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It is shown that a series of singularities exists in the phonon spectrum owing to the quantiza­
tion of the electron states in a magnetic field H. For a spherical Fermi surface the spectrum 
singularities are of a logarithmic nature. This means that they are more pronounced than in 
the case H = 0 considered by Migdal and Kohn. The anomalies of the phase velocities are 
related directly to the giant quantum oscillations of the phonon damping.[9] 

J. The emission and absorption of Bose quasi­
particles by the conduction electrons leads, as is 
well known, to threshold effects in the attenuation 
and to anomalies in the spectra of these quasi­
particles. Migdal [ 1] and Kohn [2] showed that be­
cause of the interaction of the electrons with the 
phonons there appears in the phonon spectrum of 
metals a logarithmic singularity. Overhauser [a] 

pointed out an analogous effect in the spectrum of 
the spin waves in ferromagnetic metals. The ano­
maly in the phonon spectrum occurs for a phonon 
momentum q equal to twice the Fermi momentum 
of the electrons. A similar anomaly was observed 
experimentally by Brockhouse and his co-work­
ers[(, 5] in experiments on the scattering of slow 
neutrons. The nature of the singularity in the pho­
non spectrum is closely related to the topology of 
the Fermi surface. Migdal [1] and Kohn [2] showed 
that for a spherical Fermi surface the group ve­
locity of the phonons tends to infinity as 
In I q - 2p I. Afanas 'ev and Kagan [s] investigated 
the phonon spectrum for an arbitrary dependence 
of the energy of the electron on the momentum. 
They showed that the singularity becomes stronger 
for open Fermi surfaces of various types. Kaganov 
and Semenenko [7] and Taylor [a] also studied the 
phonon spectrum of metals in the case of an arbi­
trary Fermi surface. 

The existence and experimental observation of 
an anomaly in the phonon spectrum makes it ap­
parently possible to obtain direct information about 
the equal-energy surface of the electrons in a 
metal. It is of interest to elucidate the nature of 
the singularity in a magnetic field, since the avail­
able methods for studying Fermi surfaces are 
connected with effects in strong magnetic fields. 

In this paper we show that the singularity of 
the phonon spectrum of a metal becomes stronger 

in a quantizing magnetic field, in that a logarith­
mic singularity appears in the phase velocity of 
the phonon even in the case of a spherical Fermi 
surface. In addition, instead of one anomaly, there 
appears a whole system of singular points due to 
the quantization of the electron states on the Fermi 
surface. 

We note that the absorption of sound in a mag­
netic field has been investigated in numerous 
papersl). Quantization of the energy levels of the 
electron leads to a series of oscillatory effects, 
in particular to giant oscillations in the absorp­
tion of sound.[s] The singularities of the phonon 
spectrum investigated in this paper are in es­
sence giant quantum oscillations of the phase ve­
locity of sound in metals. 

2. In order to investigate the spectrum and 
attenuation of phonons, we calculate, as in the 
work of Migdal,[tJ the double-time Green's func­
tion. We consider the simplest Froehlich model 
in which account is taken only of the interaction of 
the electrons with the longitudinal phonons. The 
interaction Hamiltonian is written in the standard 
form 

(1) 

where ap and ap are the production and annihila­
tion operators of the electrons, bq and bq are 
the analogous operators for the phonons, 

g = (2n2~ /mop) '/• (2) 

is the coupling constant of the electrons and the 

l)In view of the large number of papers on the absorption 
of sound in metals in a magnetic field, we will confine our­
selves to references dealing directly with problems consid­
ered in this article. 
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Here D0 is a phonon Green's function in the ab­
sence of interaction (g = 0), and r(x, x', x") is 
the total vertex part. The Green's function 
G ( x, x') of the electrons in a magnetic field de­
pends not only on the difference of the spatial co­
ordinates. 

It is well known that the interaction of the elec­
trons with the phonons occurs only in a narrow 
layer with a width of the order of WD ( WD is the 
limiting frequency of the phonons ) near the Fermi 
phonons, n = 1, m 0 is the mass of the electron, p 
is the Fermi momentum, and t is a dimension­
less constant ( /'; < %) connected with the defor­
mation potential. 

We shall not take into account Umklapp proc­
esses and the interaction of the electrons with the 
transverse phonons due to these processes. We 
restrict ourselves in this paper to an isotropic 
dispersion of the electrons. 

As V. Gurevich has shown,U0J in a strong mag­
netic field there is generally speaking an inductive 
interaction in addition to the deformation interac­
tion (1) This mechanism is related to the appear­
ance of an induced electric field in the deformed 
conductor. However, our calculations show that in 
all the cases considered below the inductive inter­
action turns out to be insignificant. 

Initially we will consider zero temperature and 
we will neglect the scattering of the electrons; 
subsequently we shall allow for the effect of dissi­
pation. 

We write Dyson's equation for the phonon 
Green's function: 

D(x-x')=D0 (x-x')+2ig ~ D0 (x-xt)G(xt,x2)G(xs,Xt) 

X r ( X2, Xs; Xi) D ( x, - x') d4Xt d4x2 d4xs d4x, (X = x, t). 
(3) 

level. For this reason one can, as Migdal [t] 
showed, replace the electron Green's functions G 
in Eq. (3), with an accuracy up to terms of the 
order (m0/M)!/2 (M is the mass of the atom), 
by the functions G0, and r can be replaced by the 
simple vertex part. This assertion is obviously 
also true in the presence of a magnetic field. 

In the p-representation Dyson's equation (3) 
can be written in the form lttJ 

D-1 (q) = Do-1 (q) - II(q), q =· (q, ffi), 

ffio2(q)Do-1 (q) =··ffi2 - ffio2(q), (4) 

where w0 ( q) = s I q I and s is the unrenormalized 
speed of sound. 

The polarization operator TI is defined by the 
relation 

2"g2 
II (q)l'l(q- q') =- ( 2~) 4 ~ dpt dp2 dffi2 Go(Pt + q, P2; (J)2 + ffi) 

XGo(P2-q',Pt;ffi2)· (5) 

The zeroth-order Green's function of the elec­
tron in the magnetic field has in the p-representa­
tion the following form: 

00 11> ( ) a>. ' 
G ( '. ) - \ d d ~ m'x''z p mcx"z (p ) 

0 p, p '(i) - J :l'tx :l'tz "-l (i)- Bn (P.) + JL + i6 sgn (i) 
n=o 

= r''>l'l (Px- P,/) () (P.- P:) 

oo "i'n m "i'n (;') exp [iy'l• Px (s- ;')I 
x~o'ffi- (n + 1/ 2) Q- P.2 I 2m0 + JL + i6 sgn [en(P.)- Ill 

(6) 

The wave function of the electron is given by 
the expression 

€llnnx:r, (p) = y'1• exp (iYPxPy)'IJln(s)6(:rtx- Px)6(:rtz- Pz), 

"Y = c/eH is the square of the magnetic length, 
; = Py"Yt/2 

Bn(Pz) = (n + 1/2)Q +pi/ 2mo 

is the energy of the electron in the magnetic field, 
Q is the cyclotron frequency, 1J. is the Fermi en­
ergy, o- +0 

is the Hermite function normalized to unity, 
Hn ( ; ) is the Hermite polynomial. The z axis is 
chosen along the direction of the constant magnetic 
field H. It is shown in the Appendix how one can in 
expression (6) make the transition to the limiting 
case H = 0. 

Substituting (6) in (5), we integrate over the 
momenta and over the frequency. The integrals 
over ; and ; ' are obtained with the use of the 
formula 

"" 
\ dx exp(-x2)H,(x + y)Hm(x + z) exp(-iux) 
"' 

[ (Y- z)2 + u2] = 2<m-n)l2(z- y- iu)n-mLmn-m 2 

[ (y-z)2+u2 .u(y+z)] 
X exp - 2 + ~ 2 (n > m) 

Here r.g ( x) is the generalized Laguerre poly­
nomial normalized to unity. Integration over w2 
is carried out with the aid of the relation 

(x+i6)-1 =P(-~) -:rtil'l(x), (7) 

where P denotes the principal value. 
As a result we obtain for the polarization op­

erator the following expression: 

g2 00 2 
II(q) = 22- ~ M,,(p) 

:rt Yn,m=O 

xfdpz /olEm(Pz-qz))-/o[En(~z)). (S) 
-oo En (Pz)- Em (Pz- q.)- ffi + ll'l sgn ffi 
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Here 

M ( ) ( p) I I/2L lm-nl ( ) nm P = exp -2 P m-n min(m, n) P , (9) 

P = Y2 'Y ( q~ + q} ); f0 ( E) is the Fermi function at 
zero temperature. Carrying out the integration 
over Pz in (8), using relation (7), we obtain 

\; Q 00 

lmii(q) = -:rr2fkT [t n,~~oM~mlfo[em(p,(O)- q,)] 

- fo [en (p,<0l)] I, (11) 

where 

(12) 

N is the largest integer for which Xn is real; k 
= qz/p; pJ.0> is determined from the condition 

En'(p,(O)) - Em(p/0)- q,) = (!), (13) 

The general equations (10) and (11) describe the 
change of the spectrum and the attenuation of the 
phonons resulting from their interaction with the 
electrons. From the expression (10) for Re II ( q) 
it is obvious that in the isotropic model being con­
sidered logarithmic-type singularities exist in the 
phonon spectrum. These anomalies occur (neglect­
ing the phonon frequency w) at values of the pro­
jection of the phonon momentum 

q, ~ ±Pzn ± Pzrn (Pzn = PXn). (14) 

The appearance of the system of singular points 
(14) is connected with the quantization of the elec­
tron momentum projected on the direction of the 
magnetic field on the Fermi surface En ( Pz ) = J.L. 
The phonon attenuation exhibits jumps (giant quan­
tum oscillations [9]) depending on whether pJ.0> 

falls into the "allowed" intervals of values of Pz 
determined by the conditions 

0 < En (pz) - ll < J (I) J. (15) 

3. It is convenient to consider the nature of the 
singularity in the phonon spectrum in the simplest 
case when the vectors q and H are parallel. In 
this case p = 0, Mnm = <'>nm• and expression (10) 
goes over into 

\; Q N I (k-2x,.)2-(w/k~-t)21 
Re II = - -~ In . -:-:---,-----:----c-:--'--

2k 1-tn~o (k+2xn)2-(w/k~-t)2r" 
(16) 

We separate in (16) the term with the singular­
ity, and, keeping in mind that in the quasi-classi­
cal approximation N » 1, we transform the re­
maining sum with the aid of Poisson's equation 

Re II= j_ Q-ln I (k- 2xn)2- (w/k~-t)21 
2k ll (k+2xn)2-(w/k~-t)21 

(17) 

The second term J 2 in (17) defines a renormal­
ization of the sound velocity which does not depend 
on the magnetic field. Completing the elementary 
integration, we obtain Migdal's result [1] 

[ 4-k2 I k+2IJ l2=-\; 1+~In --- . 
4k k-2 

(18) 

We do not consider small corrections of the 
order (w/kJ.L2 ) ~ (s/v) 2 ~ m 0/M (vis the veloc­
ity of the electrons on the Fermi surface) which 
generally speaking exceed the accuracy, since no 
account was taken of the interaction of the elec­
trons with the electric fields appearing in the de­
formation of the lattice. This interaction leads, as 
the calculations show, to terms of the same order 
in ( s/v )2 (cf. also [12] ). 

The last term in (17) describes quantum oscil­
lations of the phonon spectrum of the same type as 
the de Haas-van Alphen oscillations. For values 
of k on the order of unity ln I ( k - 2xn )/ ( k + 2xn) I 
can be expanded in a series in k- 1, since the main 
role in the integral over n is played by large 
values of n ~ N for which Xn « 1. Allowing for 
this circumstance, we find that 

8\; (Q)'/, 00 (-1)i. ( .f.t :rt) 
!3 =- :rrkZ --; ~1 (2:rrj)'f, sm 2:rtJQ-f; . (19) 

From a comparison of (17) and (19) it follows 
that the oscillatory part of the spectrum is con­
siderably smaller than the term with the singular­
ity (for k ~ 1). 

Far from the singularity the first term in (17) 
disappears. For small values of k ( k « N-1/2 ) it 
follows from (16) that 

Q N 

Reii = -\;-- ~xn-1 , 
f.tn=O 

(20) 

i.e., the change in the phonon spectrum is propor­
tional to the density of electron states in the mag­
netic field. This proportionality has been investi­
gated repeatedly by a number of authors (see, for 
example,C13] ). It follows from (20) that 

Re II= -2\; {1 + ( E_)'l• ~ ( - 1); cos (2:rrj ~- ~)}. 
,2f.t . f'/, Q 4 

J~l 

(21) 

Equation (21) is valid far from singularities of the 
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density of states in a magnetic field [l3] 

Xn~1 / N. (22) 

Let us now discuss the attenuation of the pho­
nons. For q II H the expression in the sum in (11) 
differs from zero only for a single value n = m, 
given by the inequalities 

!l.( 00+2) 1 !l( 0)_2) 
Q 1 - 4k2f.t2 < n + 2 < Q 1 - 4k2f.t2 ' (23) 

where W± = I w I ± k2f..t, the width of the interval in 
which the attenuation differs from zero being 
I w l/r2. Consequently the phonon attenuation is an 
aggregate of narrow rectangular maxima. The 
value of the imaginary part of TI ( q, w) at the 
maximum is 

~Q 
Im II = -n k -i . (24) 

Outside the regions (23) the attenuation vanishes, 
since we have taken no account of dissipative 
mechanisms. Equation (24) coincides in essence 
with the result of Gurevich, Skobov, and Firsov[9 J 
and describes giant quantum oscillations in the 
sound absorption. 

It follows from (16) and (24) that near a singu­
larity the change of the phonon spectrum is logar­
ithmically large compared with the attenuation. 
The position of the singularities is, as can be seen 
from Eq. (16), determined by the condition 

Xn2 = ( ~ ± ;:~r. (25) 

One can readily show that the position of the 
singularities (25) coincides with the boundaries of 
the interval (23) in which the attenuation differs 
from zero. Figure 1 is a schematic diagram of the 
dependence of the real and imaginary parts of TI 
on k in the absence of dissipation. The figure also 

shows the fine structure of the resonance peak 
corresponding to (25). 

4. The above calculation referred to the case 
T = 0. Here we shall consider the effect of tem­
perature on the singularities of the phonon spec­
trum. The polarization operator is expressed in 
terms of temperature Green's functions as follows: 

(26) 

Here <! 0 ( p, wj ) is the temperature Green's func­
tion of the electron, Wj takes on discrete values 
( 2j + 1) 1rT, and j is an integer. 

Summing over the frequencies and integrating 
over the momenta, as was done for T = 0, we ob­
tain 

(27)* 
The spectrum of the system can be obtained 

with the aid of a retarded Green's function DR. 
To this end one must continue Sl ( q, Ws) ana­
lytically into the upper half-plane of the complex 
variable w. Setting iws = w + io, we obtain 

! 00 

Bl (q, w) = (2!)2 y ~ Mn! ~ dp, 
n, m -oo 

th[(e (p -q)-J.L)/2Tj-th[(e (p)-J.L)/2T] x: m z z n z • 
8n (pz)- 8m (P,- q,) - Ol- i{) 

(28) 

*th = tanh. 
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In the case when q II H it follows hence that 
(after integrating by parts and a change of vari­
able Pz = px) 

oooo 
!Ji7 ~ Q C xdx 

Re :Jl (q, ro) = 4k T 2.] j ch2 J.L (x2 - Xn2) 1 2T 
n=O o 

Xln 1. (x- k/2)2- (ro/2kf.l,)21 
(x + kl2)2 - (rol2kJ.L)2 • 

(29)* 

Equation (29) describes the temperature 
smearing of the resonance peak (17). Account of 
the temperature obviously leads to a finite correc­
tion to the spectrum. At the singular point 

Q '2 
ReSZ' = _j__ln (~J.Lk2 ) (30) 

k J.L . n T ' 

where ln 'Yc = C = 0.577, the Euler constant. 
The logarithm in (30) is large when J..Lk2 » T, 

i.e., 
(31) 

In this case we need retain in the sum (29) only 
one resonance term. The resonance in this case 
is, as can be seen from (28), as previously a series 
of narrow maxima (of width w/Q) with a flat "top" 
and a characteristic height !;Q/kJ..L whose bounda­
ries are washed out exponentially by the tempera­
ture. 

For typical materials with m ~ m 0 inequality 
(31) is fulfilled at temperatures on the order of 
one degree for frequencies w larger than 
1010 sec- 1• We note that condition (31) can be 
satisfied for smaller frequencies for anomalously 
small electron groups with a small effective mass. 

The "temperature width" ~Xn of the resonance 
peak is of the order of T/J..Lxn, or, in terms of the 
magnetic field, 

.1.H I H ""' T I Q. (32) 

The requirement that the width be small com­
pared with unity coincides thus with the condition 
of "strong" quantization 

T~Q. (33) 

In the case of low frequencies when the inequal­
ity (31) is replaced by its inverse, the term with 
the singularity disappears and one can use in the 
expression (29) Poisson's summation formula 

00 

Re 5l (q, ro) = ~ ir ~ x2dx ch-2 ir (x2 -1) 
0 

{ x2-k2 14 ~x-'k/21' ~ Q 00 (!' 
X 1 - kx ln x + kl2 J + T T ~ ~ cos 2njndn 

J=l 0 
00 

(' d h-2 J.L ( 2 2) 1 I X - k I 21 ~ x X c 2T x - Xn n x + k I 2 • 
0 

(34) 

*ch =cosh. 

We have integrated the first term of (34) over n, 
and then integrated by parts. The first term in 
(34) describes the temperature smearing of 
Migdal's singularity in the absence of a magnetic 
field (the transition to the limiting case T = 0 is 
obvious), and the second term describes the de 
Haas-van Alphen type oscillations of the sound 
velocity at a finite temperature. For the latter we 
obtain 

ReSlDHVA (q, ro) 

=4t~(-1)iAi~xdxcos2nj~(1-x2)ln I=~~~~[, 
1 (0) 

where* 

Ai=~jT/Q 
sh (2n2jT /Q) 

(35) 

For large and small values of k we arrive re­
spectively at Eqs. {18) and (21) with account of the 
temperature factor Aj in the summation. 

The attenuation of phonons in the low-frequency 
case under consideration was investigated in [a]. 

One readily obtains from (28) 

ImSZ'= --~~Q~ch-2[~(x 2_(!:)2)] (36) 
4/c J.L T .2T n 2 ·. 

From a comparison of (24) and (36) it is seen 
that the attenuation differs considerably, depending 
on the relation between the energy of the phonon 
w and the temperature T (see Fig. 2). At low 
frequencies (curve a) w « T the attenuation 
maxima become lower and broader, whereas the 
case of high frequencies (curve b) corresponds 
essentially to the case of zero temperature. 

5. In order to take into account the scattering 
of the electrons in the relaxation-time approxima­
tion, the adiabatic parameter 6 in (28) must be 
replaced by the collision frequency v. As a result 
the frequency w in Eq. (29) is replaced by w + iv. 
Let us consider the conditions under which one can 
separate the resonance term in (29) 

(37) 

Two close maxima (25) with the same n (see 
also Fig. 1) are allowed under the obvious condi­
tion 

(l)~'V. (38) 

A singularity in the spectrum will not smear 
out as a result of electron scattering if the dis-

*sh =sinh. 
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H 
FIG. 2 

tances between two neighboring peaks are consid­
erably larger than their widths. In the low-fre­
quency case this requirement leads to the inequal­
ity 

(ql)2~ 1.1.1 Q, (39) 

which coincides with the known condition for the 
existence of giant quantum oscillations in the at­
tenuation of sound.C9J 

6. Singularities in the phonon spectrum appear 
only when the projection of the wave vector of the 
phonon qz on the direction of the magnetic field 
differs from zero. For q 1 H transitions with a 
change in Pz are forbidden by the conservation 
laws. Going in (10) to the limit k - 0, we obtain 

Reii( } =- 2"Q ~ Mnm2(yq2/2}~{1 + co }. 
q "'1.1. L.J Xn+Xm (n-m)Q-co 

n,m=O 

(40) 
Inasmuch as there are in this case no quantum 

singularities in the phonon dispersion, one can 
make use of a quasiclassical approximation. Thus 

Mnm2 (x} = J!-m(Y2(n + m + 1)x) (41) 

and 

QN "" 
Reii(q} ==- ~- ~ Xn-t{ 1 + ~ lu.2{qRn} aQ ~co}, 

1.1. n=O u.=-oo 

where J a ( x) is the Bessel functions, and Rn 
~ [ ( 2n + 1) y ]112 is the radius of the electron 
orbit with the principal quantum number n. 

(42) 

As can be seen from expression (42), the polari­
zation operator is proportional to the density of 
states of the electrons in the magnetic field [cf. 
(20)]. Therefore the quantum effects which occur 
in this case are described by Eq. (21). Going over 
in ( 42) to integration over n, we obtain the classi­
cal result in the absence of scattering: 

{ " 12 r Ju.2(qRsintt)co} 
Re II ( q) = - 2~ 1 + ~ sin tt dtt J uQ _ co - ' 

0 a=-oo 
(43) 

where R = cp/ eH is the maximum radius of the 
electron orbit. 

The term -2t is the electron renormalization 

of the phonon spectrum for H = 0. The second 
term in (38) for qR » 1 describes the oscillations 
of the geometrical resonance (see Pippard 's 
paper [14] ) and also the acoustic cyclotron reso­
nance.C15] In a strong magnetic field ( qR « 1) 
there remains in the sum of ( 43) only one term 
with a = 0 which corresponds to the effect of a 
sharp change in the velocity of longitudinal sound 
in the high-frequency case ( w » v) considered 
in [16]. 

7. The appearance of singularities in the pho­
non spectrum in a quantizing magnetic field is a 
rather obvious result of the Kramers-Kronig type 
dispersion relations. Therefore all the formulas 
cited above for the phonon spectrum can of course 
be obtained with the aid of these relations, start­
ing from the known expressions for the absorption 
coefficient. 

As has been shown above, the change in the 
spectrum near a singularity is relatively large 
compared with the attenuation. Therefore the ex­
perimental observation of the anomalous phonon 
spectrum in a magnetic field can serve as an ad­
ditional method of obtaining information about the 
Fermi surface and about the electron-phonon in­
teraction in metals. The effects considered can 
be observed experimentally in measurements of 
the phase velocity of ultrasound under the same 
conditions as the giant quantum oscillations of the 
absorption, [t7' 18] and also in experiments on the 
scattering of slow electrons in metals at low tem­
peratures. The ultrasound experiments corre­
spond to the low-frequency case considered above, 
whereas in the neutron scattering experiments one 
can realize the high-frequency case. 

Bismuth, in which giant quantum oscillations of 
the absorption of low-frequency sound were first 
observed,[17] is of special interest from the point 
of view of observing the above effects experi­
mentally. It is well known [19 ] that bismuth has a 
relatively low carrier density ( ~ 1017 em- 3 ) and 
a strong anisotropy of the Fermi surface. The 
electron Fermi surface constitutes an aggregate 
of ellipsoids strongly elongated in directions al­
most perpendicular to the binary axes. They go 
over into each other in 120 ° rotations about the 
trigonal axis. The Fermi energy in bismuth is 
2. 75 x 10- 14 erg = 2.6 x 1013 sec- 1• 

We present a table of values of the main 
parameters along the principal directions of one 
of the ellipsoids 

The axis 1 coincides with the binary axis, the 
axis 2 is inclined at a small angle ( ~ 6° ) to the 
basal plane, and the axis 3 is almost parallel to 
the trigonal axis. Here 2Pi is the maximum 
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Direc-1 2p;. em·• • 1• em/sec "'ma,e e 1 
tion -•cps me' cps-Oe Zit 

I 106 2.6·105 4,1-1010 1.5 ·108 

2 15-106 2. 7-105 6.5·1011 2.2-108 

3 1.4-106 2-105 4.5 ·1010 2-108 

diameter of the ellipsoid along the i-th axis, sz is 
the speed of the longitudinal sound, Wmax 
= 2piSZ is the maximum phonon frequency corre­
sponding to Pz = Pz max ( n = 0 ). The values of the 
gyromagnetic ratio for a magnetic field orienta­
tion along the corresponding axis are indicated in 
the last column. 

It is clear from the presented data that owing to 
the large value of the gyromagnetic ratio it is 
comparatively simple to satisfy the quantum con­
ditions (33) and (39) in magnetic fields of 103-

104 Oe. This apparently explains the fact that giant 
quantum oscillations are observed in bismuth in 
the region of comparatively low frequencies. To 
observe high-frequency singularities in the phonon 
spectrum, use must be made, as can be seen from 
the table, of hypersound frequencies (of the order 
of some tens of Gcs). Recently experimental 
papers [2o] reported the production of hypersound 
with frequencies w/2Tr = (1 to 4) x 1010 sec- 1; this 
makes it apparently possible to observe experi­
mentally the singularities in the phonon spectrum 
also in the high-frequency case. Analogous con­
clusions are of course also valid for other metals 
which include anomalously small groups with 
small effective masses (for example, tin, alumi­
num, indium, etc.). 

High-frequency singularities in the phonon 
spectrum (near k = 2p) for the fundamental elec­
tron groups can probably also be observed in 
typical metals by means of neutron scattering. 
Here neighboring peaks will be resolved if the 
relative indeterminacy of the neutron momentum 
~(pR)-1. 

APPENDIX 

We shall show how the transition to the limit 
H = 0 is accomplished in expression (6) for the 
zeroth-order Green's function in the magnetic 
field. We write (6) in the form 

Go(p, p') = - iy'/, 6 (Px- Px') il (Pz- Pz') 

(A.1) 
n 

and make use of the generating function of the 
Hermite polynomials 

yit~zn Hn(x)Hn(Y) = (1- z2)-'i• exp{2xy z- (x2 + y2)z~. 
. 1- 72 -f 

n 
(A.2) 

The zeroth-order Green's function of the electron 
takes on the form 

Go (p, p') = - iy'l• 6 (Px - px') f>(Pz - Pz') exp [iy Px (Py- py') 1 

X I d"C(2:rti sin Q-r) -•t, exp { i't [ ffi- :~ + ~ + i6 sgn ffi J 
0 

+ -.-i -Q [ (62 + 6'2) cos Q"C- 266'1} . 
2 sm 't . 

Using the definition 

o(x) = lim(e/2:rt) '" exp(- ex2/2), 
"-"" 

we obtain 

lim y't. (2:rtiQ-r)-'" exp { iy'l• Px (6- 6') 
H .... o 

+ - . i [ ( 62 + 6'2) cos Q-r - 266'1} 
2sm Q-r 

= v''•(2:rti Q·t)-'" exp{-'-· [6- 6' + Q-ry'" PxP 
2Q-r 

(A.3) 

h ( p 2 + p '2)} +- pi+_!!_ __ Y_ = &(py- py')exp(il'PJ.2/2mo). 
2m0 , 2 1 

Hence and from (A.3) 

[ p2 . 1-1 
limG0 (p,p') = 6(p- p') ffi- --+ ~ + lbsgnffi . 
H .... o 2mo 
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