
SOVIET PHYSICS JETP VOLUME 23, NUMBER 4 OCTOBER, 1966 

PROPAGATION OF LIGHT THROUGH A SCHWARZSCHILD SINGULAR SPHERE 

R.I. KHRAPKO 

Moscow Institute of Aviation 

Submitted to JETP editor October 11, 1965 

J. Exptl. Theoret. Phys. (U.S.S.R.) 50, 971-974 (April, 1966) 

An analytic solution is obtained for the problem: How does an observer see the emitting 
surface of a gravitating sphere expanding with parabolic velocity inside its singular 
sphere? 

J. AS is well known, empty spherically symmetric 
space-time is not confined to the region 1 < r < oo, 

- oo < t < oo of variation of the Schwarzschild co­
ordinates r, t with the metric 

This region (shaded in the figure, see below) 
borders on two regions,[1] called the interior of 
the singular sphere, in which also a coordinate 
system with the metric (1) can be introduced,[2J 
the coordinate r now taking values 0 < r < 1. At 
the boundary between the regions there is no singu­
larity of the internal geometry, but the metric ten­
sor (1) has a singularity here. Therefore, for the 
solution of the problem of light propagation through 
this boundary use has been made [3] of the Lemaitre 
coordinate system (cf. e.g., [4] ) which has no singu­
larity on the boundary but is more complicated, so 
that only a numerical integration was possible. 

In the present paper the problem is the same as 
in [3], namely: how an observer sees the emitting 
surface of a gravitating sphere expanding with 
parabolic velocity, and is solved analytically in a 
coordinate system with the metric (1). To over­
come the difficulty encountered in identifying the 
parts of a geodesic which are separated by the 
singular sphere, the equation of the geodesic on 
one side of the singular sphere is regarded as the 
analytic continuation of its equation on the other 
side of the singular sphere. In other words, we 
use a coordinate system with the metric (1) ob­
tained, for example, from the Lemaitre coordinate 
system by means of an analytic transformation of 
coordinates. The resulting assignment of complex 
values of the coordinate t to events inside the 
singular sphere is not criminal, since it has no 
physical meaning and arises from considerations 
of mathematical orderliness in the calculations. 
The canonical parameter, which can readily be 

verified to be r on radially isotropic geodesics, 
of course remains real. 

It must be pointed out that the method of identi­
fication used here is of course not the only possi­
ble one. 

2. The equation of the world line of an emitter 
located on the surface of a sphere expanding with 
parabolic velocity can be obtained [4] by fixing the 
Lemaitre radial coordinate R in the equation 
which gives the transition from the Schwarzschild 
system to the Lemaitre system. In this way we 
get for an emitter in the equatorial plane: 

2 - ;'r1 -1 
t1 = -l"ri(r1 + 3)+ ln-.=--R, 

3 -yr1 + 1 

<Jli = const, e = _:!... 
2 

(2) 

Here R plays the role of an additive constant; t 1, 

r 1, cp 1 are running coordinates of the emitter, and 
we use, for example, the sheet of the complex 
plane of r 1 such that Im (td = +i7T when 0 < r 
<1. 

The equations of the world line of the observer 
can obviously be 

r2 = const > 1, <p2 = o, e = n I 2 

( r 2, cp2 are running coordinates of the observer). 
The equation of the isotropic world line of a 

light pulse connecting the event (t1, r 1, cpd (emis­
sion) with the event ( t2, r 2, cp2) (registration) is 
given in [s]: 

t2- t1 = ~· . r2frdr (3) 
r, (r-1)[r3-(r-1)p2]';,' 

r pdr 
<Jll=- J[r(r3-(r-1)p2)]'/;-, (4) 

r, 

where the integration is taken along the real axis 
of r with the appropriate detour around the singu­
lar point of the integrand at r = 1. The constant p 
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fixes the ''impact parameter'' of the ray; through 
it the angle a between the direction of travel of 
the light pulse and the radial direction is deter­
mined. In fact, an elementary displacement dr, 
dcp has as its projections on the coordinate axes 
[(on the basis of (1)1 segments of lengths 
[r/(r- 1) ]112 dr, rdcp. Using the fact that we are 
interested in a displacement along an isotropic 
geodesic, we get from (4) 0 

tana=[r(r-1)Ti2dcp=p[ r-1_-1'/'. (5) 
dr fl-(r-1)p2 

To calculate the Doppler shift of the frequency 
of the light we apply an argument analogous to that 
given in [sJ. It is easy to see that the frequency v 

(or the quantum energy hv) of a registered (or 
emitted) light pulse is proportional to the scalar 
product of the unit vector ei ( eiejgij = 1) tangent 
to the world line of the observer (or the emitter) 
and the wave vector Ki ( KiKjgij = 0) tangent to 
the world line of the light pulse. In order that the 
proportionality constant not change along the world 
line of the light, and that it be permissible to com­
pare the frequency values at different points of 
this line, the wave vector Ki must undergo 
parallel displacement along this world line (iso­
tropic vectors cannot be compared as to length). 

According to (1) and (2), the components of the 
unit vector e 1i of the emitter are 

eii = {ri I (r1- 1), 1 / fri, 0}. 

The components of the unit vector of the observer 
are obviously 

e2i = {hI (r2- 1) ]'h, 0, 0}. 

The isotropic vector obtained by differentiation 
of (3) and (4) with respect to r is not one corre­
sponding to parallel displacement, but is obviously 
proportional to one that is. Denoting the scalar 
proportionality constant by l/J, we get 

Ki ={ r2-yr: ¢ ._______ P¢ } 
(r-1)(fl-(r-1)p2]'h' ¢, [r(fl-(r-1)p2)]'/, · 

To determine ljJ ( r ) we require that 

(6) 

where for convenience we have used dxk to mean 
an elementary vector displacement along the iso­
tropic geodesic x0 = t ( r ), x1 = r, x2 = ljJ ( r) given 
by (3) and (4). Since 

l)This formula gives the correct result if on the world 
line of the observer r = const, cp = const. Since such an ob­
server cannot be realized for r < 1, this formula does not ap­
ply there. 

d2xi dxi dx~< dxi -+ r.,.i __ = A.(r)-
dr2 3 dr dr dr ' 

(6) reduces to the form 

d¢ I dr + "-¢ = 0, 

which can be integrated by elementary means and 
gives, up to a constant factor, 

¢=[1-' fl1p2r. 

The result is that we get for the ratio of the 
frequencies of the registered and the emitted light 
the expression 

vz Ki(rz)ezi gi;(r2) 

Vi Ki (r1) eii gii (r1) 

ri(r1 - 1) [ r2 ]'/, 

== r!2 -h3 -(ri-1)p2]'1' r2-1 (7) 

which is, indeed, given not as a function of the time 
of observation t 2 but as a function of the parameter 
r 1; the connection between r 1 and t 2 is found by 
eliminating t 1 from (2) and (3): 

2 - 1/ri -1 
tz =-1/ri(ri + 3) + ln-_--

3 ir2 + 1' 

~ r2 -{r dr 
- R + {;- 1)[fl-(r- 1) p2]'f, 

r, 

(8) 

(the arbitrary constant R serves to fix the initial 
time of the phenomenon). 

Equations (5), (7), and (8) give the complete 
evolution of the picture observed at r 2 (with the 
exception of the intensity), because when r 1 and 
p are eliminated from these equations there re­
mains the dependence of the observable spectral 
shift on the angle of observation a and the time 
of observation t2• 

The figure shows the u, v, plane,UJ on which 
are traced some coordinate lines of the Schwarz­
schild coordinate system ( t, r ), and also the 
world lines of the emitter (a), the observer ( r 
= r 2 ), and of light pulses emerging from an arbi­
trary eventO (see figure) with p = 0 (b) and 
p > 0 ( c, d). The world line of the light pulse with 
the largest possible value p = p max (d) comes 
out from the event 0 tangent to the world line of 
the observer (a). In other words, the radial com­
ponent of the velocity of the pulse with Pmax is 
equal to the speed of expansion of the emitting 
sphere-i.e., such pulses are emitted tangentially 
to the surface of the sphere. This condition gives 

e1° I eli= K0 (ri, Pmax) I Ki(ri, .Pmax) 

or 
Pmax = ri. 
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The angular diameter 20!max of the visible lumi­
nous disk is now determined by means of (5) as a 
function of the parameter r 1 (for p = rt). 

Equation (7) shows that in the course of time 
the frequency ratio 11J 111 for the center of the 
disk ( p = 0) decreases monotonically from infinity 
(at the time of the first flash) according to the law 
( r 1 increases from zero to r 2 ) 

~I = 1 +l';)( _r2_)•;, 
'V1 p=o l'r1 r2 - 1 

and for the edge of the disk (p = r 1 ) it is constant 
and equal to [ r 2/(r2 - 1)] 112• The frequency ratio 
of the light emitted by the luminous sphere as it 
passes through the singular sphere ( r 1 = 1) and 
received by a very distant observer is equal to 
two; the light received by such an observer from 
the edge of the disk has its natural color at all 
times. 

These last conclusions agree with the results 
given in [3]. 

I express my deep gratitude to Professor M. F. 
Shirokov and to W. Babecki for fruitf.ul discussions. 
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