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We considered the detachment of electrons from weakly bound negative ions of the first group 
in the periodic table, interacting with inert gases. The perturbation theory and the Fermi po­
tential are used in the calculations. The cross section for the detachment of an electron from 
a negative ion is found to be equal to the total cross section for the elastic scattering of slow 
free electrons by the corresponding inert gas atoms at electron velocities equal to the relative 
velocity of the colliding atomic systems. 

THE cross section for the detachment of an elec­
tron from a negative hydrogen ion in helium was 
calculated by Sida [ 11 in the Born approximation. 
In the form used by Sida, the calculations can yield 
correct results only for collision velocities greater 
than 2e2/li, which corresponds to hydrogen ion en­
ergies greater than 100 keV. In fact, the agreement 
between Sida's calculations and experimental re­
sults at low velocities, particularly the quantitative 
agreement, leaves much to be desired. 

The perturbation theory is also used in the 
present paper. However, the theory is applied to 
an effective potential of the o-function type, which 
corresponds to the interaction of an electron be­
longing to a negative ion with an inert-gas atom. 
This potential is selected to obtain the correct 
scattered S-wave (the Fermi potential) on apply­
ing the Born approximation to the problem of the 
scattering of a slow electron in a given inert gas. 
In fact, the dimensions of the region effectively 
occupied by the wave function of a weakly bound 
electron in a negative ion are much larger than 
the dimensions of a target atom. The region occu­
pied by the atom can be eliminated from the prob­
lem by applying to its boundaries the conditions 
for a logarithmic derivative of a wave function. 
We can also introduce a potential of sufficiently 
small dimensions, to which the perturbation theory 
can be applied and which gives the same boundary 
conditions. 

Naturally, such a calculation will be applicable, 
in contrast to Sida's calculations, to collision ve­
locities such that the de Broglie wavelength of the 
electron is much larger than the dimensions of the 
inert-gas atom, v « e2/li, but at the same time the 
velocity of the ion should be considerably higher 
than the "velocity of an electron in the orbit of a 
negative ion," i.e., .J2E / m, where E is the energy 
binding an electron to a negative ion and m is the 

electron mass. In this case a calculation based on 
classical mechanics gives a cross section for the 
electron detachment equal to the cross section for 
the elastic scattering of an electron by an inert­
gas atom. A similar result follows from the calcu­
lation given below. 

Assuming the negative ion (H-, LC, Na-, K-, 
Rb-, cs-) to be fixed at the origin of coordinates, 
the position of the inert-gas atom can be given by 
the radius vector R, which depends on time R 
= (p0, vt), v = IRI, Po is the impact parameter. 

The cross section for the detachment of an 
electron from a negative ion in the field of an 
inert-gas atom is given by the formula:U 

00 dk 
0' = ~ 2npodpo ~ IWI 2 (·2 )a' (1) 

Po k 1t 

where dk = k2 sin 8dkd8dcp, and I W 12 is the prob­
ability of detachment. Allowing for the electron 
exchange in the negative ion, W is given by 

W = L ~ ~ ~ '1'/ (rt, r2, t)[b(r1 - R) + b(r2- R)] 

(2) 

Since the +-function is symmetrical with respect 
to the electron coordinates r~o r 2, we have 

W=2L~ ~ 'I'/(R,r2,t)'l'i(R,r2,t)dr2 dt. (3) 

The double integral with respect to r 2 in Eq. (3) 
represents some function of R which, at large dis­
tances, degenerates into a product of the wave 
functions of a free electron and an electron bound 
to an atom of an alkali metal. The latter is given 
by 

1/ a e--«R IJl; = V ___ eia.'t/2 
2n R 

l)We use the atomic system of units in which e 2 = fl =me = 1. 
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and satisfies the time-dep..::ndent Schrodinger 
equation 

( 1 . a) --.1- l- qJ;(R, t) = 0. 
2 at 

Here, D. is the Laplace operator in spherical co­
ordinates, and a = ..f2E, where € is the energy 
binding an electron in a negative ion. 

The wave function of a free electron will be 
represented in the form 

[ 
"kR. sin kR .• sin ( kR + 6o) J .. ,112 

qlf = e' - ---+ e'"o e-'" 
kR kR 

[ eii<R J = eikR + eia, sin 6o kR e-ik't/2, 

i.e., a plane wave "corrected" by introducing the 
right zero phase. 

The a-function in Eq. (2) behaves as the Fermi 
interaction potential, which describes the influence 
of a rapidly moving inert-gas atom on a bound 
electron. The coefficient L in Eq. (2) is a theo­
retical parameter which is found from the experi­
mental data. It is equal to 2rrl , where l is the 
length characterizing the scattering of slow elec­
trons by corresponding atoms of inert gases. 

Since vt = z, the probability of electron detach­
ment has the form 

ll'2na ""~ ( . k2 + a2 ) eikR ly2na W=---· exp -aR+l---z --dz+---
v 2v R v 

-oo 

e-ia, sin 6o f exp(- ikR- aR + i~2 + a2 z) dz 
.l 2v kR2 · 

-00 ( 3') 

However, to shorten the calculations it is conve­
nient to use directly the square of the modulus of 
this expression: 

Here, we have introduced the following notation: 

A = a sin 60 cos 6o -- b sin2 6o, 
B = b sin 60 cos 6o + a sin2 6o, 

r ( a2 + k2 ) e-ikR 
C = .l exp - aR + i ---z;- z --R- dz, 

-oo 

f ( a2 + k2 ) cos kR 
a = .l exp - aR + i ~ z kfi.2" dz, 

f ( a2 + k2 ) sin kR b= .l exp -aR+i~z ~dz. 
-00 

Using Eq. (5), the expression in the square 
brackets of Eq. (4) can be written thus: 

(C + A)2 + B2 = (a2 + b2) sin2 60 

+ 2Ca sin 6o cos 6o-2Gb sin2 6o. 

(5) 
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FIG. 1. Cross section for the detachment of an electron 
from H- in He and N e. 1'1 - experimental data from[ •] for He 
target; o, •- experimental data from[2] for H- in He and Ne, 
respectively; dashed curve is theoretical, taken from['] for 
He target; the continuous and chain curves represent the 
results of the present investigation for H- in He and Ne, 
respectively. The values of the scattering lengths l were 
taken from[ •]. 

Since, C is an integral which includes a plane 
wave, having the following form when expanded in 
terms of Legendre's polynomials 

00 

eikRcose=l~ (-i)i(2j+i) 
j=O 

( R )i ( 1 d )i sin kR XPj(COS 8) - -- ---
k RdR kR' 

and a includes, under the integral sign, the factor 
(cos kR)/kR, in subsequent integration with re­
spect to sin ede, the product aC gives zero in 
those cases when j =f:. 0, because of the complete­
ness of the system of Legendre's polynomials. The 
term in the expansion with j = 0 yields an integral 
of type b: 

2Ca sin 60 cos 6o = 2ba sin 6o cos 6o. 

Similar considerations show that 
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FIG. 2. Cross section for the detachment of an electron 
from H- in Ar, Kr, Xe. o, e, 1'1 - experimental data from[2] for 
Ar, Kr, and Xe, respectively. The results of the present in­
vestigation for H- in Ar, Kr, and Xe are represented by 
dashed, continuous, and chain curves, respectively. The 
values of the scattering lengths were taken from[• ]. 
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and finally 

I W 12 = 2na.l2v-2 { CZ + ( a2 - b2} sin2ll0 + 2ab sin llo cos bo}. 
(6} 

After further integration with respect to Po and k, 
the first term in Eq. (1} gives the contribution 
47Tl2 to the electron detachment cross section. 
Calculations show that the two other terms, re­
sponsible for the additional correction made to ob­
tain the rightS-wave phase, make a small contri­
bution representing a fraction of one per cent of 
the first term. 

The final result allows us to conclude that the 
cross section for the electron detachment from 
negative ions of the first group interacting with 
inert gases is equal to the cross section for the 
elastic scattering of slow electrons by these inert 
gases. 

In particular, using fast K-, Rb-, and cs- ions, 
we can observe the Ramsauer effect in Ar, Kr, 
Xe, and other inert gases. For this purpose, we 
need ....,120 keV cs- or ..... 36 keV K- ions, on the 
assumption that this effect is observed for elec­
trons when the electron energy is ..... 0.5 eV. The 
effect cannot be observed using H-, Na-, or Li-

• 

ions, since the required ion energies are outside 
the range of applicability of the theory. 

Figures 1 and 2 show the results of the present 
investigation and compare them with the published 
experimental data, [1- 31 which are available-in the 
range of velocities of interest to us-only for hy­
drogen ions. 
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