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The cross s~cti~ns for the scattering of a photon by a photon of definite frequency in the pres­
ence. of a ~hird held ~f the same frequency is calculated. It is shown that for a certain spatial 
confi.guratwn of ~he field, the scattering cross section increases in proportion to the energy 
density of the third beam in the region where the first two beams cross. Some numerical re­
sults are presented. 

INTRODUCTION 

IT is well known (see, for example [i-4]) that the 
cross section predicted in electrodynamics for the 
scattering of light by light is very small. For pho­
tons of wavelength ....., 1f.L the estimates of the cross 
section lead to a value "'5.5 x l0-65 cm2• Thus, 
even the most powerful laser beams presently 
available exclude the possibility of experimentally 
observing the direct photon-photon scattering ef­
fect. 

One of the methods of facilitating the experi­
mental observation of photon-photon scattering is 
to increase the energy of the scattered quanta. 
This method (see [ 5]) likewise has not yet led to a 
solution of the problem. All the methods of obtain­
ing intense 'Y -quantum beams of high energy do not 
ensure as yet the possibility of setting up y-quan­
tum scattering experiments. 

The question of scattering o{ light by light in 
the presence of an external field was also consid­
ered in several papers. As shown in [ 6 J, the fields 
required to scatter a photon from a laser beam in 
a constant external field have very large gradients, 
so that in practice intensification by a factor larger 
than 104 is impossible. The scattering of a photon 
in the external field of the nucleus becomes com­
parable with the cross section for the ordinary 
Compton effect on the electron only at quantum 
energies ....,1010 eV. 

Thus, the variants considered so far have led 
to the conclusion that it is impossible to observe 
experimentally the scattering of light by light. The 
purpose of the present paper is to show that by 
using modern laser beams it is possible, in princi­
ple, to create conditions under which fourth-order 
photon interaction processes can have an appreci­
able probability, sufficient for its registration. 

1. INDUCED SCATTERING 

The process referred to here can be called in­
duced scattering of light by light in vacuum. The 
experimental conditions proposed for realization 
of such a scattering reduce to the following. 

In addition to two colliding beams of the scatter­
ing photons of a certain frequency, a third auxili­
ary beam of photons of the same frequency is 
passed through the interaction region of the beams, 
in a direction perpendicular to them. The proba­
bility of scattering of photons from the first two 
beams is increased in this case in proportion to 
the density of the photons of the third beam, as is 
the case for any process induced by a field. The 
scattered quanta are registered in a direction op­
posite to that of the third beam. 

The nontriviality of the problem lies in the fact 
that for plane waves the cross section of such a 
process is equal to zero, owing to the smallness of 
the phase value admitted by the momentum and en­
ergy conservation law k1 + k2 - k3 = k. (In practice 
it is impossible to produce two photon beams di­
rected strictly opposite each other.) However, as 
shown below, there exists the possibility of cir­
cumventing this difficulty. To this end it is suffi­
cient to shape the photon beams in the form of 
converging (or diverging) waves. The simplest 
system of shaping such beams can be a system of 
three lenses that focus three beams in a single 
point. 

2. MATRIX ELEMENT OF THE PROCESS OF 
SCATTERING OF WAVE PACKETS OF 
DEFINITE FREQUENCY 

Let us consider the fourth-order photon-photon 
interaction process (Fig. 1). We write the regu­
larized fourth-order scattering matrix in the mo-
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FIG. 1 

mentum representation (we put li = c = 1, e2 /47f 
= 1/137 ): 

s<•l=- ; 2 (~:y ~ ~ ~ ~ (2n)"6(kt+k2+k3+k·) 

X N ( A~t(kt)Av(k2)A~(k3)Aa(k•) ) 
(2n) 16 

X I I'VA(J ( ktk2k3k~) d•kt d•k2 d•k3 d•k., (1) 

where A(ki) are the photon operators of the poten­
tial, ki are the 4-momenta of the photons, N de­
notes the normal product, and ~ vA.u is the regu­
larized value of the scattering tensor (see [S, 4]): 

f~tv'J,a(ktk2k3k4} = G~~v~o(ktkzk3k4) - Gl'v).o(OOOO). 

The symmetrized scattering tensor Gf-L vA.u is equal 
to 

GI'VA(J ( ktk2k3k4) = T I'VA(J ( k1k2k3k4) + T I'V<JA ( ktk2k4k3) 

+ r~~~v(J(k1k3kzk,), 

where 

1 ~ ' ' T 11v').a(k1kzk3k,) =-:- Sp{y11 (ip + m)-·1 y-,(ip- ik2 + m)-1 
mz 

X y).(ip- ik2- ik3 + m) 

X -1 y" (ip- ik2 - ik3 + m) -1} d•p. 

The numerical factor preceding the integral (9) 
takes into account the number of equivalent N­
products. On going over to the matrix element it 
is necessary to take into account 4! more topologi­
cally identical diagrams due to the permutation of 
all the photon lines. 

The 4-momenta of the individual photons of the 
colliding beams will be denoted by q1 and q2, and 
the third-beam momenta and the momenta of the 
scattered photon are denoted respectively by q3 

and q4• As a result the summary matrix element 
is written in the form 

s;, = 2i( ::r ~ ~ ~ ~ (2n}"6(-q1-q2+qa+q.) 

X A~t(q1)Av(qz)A~(qa)Ao(q4) 
(2n) 16 

X f~tv'J,o ( -q~, -qz, q3, q,) d4q1 d4qz d4q3 d4q,. (2) 

We shall assume further that the beams 1, 2, and 

3 represent packets of converging waves of fre­
quency w0 (the distribution of the waves is only 
along the direction of wave vectors), and for sim­
plicity we call them sometimes ''monochromatic 
homocentric'' packets: 

(3) 

where Q is the normalization volume of the region 
of the interaction of the beams. The fourth beam 
(scattered photons) will be fixed in the form of a 
plane wave k: 

(2n)" 
A 11 ( q,) = (2Qw) ,1, e 116 (k- q4). (3') 

The amplitudes of the chosen potentials of the 
photon field a(q) for beams 1, 2, and 3 are func­
tions only of the direction of the wave vector of 
the wave, and therefore can be represented in the 
form 

a(q) = a(n)cS(Iql- w0)q-2, (4) 

where n are unit vectors directed along the wave 
vector q. In the general case of non-monochroma­
tic waves, the amplitudes take the form 

a(q) = a(n)p(lql)q-2. (4') 

We find it useful in what follows to relate the 
potentials a(q) with the energy of the field of the 
electromagnetic wave or, what is the same, with 
the number v of photons in the packet. We present 
first the corresponding expressions. 

We shall use the concept of the wave function of 
the photon in the space of the wave vectors fA. (q) de­
fined in terms of the Fermi components of the elec­
tric field. [4] From the definition of the wave func­
tion, the number of photons in the momentum in­
terval dq is equal to If (q) 12 dq. Expressing the 
energy of the electromagnetic field in terms of the 
potential of the photon field (in the absence of lon­
gitudinal field components), we can readily show 
that 

a).(q) = -i(2n)-'hQ'f,h.(q). (5) 

If the total number of the photons in the interaction 
region is v, then the normalization of the wave 
function corresponds to the condition 

~ lf(q) l2 dq = v 

or for the discrete spectrum 

"L.fhj, .. ~ = v, 
h 

where ~k 2 oo0 is the unit cell of the phase volume, 
Q is the volume in which the radiation is contained, 
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o is the thiclmess of the elementary spherical 
layer in k-space, and 60 is the solid-angle cell. 
We shall assume that the region Q is bounded by 
a sphere of radius R, so that we can put o = 1r /R. 

In the case of discrete normalization in fre­
quencies1> the amplitudes (4) and (4') are written 
in the form 

a11(q) = a11 (n)p(lql)q-2. (4") 

Comparing these amplitudes with the wave func­
tion in the case of the discrete spectrum 

(6) 

We find with the aid of (5) that the chosen notation 
for the amplitudes of the potentials corresponds to 
the normalization 

~ p(lql)dq = 1. (7) 

Let us continue the calculation of the matrix 
element. Substituting the expressions for the po­
tentials given above for the photon-field potentials 
in the packets into the expression for Sif and inte­
grating with respect to q4 and the variable compo­
nents, we obtain 

X~~ ~6(-q1-q2+qa+k)c5(w-wo) 

X a1p ( qi) a211 ( qz) aav ( qa) 

X eJ.lPevBe~">'ealJ.tv~a(- q1,- qz, q3, k)dqtdqzdqa, (8) 

where w0 are the frequencies of the photons in the 
beams 1, 2, 3, and w is the frequency of the scat­
tered photons (beam 4). Substituting the expansions 
for the potentials ( 4) and integrating with respect 
to d I Q1 I , d I q2 l , d I q3l , we obtain 

. __ .re2 ) 2n46(w-wo) 11 6(at-w) 
S,t - 8~ \. 4n f:J.Zwo'f,w'lt J J Ut2 

X a1p ( ::) a213 (nz) aav (na) 

X eJ.tPevlle._ '~'err I J.tvJ.a (- a1, - Wo nz, Wo na, Won) dO 1 dOz, (9) 

where a 1 = w0n + w0n3 - wn2 and Oi is the solid 
angle. 

1 ) Discrete normalization of the photon wave function and 
its respective potentials will be necessary whenever we require 
to find the connection between the squares of ·f(q) or a(q) with 
the density or the number of protons in the interaction volume. 

The yield of the reaction, i.e., the number of 
scattered photons produced in the interaction vol­
ume Q per unit time, is determined by the quan­
tity 

where T is the time of the process. Representing, 
as usual, Sif = Mifo(w- w0), we obtain 

Taking into account the a-function o(w- w0), the 
expression for a 1 should be replaced by a0 

= w0(n + n3 - n2). We note also that the a-function 
o(ao- Wo) can be represented in the form 
w01o(1 - n. n2 + n3 • (n- n2)). 

As a result we obtain the following expression 
for the yield of the reaction under consideration: 

dW ( e2 )" £2 --=4n4 - --
dO 4n Q 3w08 ' 

(10) 

where the integral L is determined by the expres­
sion 

The photon-photon scattering tensor in the reg­
ularized and symmetrized form, valid for small 
photon energies (w « m0), can be represented in 
the following manner (see, for example, [3, 4J): 

et!J.ezvea-.e""IJ.tv~a(-qt, -q2, qa, q4) = (14R- 5S) I 45mo4, 
(12) 

where mo is the mass of the electron, S and R 
are the symmetrized tensors which for fixed polar­
ization ei can be represented in the form 

S I 4wo4 = Q(1234) + Q(1324) + Q(1432), (13) 

Q(1234) = (e1n2) (e2n1) (ean,) (e4na) 
- (n1n2 - 1) (e1e2) {e4na) (nae4) - (nan•- 1) (eae•) 
x (hzet) (n1e2) + ( e1ez) ( eae•) (n1n2 - 1) (nan•- 1); 

R I wo4 = P(1234) + P(1324) + P(1432), 

P(1234) = (e1n4) (e2n1) (ean2) (e4na) + (naet) (Dtez) (n,ea) (n2e4) 

+ (e1e2) { (nan•- 1) [ (n2na) (nte4) + (n1ea) (n2e,)] 
- (n2ea)(nae4) (ntn.- 1) - (n,ea) (n1e4) (n2na-1) 
- (n,ea) (n2e4) (nina-1) - (ntea) (nae,) (n2nq-1)} 
+ ( eae,) { (n1n2- 1) [ (n,ei) (nae2) + (naet) (n,e2)] 
- (n4e1) (n1e2) (n2n3 - 1}- (nzei) (naez) (ntn,-1) 
- (nae1} (n1e2} (nzn.-1)- (n2e1) (n4e2) (ntna-1)} 

+ (etez) (eae4) [ (n1n4- 1) (n2na- 1) 

+(ntna-1}(n2n4-1)]. (14) 
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3. ACCOUNT OF NONMONOCHROMATICITY OF 
THE BEAMS 

So far we have considered wave packets of pho­
tons of definite frequency converging to a single 
center (focus). We shall show that the obtained re­
sult for induced scattering can be extended also to 
the case when the photons of the beam have a cer­
tain frequency scatter. 

Let us consider, for simplicity, the scattering 
when the frequency scatter is small. Let the pack­
ets, 1, 2, and 3 be now represented by amplitudes 
of the type (4' ), and let the potential of the fourth 
wave correspond as before to the plane wave (3' ). 
Substituting the amplitudes a(q) in the form (4') 
and (3') and integrating with respect to the varia­
bles q4, w3, lqti, lq2 l, 1~1. we obtain the matrix 
element of induced scattering of nonmonochromatic 
beams: 
S;t = _ Si ( ~~)2~ \ Pt(wi) Pz(wz) pa(Wt + ·Wz- w) 

\ 4:n: Q 2w'f, • Wt'f, wz'f, ( Wt + wz- w) 'h 

X ~ (- Wt fit - W2 Dz + ( Wt + Wz - w) na + wn) 

X atp (nt) az~ (nz) aav (na) 

X Illv'-cr(- Wt fit,- wznz, (Wt + wz- w)ns, wn) 

X e~'Pev~e,.ve., dwt dw2 dOt d02 d03• (15} 

In view of the fact that the potentials of the field 
do not contain fourth components, the scattering 
tensor can be regarded as dependent only on the 
spatial components of the photon momenta. We use 
further the fact that the frequency scatter in the 
beams is small, ~wi « Wi, and put for this part of 
the integrand function which depends on the angu­
lar coordinates Wi = w0, i = 1, 2, 3. The subse­
quent integration with respect to d01 leads to the 
expression 

S . __ 8. ( ez )2 :n:' (' ~ Pt(wt) pz(wz) 
,j- ~- J ----

4:n: · Q 2w'i'wo3 Wt'h wz'h 

(16) 

ao = wo(n + na- nz). (17) 

We see that the integral (17) coincides with the 
expression (11) and is completely determined by 
the geometry of the beams and by the polarization 
of the photon. Essentially, even expression (16) 
makes it possible to estimate the probability of the 
reaction of induced scattering for arbitrary en­
ergy spectrum of the photons. 

In order to demonstrate that the scattering 
process occurs when the beams are not monochro-

matic, let us consider the case when beams 1 and 
2 are monochromatic with frequencies w1o and 
w20 , respectively, and beam 3 has a finite width of 
frequency interval ~w3. 

Thus, we put 

Pi ( Wt) = 6 (w1 - Wto), P2 (w2) = b (w2 - W2o) 

and integrate (16) with respect to w1 and w2, using 
the condition (7) for the normalization of the func­
tions p. The probability of the scattering reaction 
with formation of the scattered quantum in a unit 
solid-angle interval is given by 

dW ~ Qw2dw ( e2 )" :n;5 -- 18-12 ____ 8 -
dO - •f (2ni)3T- 4:n: Q 3Two1Wo2Wo6 

(' L2wdw 
X J [ps(wto + W2o- w)]2 + . 

Wto W20- W 
(18) 

Inasmuch as under our chosen conditions all the 
frequencies under consideration are close to w0, 

we can write 

~ [pa (w1o + Wzo - w) ]2 wdw = !!_. 
Wto+ Wzo- w :n: 

Assuming further that the linear dimension of the 
wave packet (3), interacting over a time T, is de­
termined by the distance 2R = T, we obtain 

dW ( e2 )' :n:4 

dO = 4 4;t Q3wos £2. 

We see that the total yield of the reaction for a 
nonmonochromatic beam 3 coincides with expres­
sion (10) for the yield of the reaction for mono­
chromatic beams (under the condition ~ w3 « w3). 

So far we have considered photon wave packets 
converging to a single center. In the notation em­
ployed for the wave packets, the amplitudes a(q) 
do not contain phase factors that depend on q. 
Thils means that all the plane waves which up the 
homocentric beam have the same phase when the 
front of the wave crosses the focal point. However, 
to ensure the possibility of the reaction it is suffi­
cient to stipulate that the difference of phases be­
tween the individual components of the packet not 
exceed a certain fraction of 1r. This condition im­
poses definite requirements on the optical system 
shaping the beams. (Using the usual diffraction 
theory, we can show that the spherical operation 
should be sufficiently small and the Abbe sine con­
dition should be satisfied.) For lack of space we 
omit a discussion of these questions. 

4. DETERMINATION OF THE MATRIX 
ELEMENT IN EXPLICrr FORM 

Calculation of the integral (11) in general form, 
for arbitrary functions ai (ni) and for arbitrary 
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photon polarizations is rather cumbersome. It is 
of interest to calculate the yield of the reaction 
for a real experimental geometry, for example, 
one in which the beams of plane monochromatic 
waves are focused in a single point by lenses. In 
this case the functions ai(ni) will differ from zero 
within the limits of a certain finite solid angle, 
and the polarizations of the wave packets will be 
determined by the polarization of the plane waves 
striking the lenses. 

Let us turn to calculate expression (11). We 
choose a coordinate system x, y, and z and di­
rect the axis of beam 1 in the positive z direction, 
the axis of beam 2 in the negative z direction, and 
the axis of beam 3 in the positive y direction 
(Fig. 2). We shall also use the spherical coordi­
nates e and «P, measuring the angle e from the 
positive z axis, and the angle «P from the positive 
y axis. 

The o function contained in (11) contains as an 
argument an expression which can be represented 
in the form 

A + B cos 6s + C cos 6s; 
A = 1 - sin 6 sin 6~ cos (II>- 1!>2) - cos 6 cos 62, 
B =sin 6 cos(ID -IDa) -sin 6 sin(ID2 -IDa). 
c = cos 6 - cos 62. 

We introduce further the notation u = cos e3, 

v = sin e3, and transform the 0 function into 

2 V· 
<'>(A+ B(1- u2)'1• + Cu) = ~ <'>(u- u;) Cv· _:_ Bu-'' 

i=1 ' ' 

where u1 2 are the roots of the equation 
A + B(1 ~ x2) 112 + Cx = 0. As a result the integra­
tion of expression (11) with respect to d cos e3 en­
tails no difficulty, and we obtain in spherical coor­
dinates 

2 

L = ~ ~ ~ a1p (cos 81, ll>t) a2fl (cos 82, <D2) 
i=i 

(19) 

where the unit vectors (3 0 and 'Yo are defined in 
the following manner: 

~x = sin 8 sin II> + v; sin IDa - sin 11>2 sin 62, 

~Y = sin 8 cos <D + v; cos <Da - sin 62 cos <D2, 
~z = COS 6 -· COS 62 + U;, 

'\'x = V; sin IDs, '\'y = Vj cos <Da, '\'z = U;. 

Further integration was carried out by numeri­
cal means. It was assumed for concreteness that 
prior to the shaping of the converging packets all 
three beams were linearly polarized plane waves. 
Let us consider by way of an example the case 

FIG. 2 

when the polarization vectors are directed along 
the x axis in beam 1 and along the z axis in beam 
3. We note that as a result of refraction of wave 1 
in the lens, there appears a polarization-vector 
component along the z axis, but the polarization 
vector remains in the xz plane. Similarly, the 
polarization vector of beam 3 remains in the yz 
plane. As a result we find that the polarization 
vectors in the packets 1 and 3 respectively can be 
written in the form: 

etx = cos 61 (1 - sin2 81 cos2 $ 1)-'1•, 
ety =, 0, e1z = -sin 81 sin «Dt'(1 - sin2 61 cos2 «Dt)-'1•, 

esx = 0, eay = -cos 6s(1- sin2 6a sin2 $ 3)-Y•, 
eaz ='~in Ha sin «Ds (1 -' sin2 6a sin2 $ 3)-'1•. 

We can specify in similar form the polariza­
tions of the scattered wave and beam 2. 

Let us assume that the energy density of the 
radiation in the initial beams is uniformly distrib­
uted over the area in a cross section perpendicular 
to the direction of the beam propagation. We deter­
mine under these conditions the form of the ampli­
tudes of the wave packet produced after the frac­
tion of the beams in the focusing lenses. Generally 
speaking, it would also be necessary to take into 
account the dependence of the Fresnel light­
transmission coefficients on the angle of diffrac­
tion of the light ray in the lens, which would lead 
to a slight change in the angular distribution of the 
light density in the beam. This dependence, how­
ever, is small and can be neglected in first approx­
imation. 

Recalling that the connection between a(n) and 
the photon -number density per unit solid angle is 
given by expression (7), we get* 

dv v 1 
--=----, 
dO n tg2 ~ cos3 6 

where {3 is the angular dimension of the packet 
Bmax· In the numerical integration of (19), we used 

*tg =tan. 
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the values of the amplitudes ai (n) = ai (n)( 6 /v) 1/ 2, 

i.e., the values 
v0 listed in the table in the following manner: 

wo4 
Lo = --bo-'1• Vo. 

mo4 
a{ = ( -n''• tg ~1 cos~" 81) - 1, az' =: 1(n''• tg ~2 cos''• 82) - 1 

If the energy of the electromagnetic wave of 
beams 1, 2, and 3 in the volume n exceeds the en­
ergy of the single photon by a factor v1o v2, and v3 

respectively, then the interaction will be given by 

aa' = ( -n'" tg ·~a sin Sa cos <l>a)-1• (20) 

The amplitudes (20) correspond to the condi­
tion when the interaction volume contains one 
quantum from each beam (the energy of the elec­
tromagnetic wave of each of the beams in the vol­
ume n corresponds to the energy of one quantum 
of frequency w0). The results of the calculations 
are represented in Tables I-II. The angular di­
mensions of the interacting beams are specified by 
the angles f31o {32, and {33• The values of the angles 
e and «<> determine the direction of emission of the 
scattered quantum. The form of the polarization of 
the interacting beams is indicated in the tables. 
The number of the integral (19), corresponding to 
the interaction of the three photons (one each in 
beams 1, 2, and 3) is connected with the value of 

Wo4 (Vt\12\'3) 1
/ 2 V (21) 

L=--, 'I 0· 
mo~ 6o' 

The calculations were made with an electronic 
computer. The method of integration ensured an 
accuracy "'0.001. The maximum error of the val­
ues of V0 given in the table do not exceed 1-2 
units in the third decimal place. 

5. YIELD OF INDUCED SCATTERING 
REACTION 

Using the results of the calculations of the ma­
trix elements, let us determine the final expres-

Table I. Values of 10V0 for polarization of beams 1, 2, 3, and 4 
respectively in the planes xz, xz, yz, yz . 

..... 1 0 

II>, deg (8 - 11/2) 11/2-8, deg (II>- 0) 

I 
3 
5 

10 
20 
30 

1 
10 
20 
30 
40 

II. deg 

I 
3 
5 

10 
20 
30 

I 
10 
20 
30 
40 

p,=fh=Ps=P 
0.747 

o.H'>o I O.O:J6 
o:691 0.431 0.670 0.019 
0.695 0.605 0.442 0.09:J 0.632 0.613 0.035 
0. 704 0.592 0.650 0.501 0.125 0.702 0.672 0.507 0.054 
0.747 0.748 0.754 ojn 0.711 0.472 0.745 0.728 0,599 0.562 0.050 
0,797 0,8J5 0.814 0.875 1.041 1.055 0.349 0.7:J7 0.781 0.759 0.546 0.226 0.054 

p, = 30•, P2 = 20•, Pa = P 
0.725 0,545 0.29iJ 0.142 0,085 0.072 0,135 
0.767 0.768 0.768 0,768 0,659 0.442 0.771 0,755 0.690 
0.755 0,754 0.756 0.751 0.734 0,634 0.041 0.751 0,756 0. 733 0.6ll 0.116 
0.670 0.673 0.683 0:?14 0.785 0.799 0.206 0.673 0.659 0.655 0.572 0.236 0.043 
0.551 0.555 0~566 0.624 o:s11 0.942 0.491 0,553 0.550 0~540 0.485 0.231 0.211 

Table II. Values of V0 for polarization of beams 1, 2, 3, 4 in 
the planes xz, yz, yz, and xy respectively. 

II>, deg (8 - 11/2) 11/2- a. deg (II> - 0) 

o 1 3 1 5 1 10 1 20 1 30 1 60 1 1 3 1 5 110 1 20 1 30 

1.070 
1 :oo9 
1.070 
1.062 
1.044 
1.001 

0.657 0.248 
0.917 0,654 
1.029 0.957 
1.033 1.015 
0.998 0.988 

0.0091 1.025 0.029 
0.121 1 :o4o 0.928 o,o53 
o:657 0.121 I.049

1

0.997 o.9IO 0.862 
0.943 0.638 0.311 1.0311.0010.9680.8670.147 
0.957 0,838 0.622 0.100 0.9890.9610,9400.8750.7120.201 

p, = so•, P2 = zoo , ~a = ~ 

0.997 0.816 0.534 0.262/ 0.121 o .071 1o. 149 I ! 
1.001 1.002 o.990 o.933 o:5s3 o.s7o o.9J8 0.957 0.872 0.169 
0.947 0.940 0.926 0.864 0:563 0.420 0.01210.942 0.892 0.892 0.798 0.187 
0.806 0. 799 0.793 0. 755 0.613 0,441 0.053 0, 738 0.78110.763 0. 714 0.604 0.184 
o.636 o.626 o.622 o.6131 o,558 o,452 o.11o o.63o o.614 0.501 0.572 o.532 o.492 
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sion for the yield of the induced-scattering of con­
verging beams. 

We note, first, that the quantity <50 (the unit cell 
of a solid angle occurring during discrete normal­
ization of the wave function of the photon) can be 
readily eliminated in the final result, since we can 
put 

We note further that expression (21) corresponds 
to the yield of the reaction per second when the 
flux, say, of beam 2 is equal to v2fn (c = 1), at the 
time when the volume Q contains v1 and v2 pho­
tons of the remaining two beams. The total yield 
due to the passage of N2 through the region of in­
tersection of beams 1 and 3 is obtained by replac­
ing the coefficient vdn by N2t/Q = N2fs, where s 
is the cross section of beam 2. 

As a result we find on the basis of (10) and (21) 
that the total number of photons scattered at an 
angle e per unit solid angle is 

dv 1 ( e2 ) 4 1 ( w0 ) 6 N2 

dO = 96; \~ mo2 ~ V!Vzs I Vol 2• 
(22) 

where v1 is the average number of the photons of 
beam 1 situated in the region of intersection of the 
three beams (interaction volume); v3 is the aver­
age number of photons of beam 3 in the interaction 
volume, N2 is the total number of photons of beam 
2 passing through the interaction region during the 
considered time interval; s is the dimension of 
the transverse cross section of the interaction 
region (relative to the direction of propagation of 
beam 3); v2 is a geometrical factor that depends 
on the angular dimensions of the beams, on the 
considered scattering angle e, and on the polariza­
tion of the beams (see the tables). 

In order to understand more clearly the orders 
of magnitude of the quantities characterizing this 
induced scattering process, let us consider a con­
crete example of the proposed installation and let 
us estimate the number of scattered quanta. 

Let us assume thus that the installation is shown 
schematically by Fig. 3, where A, B, and C are 
reflecting mirrors, I and II are optical light gen­
erators (lasers), D is a semi-transparent mirror, 
Fto F2, and F3 are focusing lenses, and P is a 
photomultiplier registering the scattered quanta. 
The light from generator 1 circulates between the 
mirrors A and B. Light from generator II passes 
through the setup once (one half of the beam goes 
through the interaction zone, the other is reflected 
by the mirror D). 

Let us specify for concreteness the parameters 
of the installation and of the experiment in the fol­
lowing manner: l = 100 em-distance between mir­
rors A and B; ll. = 10-4 em-length of the radiation 
wave; Q ~ ll.3-volume of the region of intersection 
of the three beams; s ~ ll.2 cm2-transverse dimen­
sion of beams 1 and 2 in the zone of intersection 
with beam 3; N = 5 x 1021 p-number of photons 
generated in each of the lasers I and II with total 
energy radiation p (kJ); vi = Nill./l-number of 
quanta of frequency w0, the total energy of which 
corresponds to the energy of the electromagnetic 
field of the wave formed by the beam i in the in­
teraction volume n. 

Noting further that 

( e2 \ 1 
--1-= 2.82·10-13 cm 
4n .' m 0 ' 

Wo 
- = 2·10-34 
mo ' 

we obtain from (22) 

dv I dO = L8 -10-5pSV02. 

Let us assume that the geometrical boundaries 
of the beams are determined by the angles f3to 

{:32 = {:33 = 30 o, and the conditions of polarization 
correspond to the case shown in Table IL Then 
for one of the two possible polarizations of the 
quanta scattered at the angle e = 0 we have in ac­
cordance with Table II 

dv I dO = 2. w-sps. 

Thus, in 50,000 discharges of the lasers, with 
light intensity of 1 kJ each, there will be scattered 
on the average one quantum per unit solid angle. 
At a laser discharge power of 10 kJ each, the yield 
increases to 0.02 quantum/sr per discharge. Such 
intensities are in principle measurable with mod-
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ern quantum -counting means. They entail, how­
ever, great technical difficulties. Before answer­
ing finally the question whether such an experi­
ment is realizable in practice, it is necessary to 
analyze many questions of both general and purely 
technical character. Thus, one of the complicated 
problems would be the appropriate focusing of the 
beams, and also the elimination of the background 
due to scattering by the residual gas in the optical 
system. If it is necessary to employ several crys­
tals, synchronization of the radiation must be pro­
vided for. The lasers must have large power and 
at the same time small dimensions. The cooling 
system should be very efficient to ensure large 
repetition rate of the discharges. All these ques­
tions pertaining to the setup of the experiment call 
for a separate analysis. 

We note, finally, that one can raise the question 
of increasing the yield of the scattered reaction 
without further increase of the laser power. One 
such method, for example, is to use the micro­
structure of the beams (the time variation of the 
intensity). The reaction yield is proportional to 
the densities of all three beams, so that it is more 
convenient to have a beam not of constant intensity, 

but of intensity in the form of individual peaks. 
In conclusion, the author considers it his plea­
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