 

The dominant term is A+, which is large in com
parison with A- (obviously) and B+ (in virtue of 
(E) « w0). This does not apply to B-, for which 
we have B- =A+ when E = 0 (detailed balance). 
The field term is estimated as 

F,.., eEf(e) /(p)~eE(mT)-'I•j(e). (2.12) 

Confining ourselves to fields E « E0, where 
E0 = v0(mT)112 is the characteristic field in the 
active region, we may neglect F in comparison 
with A+. Thus the kinetic equation for the active 
region assumes the form 

B--A+=O, (2.13) 

whence the distribution at p > Po is expressed 
through the distribution at p < Po: 

/(P)=-ro+(p) ~ (dp')W-(p',p)/(p'). (2.14) 
p<p, 

Here Tt is the emission lifetime[ 11l 

1/-ro+(p)= ~ (dp')W+(p,p'). (2.15) 

Substitution of (2.14) closes the kinetic equation 
for the passive region, eliminating the active re
gion from consideration. However S and C then 
undergo an essential alteration, because they have 
to account implicitly for the presence of electrons 
in the active region. 

Substituting (2.14) in S, we can easily show 
that this amounts to the replacement of W (p, p' ) by 

W (p, p') = ~ ( dp")-r0+(p") W- (p, p") W+(p", p') (2.16) 

and to the confinement of the integration range to 
the passive region. The S term written in this 
form will be denoted by S. W may be interpreted 
as the probability of a combined transition from 
p to p' through p" . w- yields the probability of 
the absorption transition p- p", and T~W+ gives 
the conditional probability that the instantaneous 
emissive transition from p" will occur just into 
p. The combined transition probability formulates 
mathematically the idea of absorption and instan
taneous reemission as a single scattering 
event. [ 12, 1ol A 

The order of magnitude of W is determined by 
the factor w- in the integral (2.16). Therefore all 
effective frequencies of the combined scattering 
contain the factor e-u. If one disregards the dis-

persion of the optical phonons then, unlike the 
usual scattering W, the combined scattering W is 
elastic. Owing to dispersion, 

ro {q) = roo- q2 /2 (Mm) 'I•, (2.17) 

where M is on the order of the nuclear mass, a 
small inelasticity arises with a parameter 
o ,...., u(m/ M) 2 « 1. This circumstance leads to a 
difference in the estimate of the isotropic part So 
and of the anisotropic parts S z (the index l corre
sponds to the expansion of S in Legendre poly
nomials): 

So~ ~fo, 81 ~ vf1, (2.18) 

where the effective frequencies of energy and mo
mentum relaxation resulting from combined scat
tering are 

(2.19) 

Comparison of (2.19) with (2. 3) shows that the re
placement of S by S leads to a sharp overestimate 
of the symmetrical part. 

Because the combined scattering is almost elas
tic, all three cases, A, B, and C determined by the 
comparison of S with C can be present in the 
passive region. However, for A and B the dis
tributions (1.1) or (1. 2) will be valid only when 
p « Po; for p » Po they should be found from 
(2.14). Another important peculiarity is that the 
use of such Maxwellian distributions which are de
formed in the active region causes C or C0 to 
vanish only with accuracy to terms of the order of 
e-u. This causes the appearance of additional 
terms in the balance equations for PE and TE. 

Case A takes place in the active region when 

(2.20) 

The balance equations for the passive region are 

jE=Q(TE,PE) +Qee(TE,PE), 

nE = N(TE,PE) + Nee(TE, PE). 

A A 

(2. 21) 

(2.22) 

Here Q and N are the energy and momentum 
losses for the combined scattering of passive 
electrons; Qee and Nee are the above-mentioned 
additional terms describing the energy and mo
mentum transfer from the passive region to the 
active one, which occurs when passive electrons 
are scattered by active electrons. The energy and 
momentum acquired by the active electrons from 
the field should have been subtracted from the left 
members, but in these terms their contribution to 
current and concentration contains the small fac
tor e-u. 
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The balance terms Q and N are estimated by 
means of the effective frequencies (2.19), and Qee 
and Nee_with the help of the frequency veee-u. 
Therefore, by virtue of (2.20), the momentum re
laxation Nee via transfer to the active region is 
insignificant in comparison with the direct relaxa
tion N. This is not the case with energy relaxa
tion; if vee » o v0 then the term Qee is signifi
cant, and if vee « ov 0, then the significant term 
is Q. The effective frequency of energy relaxa
tion, vee e -u or e -uo v 0, is in either case smaller 
than the effective frequency of momentum relaxa
tion v 0 e -u (it is assumed here that o » e -u ) . The 
scattering is therefore "elastic," and if (2.20) 
holds then the distribution (1.1) has a small aniso
tropy in the passive region. It follows from (2.14) 
that f(p) has a small anisotropy in the active re
gion, too. 

Case B takes place in the passive region when 

(2.23) 

The balance equation in the passive region is 

(2.24) 

The meaning of the balance terms is the same as 
in (2.21). They are estimated by means of the 
same frequencies e-uov0 and veee-u, so that Qee 
is always insignificant. 

Case C occurs in the passive region when 

(2.25) 

In cases B and C the anisotropy of the distribution 
function is also small. 

3. MEASUREMENTS OF ENERGY AND 
MOMENTUM RELAXATION 

The analysis of the kinetic equation in Sec. 2 
shows that there exist in reality two mechanisms 
by which energy gained by the passive electron 
from the field can be transferred to the lattice: 

I. Having absorbed a phonon, the passive elec
tron becomes active and transfers energy to the 
lattice; however, the loss to activation is not com
pensated by the possibilities of energy return if 
phonon dispersion is absent. The effective fre
quency of this mechanism is 

(3.1) 

II. The passive electron transmits energy to 
the active electron, which transfers it to the lat
tice. From the estimates of Qee in (2.21) and 
(2.24) and of Q in (2.6) it is seen that the effective 
frequency of this mechanism is 

V'n~ (1/v0 +1/v••)-ie-u. (3.2) 

This can also be verified by the following simple 
consideration. During the time Tee the excess en
ergy 6C obtained in the passive region is Max
wellized; part of it, e-u6c, enters the active re
gion. This part is transferred to the lattice during 
the time T 0• The relaxation time of the energy 
e -u6C is To + Tee, and the relaxation time of the 
total energy 6C is (T0 + Tee)eu, yielding (3.2). 
Both mechanisms are equally effective when 
vee,.... ovo. 

Reference 9 is implicitly based on the mech
anism IT, because no allowance is made there for 
phonon dispersion, which means o = 0. This is 
actually true only under condition (2.5), therefore 
the slowest limiting step in mechanism II is the 
transfer of Maxwellized energy to the lattice; as a 
result it turns out that i7II,.... v0e-u, and vee drops 
out of consideration. If vee « Jl the limiting step 
is the maxwellization, and Vii,..., veee-u. 

Unlike energy relaxation, the relaxation of the 
directed momentum is possible in the passive re
gion, too; however it proceeds with difficulty in 
this region, making the contribution of the active 
region of the same order of magnitude, in spite of 
the small number of electrons in the active region. 
Therefore the momentum transfer in the active re
gion can also play a role. The effective frequen
cies of momentum relaxation in mechanisms I and 
II are obtained from (3.1) and (3.2) at o,..., 1, i.e., 

(3.3) 

However, the frequency vee drops always out of 
consideration here because when vee » v0 it drops 
out of VII, and for vee « v0 the mechanism II is 
insignificant in comparison with I. 

It is easy to trace the effect of interelectron 
collisions by observing the ohmic mobility JJ. and 
the nonohmicity factor f3 of weakly heated elec
trons, for which 

f.t (E) = f.t{i + f}E2). 

In order of magnitude we have[ 4l 

e 
f.t ~ -v-1, 

m 

(3.4) 

(3.5) 

By changing the concentration n one can vary the 
relation between vee and v0• The three cases oc
curring at vee« ov0 do not differ in their relaxa
tion mechanisms, the dependence of JJ. and f3 on n 
must therefore be weak in the corresponding con
centration range. But the change from vee ,..., ov0 to 
vee,..., v0 causes f3 to decrease o times, because a 
new channel of energy relaxation is opened, which 
hinders the heating. A relation f3,..., n -t/2 should be 
observed in the interval. A change in JJ. takes 



ELECTRON DISTRIBUTION FUNCTION IN A STRONG ELECTRIC FIELD 701 

place, too: we see from the applicability condi
tions of the approximations A and C, as well as 
from the calculation made in [ 91 for polar scat
tering, that the mobility p. decreases u times on 
going from vee"" e-uov0 to vee"" v0• We cannot 
trace the variation of p. without a direct calcula
tion of the collision terms, because we did not es
timate the power-law preexponential factors. 

The form of the distribution function should 
strongly influence the microscopic parameters 
connected with the "tail" of the function such as 
electron emission and impact ionization. Thus, on 
going from vee » .,P to vee « v0, the distribution 
"tail" in the active region decreases abruptly, and 
both these effects should sharply diminish. A no
ticeable decrease in the distribution tail was dis
covered in an experimental measurement of the 
distribution function of hot holes in germa-
nium. [ 13, 141 

We note that the peculiarities of low-tempera
ture scattering by optical phonons will also be ob
served for acoustic phonons at "infralow" tem
peratures T ~ ms2 (s is the speed of sound), be
cause electrons with £ < % ms2 cannot emit acous
tic phonons. However, o ,..., 1 for acoustic phonons. 
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