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A simple criterion is found for the instability of nonlinear stationary potential oscillations in 
one-dimensional ion-electron beams emitted by a plane in a bounded volume at a fixed poten­
tial difference between the emitter and the collector. It is assumed that short-range collisions 
can be neglected. Cases with a monoenergetic electron beam in vacuum and against a homo­
geneous ion background are considered. Some conclusions are drawn regarding the stability of 
nonlinear stationary modes for arbitrary initial ion and electron distribution functions. 

INTRODUCTION 

PIERCE [ 1l considered in the linear approxima­
tion the instability of the zero-amplitude stationary 
mode of stationary oscillations, for the case of 
monoenergetic electrons against a homogeneous 
ion background at a constant potential difference 
cp0 between the emitter and the collector ( cp0 = 0). 
The electrons are emitted with constant initial ve­
locity Vo and have an initial density fio equal to the 
density of the ion background. He has shown that 
the mode is stable if the distance l between the 
emitter and the collector is smaller than the 
"Debye radius" rrv0/w0 (w0 = v'4rre2n0/m is the 
Langmuir electron frequency). On the other hand 
if l is constant and the Debye radius becomes 
smaller (no increases or v0 decreases), then when 
the condition 

:JWo/ coo= l (1) 

is satisfied the mode becomes unstable. With fur­
ther decrease of the Debye radius the mode will 
change from unstable to stable and vice versa at 
the points nrrv0 /w0 = l (n = 2, 3, 4, ... ) . 

In this paper we generalize the result obtained 
in [ 1l to include arbitrary nonlinear stationary 
models in one-dimensional ion-electron beams 
emitted from a plane. The classification of such 
modes is given in [ 21. 

We denote by cp, E, and v respectively the 
electrostatic potential (with negative sign), the 
electric field, and the particle velocity. The in­
stability of the stationary modes in a bounded vol­
ume at fixed potential difference cp0 between the 
emitter and the collector is due to the feedback via 
the voltage source that maintains cp0 constant. As-

FIG. 1 

sume that at the initial instant of time there is a 
certain stationary mode with emitter field E0, with 
the emitted particles having distribution functions 
fi(v) and fe(v) on the emitter (v > 0), and with a 
potential difference cp0 between the emitter and 
the collector (Fig. 1). The voltage source main­
tains cp0 constant with a certain delay time T. As­
sume that some stationary mode goes over within 
a time T 1 < T in quasistationary fashion into a 
neighboring stationary mode with different E0 and 
the same functions fi(v) and fe(v). Then, generally 
speaking, the potential cp c on the collector will 
differ from cp0 in the new mode (we assume the 
emitter potential to be identically equal to zero). 
In order to restore the previous potential differ­
ence, the source must produce at the emitter and 
at the collector equal and opposite additional 
charges, which produce between the emitter and 
the collector a homogeneous compensating addi­
tional field Ea = (cp0 - cpc)/l. This field, superim­
posed on the emitter field, will decrease the fluc­
tuation of E0 if cpE > 0 and increase the fluctua­
tion of E0 if cpE < 0. We put here 

cpE = dutcf dEolq:c=<po; (2) 

cpc(E0) is the dependence of the collector potential 
on the field at the emitter for stationary modes 
with specified functions fi(v) and fe(v) and for 
specified distances l from the emitter to the col-
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lector. Accordingly, the initial stationary mode 
will be stable or unstable against sufficiently slow 
changes of E0 (the changes of Eo must be slow 
enough so that the initial mode while changing in a 
quasistationary manner, cannot experience a no­
ticeable change within a time T 1 < T). 

In Sees. 1 and 2 we consider the stability of the 
nonlinear modes formed by monoenergetic elec­
trons in vacuum and against a homogeneous ion 
background. In Sec. 3 we draw certain general 
conclusions regarding the instability of the modes 
with arbitrary initial functions fi(v) and fe(v). 

1. MONOENERGETIC ELECTRONS IN VACUUM 

Assume that a plane emitter located at x = 0 
emits in the· x direction electrons with initial ve­
locity v0 and with initial density no. The system 
of equations 

nv = novo, d2qJ I dx2 = -4:n:en, v2 = Vo2 - 2e~ I m, (3) 

describing the behavior of the electrons in vacuum, 
has an integral 

1 ( dcp )2 v 2e~ - - = mnovo v02 ---+C 
8:n:\dx m ' 

which in dimensionless variables 

(4) 

~' = 2~ I mvo2, x' == 21'2CiloX I Vo (Cilo2 == 4:n:e2no I m) 

can be rewritten in the form 

(dcp' /dx') 2 = 1'1- cp' -1 + E0' 2; E0' == dcp' /dx'lo:•=O· (5) 

Integrating (5) with boundary condition rp'(O) = 0, 
we obtain a solution of the system (3) (see Fig. 2) 

3l.x' = ± [1'1 - cp'- 1 + E0' 2]'1•(1'1 - ~' + 2- 2E012) 

+ 3Eo' - 2E0' 3, 

-oo < E0' < oo, ffc! < 1; 

3/2X' = - [21'1 - cp'- 2 + E0' 2]'1>(1'1 - cp' + 2- Eo'2) 

+ 3Eo' - Eo'3, 

~c! > 1; (6) 

~x' =~(Eo'2 - 2)"'- E0' 3 + 3E0' + 3 _cp'- 1 , 
2 2yE0' 2 - 2 

Eo'> y2, cp' > 1, cpc! > 1. 

For 0 < E6 s 1 there exists an envelope of the 
family of solutions 

(7) 

which for large x approaches asymptotically the 
solution for EO = 0. As seen from Fig. 2, modes 
with E0 < 0 are stable for arbitrary position of the 
collector x = Xc, since 

dcpc I acp ( x, Eo) I 
-- = >O 
dEo I 'l'c aEo o:=o:c,Eo<O • 

(8) 

The modes for 0 < E~ < 1 are stable only if the 
collector is located ahead of the point of tangency 
of the envelope to the curve rp'(x') corresponding 
to the given mode; the coordinates of this point, 
for specified E~ , are defined by the relations 

X~r (Eo') = --4-
3Eo'3' 

, (E ') _ 1 ( 1 ) ~cr o - Eo'2 2 - Eo'2 . (9) 

For 1 < E0 < ..f2 the stationary modes exist 
only when the collector is located sufficiently 
close to the emitter, when the electrons reach the 
collector before the potential has time to grow to 
unity. These modes are stable, provided the col­
lector potential is not too close to unity. 

When E0 > ..f2 all the modes are stable for any 
collector position. When the collector is suffi­
ciently far from the emitter, all the electrons are 
reflected to the emitter in such modes. The total 
electron density near the emitter will in this case 
be equal to 2no. 

FIG. 2. Distribution of qJ'with respect to x' /2y'2 for vari­
ous E0 ; qJ'"' 2eqJ/mv0

2 • 

2. MONOENERGETIC ELECTRONS AGAINST A 
HOMOGENEOUS ION BACKGROUND 

Assume that the emitting electrons have as be­
fore an initial velocity v0 and an initial density no; 
the density of the ion background is denoted Uoi· 
Solving the system of equations 

nv = novo, d2qJ I dx2 = -4:n:e (n - noi), 

v2 = v02 - 2ecp I m (10) 

in analogy with the system (3), we obtain in the 
same dimensionless variables x' and r,o' an inte­
gral for the periodic solutions (when the electrons 
are not reflected from the potential barrier): 

( ~::r = mp' +i1 ~' -1 +Eo'2, 

noi 
a==--, Eo2 ~1-a, a~1. (11) 
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Integrating ( 11), we obtain the periodic solution 
of the system (10) [see Fig. 3]: 

, , [ ( n . 1- 2a ~~ 
x = a-f, + i- arcsm [ ( 1 - 2a )2 + 4aEo'2]'h 

- 2l'~(E0'2 + aq/ + l'1 - q/- 1]'1•) 

n 1- 2a - J + 2-arcsln [(1- 2a)2 + 4aEo'2]'h- 2l'aEo' ' 

a 

0 ~ Eo' ~ )'1 - a, a ~ 1. (12) b 

The period is the same for all the admissible val­
ues of E0( I E0 I < ~) and is equal to 21ra-312• 

The plots for E0 < 0 are symmetrical to the plots 
for E0 > 0 about the line x' = 1ra - 3/ 2• The periodic 
solutions are stable only up to the point of tan­
gency with the envelope; the dependence of the po­
tential Cf~r at this point on the value of E0 corre­
sponding to the given mode is determined by the 
relation 

<p~r (Eo')= 2/ (a+ E0' 2)- (a+ E0' 2) --2. (13) 

The extremal values of the potential are unity and 
( a 2 - 1)/ a 2 for the modes with IE~ I = ~and 
0 and (2a - 1)/ a 2 for the modes with E~ = 0. 

During the start of a new period (x' > 27ra-312 ), 

all the modes again become stable until the new 
encounter with the envelope, and the same happens 
in each period. For values of E0 satisfying the 
condition 

1 - a < (Eo')2 < 2 - a, 2> a;_:;,: 0, (14) 

the stationary modes exist and are stable only 
when the collector is situated sufficiently close to 
the emitter (Cfc < 1). For values of E0 satisfying 
the condition 

c 

FIG. 3 FIG. 4 

FIG. 3. The first periods of the periodic distributions of 
cp' with respect to x' a'!. for various values of I E;l < v'l -a 
[y'l - a is the maximum value of I E;l for periodic modes]; 
x'u.'f, = rooxvo-'(no; / no)'l•, 

having an envelope (III), and also the region where 
stationary modes are impossible for a suitable 
distance between the collector and the emitter (IV). 

3. ELECTRON-ION BEAMS WITH ARBITRARY 
INITIAL DISTRIBUTION FUNCTIONS 

Without taking collisions into account, the sta­
tionary distributions of the potential in electron­
ion beams emitted by a plane are determined by 
the integral of the system of the Vlasov and Po is-

E0' 2 - 2 + a > 0, a ;_:;,: 0, ( 15) son equations: 

and for a sufficient distance from the collector 
there exist stationary modes with reflecting elec­
trons, which are solutions of the equation 

(dq/ / dx') 2 = a<p' + 2"¥1- <p'- 2 + E 0' 2 • (16) 

When E0 > 0 these modes are always stable. When 
E0 < 0, for modes satisfying the condition 

a(a + Eo'2 - i)"fa -- 2 + Eo'2 < -Eo', (17) 

there exists an envelope for sufficiently large val­
ues of cp; on the other hand, if (17) is not satis­
fied, then the mode is stable for all collector posi­
tions. 

Figure 4 shows in the (E0, a) plane the regions 
of periodic modes (I), modes with reflecting elec­
trons which are stable everywhere (II), and those 

1 [ 2ecp ]'/, E2 =8nm .l fe(v)v v2 -m dv 

(' [ 2ecp J'h + SnM.\ j;(v)v v2 + M dv+C (18) 

(M is the ion mass). The relation E 2( cp) is gen­
erally speaking multiply-valued and can be repre­
sented in the form[ 2l 

EZ(cplx) = Yes(cplx) + Y;s(cp\x) + Yoo(cp). (19) 

Here Yes and Yis denote the contributions of the 
slow (reflected to the emitter) electrons and ions, 
which vanish after reflection of the slow particles 
by the first two extrema of the potential, while Y00 

corresponds to the contribution of the fast parti­
cles and has a negative second derivative every­
where. A change of E8 by a certain amount ~Eff, 
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at constant initial distribution functions fe(v) and 
fi(v) (v > 0), causes a shift of the entire plot of 
E2(!p ix) as a whole along the ordinate axis by an 
amount .6-E~, if the number of slow particles of 
each sign is conserved. On the other hand, if the 
change in the maximum and minimum values of the 
potential influences the fraction of the reflected 
particles, then a redistribution of the contributions 
Yes, Y is, and Too takes place, and the plot of 
E2(cp I x) assumes a different form. 

Let us consider first beams consisting of parti­
cles of the same sign, for example pure electron 
beams. When E0 < 0 these beams are stable for 
arbitrary positions of the collector, the same as 
the beam of monoenergetic electrons. Indeed, for 
a specified distribution function fe(v), modes with 
large absolute value of E0 correspond to larger 
absolute values of E for each value of cp (Fig. 5a) 
and accordingly to smaller values of cp for a spec­
ified value of x (Fig. 5b). Modes in which all the 
electrons are reflected, that is, modes with E0 

larger than a certain Eocr• are also stable. The 
mode with E0 = Ecr corresponds to E = 0 after 
reflection of the electrons (x > Xcr• Fig. 5b). For 
E0 in the range 0 < E0 < Ecr• the modes can be 
stable everywhere (Fig. 5b), or else can have an 
envelope for certain values of E0 and be stable 
only up to the envelope (Fig. 5c). The envelope 
may appear in the case when the plot of E2(cp) 
(Fig. 5d) has some part with a negative derivative 
of sufficiently large absolute value (even if this 
part of the plot lies below the abscissa axis at the 
given E0, meaning that the initial distribution func­
tion contains a large group of electrons with near 
equal energies. 

For E0 > 0, when the collector is situated suf­
ficiently close to the emitter, the limitation im­
posed by the collector potential on the growth of 
the potential may cause part of the slow electrons 
not to be reflected to the emitter, but to strike the 

collector. A corresponding change takes place in 
the variation of the potential between the emitter 
and the collector for a given E0, compared with the 
case of total reflection of the slow electrons. We 
can show, however, that even such modes with 
monotonic potential are stable. 

Modes in pure ion beams are similar to those 
considered above and differ only in the signs of E0 

and cp. 
Let us proceed to consider modes in beams with 

particles of both signs. The modes with monotonic 
potential, which correspond at sufficiently large 
distances from the collector to total reflection of 
the electrons (ions), are stable for arbitrary col­
lector positions (Fig. 6a). Similar modes, having 
for a sufficiently large distance from the collector 
an extremum of the potential (that is, E0 < 0 for 
reflected electrons and Eo > 0 for ions (Fig. 6b)), 

~._L_. 
0 0 
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FIG. 6 

are certainly stable only when the collector lies 
ahead of the potential extremum (that is, when 
there is still no reflection of the corresponding 
particles). In the presence of a potential extre­
mum, the modes can be either stable or unstable. 
To determine the stability it is necessary here to 
calculate dcp cfdE0 for specified fe(v) and fi (v) 
and for a specified distance to the collector Xc in 
each concrete case. 

Let us consider now modes in which a purely 
periodic structure appears at a sufficiently large 
distance to the collector, that is, modes with fast 
particles of both signs. These modes are stable 
when the collector is situated ahead of the first 
potential extremum. If there are no particles re­
flected near the first extremum of the potential, 
then the modes become unstable between the first 
and second extrema. Indeed, in this case the mini­
mum value of the potential decreases with increas­
ing ~. and the maximum increases (Fig. 7a, 
dashed curves). This means that modes with nearly 
equal values of E0 have a point of intersection 
ahead of the second extremum of potential (Fig. 7b), 
and since the instability condition 8cp(x, E0)/8E0 < 0 
is satisfied near the point of intersection, the mode 
will become unstable at some neighboring point. 

If enough particles are reflected near the first 
extremum of the potential, then we can choose, in 
principle, distribution functions fi(v) and fe(v) 
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FIG. 7 

such that the modes will be stable up to the second 
extremum and beyond for values E0 in a certain 
interval ~Eo near the given value of E0• Let us 
consider by way of an example a case with E0 > 0 
and consequently with reflected electrons near the 
first extremum (Fig. 7c). With increasing E0 the 
maximum of the potential increases, but the mini­
mum also increases, owing to the decrease in the 
function Y00 (c:p)(see [ 21 ) as a result of the decrease 
in the number of electrons passing through the po­
tential barrier. Thus, the appearance of a point of 
intersection of close modes is not unavoidable in 
this case (Fig. 7d), but in order for the mode to be 
continuously stable at sufficiently large distances 
from the emitter (several times the Debye radius), 
it is necessary to choose quite exactly the initial 
distribution functions fe(v) and fi(v), such as to 
ensure, in particular, equality of the two periods 
in the close modes. For random functions fe(v) 
and fi (v), the mode will as a rule become unstable 
even after the first or second extrema of the po­
tential. 

In order to determine in greater detail the sta­
bility properties of the modes at specified func­
tions fe(v) and fi(v), it is necessary to calculate 
the distributions c:p(x, Xc, E0) for different Eo and 
a given xc (the distribution becomes dependent on 
xc when the collector is sufficiently close to the 
emitter, when the collector position influences the 
fraction of the reflected electrons). 

Let us formulate the deductions of this paper. 
1. Instability of planar electron-ion beams with 

fixed potential difference between the emitter and 
a certain point of the beam (collector or grid) is 
the result of feedback through the voltage source 
that maintains constant the potential difference, 
for dc:pc/8Eo > 0, where <Pc is the collector poten­
tial (with the usual sign) and E0 is the field at the 
emitter. If the relaxation time in the source cir­
cuit is r > w01, then the stability develops within a 
time of the order of r, but if r < w01 , then the de­
velopment of instability is delayed only by the in­
ertia of the plasma and occurs within a time of the 
order of w01 (the case considered by Pierce[ 1J). 

2. The stable modes are those with monotonic 
potential between the emitter and the collector 
(grid)(that is, for a plasma-gap length shorter than 
or of the order of the De bye radius). Modes with 
one extremum of potential can be either stable or 
unstable. The presence of slow particles, generally 
speaking, improves the stability. Modes with two 
and more potential extrema (that is, with a plasma 
gap longer than several Debye radii) are as a rule 
unstable. 

3. For the stability of beams with fixed differ­
ence of potentials between the construction ele­
ments it is necessary either to choose the param­
eters of the apparatus such as to make the distance 
between neighboring elements not larger than the 
Debye radius (for example, by introducing inter­
mediate grids), or weaken the feedback by increas­
ing the time r (by introducing inductance in the 
source circuit), or else by using non-planar geom­
etry. 

In conclusion I am sincerely grateful to A. I. 
Morozov for suggesting the topic and M. V. Nezlin 
for a fruitful discussion. 
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