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A diffusion mechanism of crystal flow is analyzed, in which the sources and sinks of point 
defects (vacancies and interstitial atoms) are prismatic dislocation loops within the crystal 
grain. A uniaxial external load creates conditions leading to the appearance of diffusion flows 
which transport the substance from one dislocation loop to another. It is shown that these 
flows may produce a stationary state in the crystal, characterized by a constant plastic­
deformation rate. If the number of centers of creation of dislocation loops is not very large, 
the rate of flow of the material should be proportional to the cross section area of the crystal 
grain and to the volume density of the creation centers. Under certain conditions the flow ve­
locity increases linearly with increasing external load. In the general case the dependence of 
the flow velocity on the external load is determined by the nature of the distribution of the dis­
location formation centers. 

1. INTRODUCTION. FORMULATION OF 
PROBLEM 

THE diffusion mechanism of crystal flow, i.e., 
the irreversible change in the shape of crystalline 
samples under the influence of relatively weak 
static stresses, consists of the occurrence of di­
rected diffusion flows of point defects, which are 
capable under free motion of transporting a mass 
(or volume) of the substance under consideration. 
Such point defects are vacancies and the crystal's 
own atoms located in interstices of the crystal lat­
tice (interstitial atoms). The character of these 
flows, and also the intensity of the action of such a 
mechanism, are essentially determined by the dis­
tribution and power of the sources and sinks for 
the point defects and by the connection between the 
strength of these sources and the plastic deforma­
tion of the crystal. The sources and sinks of the 
point defects of interest to us may be either some 
preferred surfaces in the crystal (for example, the 
grain boundaries or surfaces of pores) or dislo­
cations. [ 11 

The connection between the strengths of these 
sources and sinks and plastic deformation of the 
material is obvious and known. If we confine our­
selves to an examination of material without pores, 
then we can assume that for point defects in each 
crystalline grain there exist sources and sinks of 
two types: surface-the external grain boundary, 
and volume-dislocation loops inside the grain. The 

diffusion mechanism of crystal flow, using surface 
sources and sinks of vacancies, was considered by 
Nabarro[ 21 and Herring[ 3l as applied to an isolated 
grain, and also in a recent paper by I. Lifshitz[ 41 

as applied to a polycrystal. Naturally, the rate of 
plastic deformation due to such a mechanism is 
inversely proportional to the square of the average 
linear dimension of the grain. 

In the present paper we propose and analyze a 
model of diffusion flow of a crystal, constructed 
for a mechanism which uses volume sources and 
sinks of point defects-dislocation loops inside the 
grain. It is perfectly clear that such a mechanism 
can ensure a certain stationary flow process only 
in the case when generation (formation) of disloca­
tion loops can occur in the grain. It is also obvious 
that the distribution of the dislocations and the cen­
ters of their production is determined essentially 
by the prior plastic deformation of the material, 
and by the conditions of its crystallization and heat 
treatment. 

The center of formation of new dislocations can 
in principle be any dislocation line segment whose 
extreme points, by virtue of certain causes, are 
secured and remain stationary when the shape of 
this section changes (for example, the elements of 
a dislocation grid or dislocations in block bounda­
ries). A plastically deformed crystal contains as a 
rule a large number of such dislocation segments. 
Their length and spatial-orientation distributions 
are determined by the prior mechanical and heat 
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treatment of the crystal and to some degree by the 
crystallography of the lattice. In the isotropic ap­
proximation, which we shall use, the latter cir­
cumstance is not taken into account. In the sim­
plest case all the spatial orientations of such dis­
location segments and of their Burgers vectors can 
be regarded as equally probable. 

If the external force acting on a dislocation ex­
ceeds the linear tension of the curved dislocation, 
with a curvature radius equal to half the distance 
between the points where the dislocation is se­
cured, then the center described above is capable 
of "generating" a dislocation loop under the in­
fluence of this force. Under weak stresses, when 
no dislocation gliding can take place (the ''start­
ing" stress for dislocation gliding is large), the 
formation of dislocations is by diffusion, i.e., by 
growing of new atomic planes or ''dissolution'' of 
certain sections of the crystal planes. In either 
case we are dealing with formation of prismatic 
dislocations. The dislocations of the first type will 
be called interstitial, and those of the second type 
-vacancy dislocations. 

The linear dimensions of the newly formed dis­
location will be of the order of the distance be­
tween the points of fastening of the dislocation 
segment. The form of this loop can depend 
greatly on the mutual arrangement of the disloca­
tion sections between the fastening points. How­
ever, inasmuch as the stable shape of an isolated 
dislocation loop is a circle, we shall assume that 
the resultant new dislocation loop is flat and cir­
cular both at the instant of its creation and during 
the course of its further evolution. We assume 
that there is no gliding of the dislocation at all. 
Then the considered prismatic dislocations of each 
type (interstitial and vacancy) will be character­
ized only by their radius R and by the orientations 
of the Burgers vectors (coinciding in direction 
with the vectors of the normals to the planes of 
the dislocation loops). 

In the analysis of the growth rate of the disloca­
tion loop we shall disregard the direct interaction 
of the dislocations (strong or diffusion), i.e., we 
shall consider each loop independently of the 
others. However, inasmuch as the cause of the 
growth of the loop is the influx of vacancies or in­
terstitial atoms, and this influx is determined by 
the gradient of the concentration of the point de­
fect near the dislocation, this unavoidably gives 
rise to an interaction of the loops via the self­
consistent average supersaturation of the point de­
fect in the crystal. Indeed, the concentration gra­
dient of the point defect depends on the difference 
in the corresponding equilibrium concentration at 

the dislocation and far from it. The former (at the 
dislocation) is governed essentially by the orienta­
tion of the loop of the given type in the external 
stress field. The second (far from the dislocation) 
is connected with the overall balance of point de­
fects, both situated within the crystal (in the solu­
tion) and those entering into the prismatic disloca­
tion loop. It is obvious that at a fixed external load 
the different loops are under different energy con­
ditions, and the diffusion flows will contribute to 
the growth of the "conveniently located" disloca­
tion loops at the expense of the others. Thus, a 
''pumping over'' of matter will take place from 
certain atomic planes to others, and will give rise 
to plastic deformation of the sample. It turns out 
that the rate of plastic deformation is actually de­
termined by the over-all perimeter of the growing 
dislocation loops and by the external load. 

If the number of dislocation-loop production 
centers is not very large, then during the loop 
growth its radius can become so large that the 
dislocation will emerge to the surface of the grain. 
When the entire prismatic dislocation is on the 
surface, then the atomic plane bounded by this loop 
becomes equivalent to the atomic plane in the crys­
tal, and the dislocation itself ceases to participate 
in the exchange of point defects. We assume that 
all the dislocations "drop out of play" if their 
radii reach the same value Ro. which is of the or­
der of the linear dimension of the grain.1) At a 
fixed density of dislocation formation centers, the 
rate of plastic deformation increases with increas­
ing Ro· Therefore the discussed diffusion mecha­
nism leads to a flow rate which increases with in­
creasing linear grain dimension. 

The rate of plastic deformation turns out to de­
pend essentially on the dislocation segments, which 
dislocation production centers, and also on there­
lation between the average lengths of these seg­
ments to the critical radius of the loop Rcr• start­
ing with which the dislocation-loop growth begins 
in the specified stress field. 

1)If the dislocation sources generate dislocation loops that 
lie only in certain selected crystallographic planes, then at 
sufficiently large density of the centers of dislocation produc­
tion it is necessary to take into account processes of coales­
ence of the loops emitted by different sources in the same 
plane. These processes can cause the maximum dislocation 
radius to be determined not by the dimensions of the grain but 
by the density of the centers for the production of a given type. 
In the isotropic model, in which all the Burgers-vector direc­
tions are equally probable, the processes of direct collisions 
of dislocations can be neglected for any reasonable density 
of the dislocation sources. 
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2. EQUATIONS FOR THE DISLOCATION SIZE 
DISTRIBUTION FUNCTION 

Let us consider a crystal grain with linear di­
mensions R0 under a uniform uniaxial load (we 
denote the corresponding component of the stress 
tensor by a), the load being small compared with 
the elastic limit of the material. The latter condi­
tion will be taken in the sense that the load a does 
not cause displacement of the dislocations in their 
glide planes. Assume that circular prismatic dis­
location loops of both types (vacancy and intersti­
tial) are uniformly distributed through the volume 
of this grain. The distribution of the loops with re­
spect to the dimensions and orientatio~s is de­
scribed by the functions fV(R, cp) and f1(R, cp), 
where cp is the angle between the Burgers vector 
(or a vector normal to the plane of the loop) and the 
axis of the external load. The distribution func­
tions fV and fi depend in general also on the time. 
For the usual normalization of these functions we 
assume that the integral 

~ f(R, rp)sinrp d(p dR 

determines the number of loops of a given type 
per unit volume. The evolution of the distribution 
function can be described by a continuity equation 
in dimension space: 

at a 
-at+ aR (fV)=Q, (1) 

where V = dR/dt is the average rate of the change 
of the radius of the dislocation loop, and Q 
=Q(R, cp) is the strength of the loop-production cen­
ters. The production centers (sources) of the loops 
can be naturally assumed in our mind to be uni­
formly distributed over the crystal. In this model, 
a plane dislocation loop does not change its orien­
tation during its growth (we exclude the gliding of 
the dislocations), and therefore (p = dcp/dt = 0 and 
the angle cp enters Eq. (1) as a parameter. 

Equation (1) does not take into account "colli­
sions" of the dislocations, which lead to a mutual 
deceleration and stoppage of their motion. Stop­
pages of dislocations as a result of their collisions 
could decrease the number of loops participating in 
the diffusion interaction with the point defect. It is 
clear that the most essential are collisions of dis­
locations of the same type moving in nearbyplanes. 
We therefore formulate the conditions under which 
we can disregard such collisions. 

Let us consider some growing dislocation loop 
and denote by r the distance at which the stress 
field of the dislocation becomes equal to the exter­
nal stresses (r ~ a(G/a), where a is the lattice 

constant and G the shear modulus). During its de­
velopment, the separated dislocation will be hin­
dered by other dislocations which are created by 
loop sources situated in a strip parallel to the 
plane of the loop in question and having a width r 
(the volume of this strip is of the order of r R~). 
We can neglect collisions of oppositely moving dis­
locations of the same type if 

(r / R0) 2n(rRo2) = nrJ< 1, 

where n is the number of dislocation sources of 
all types per unit volume, and the factor (r /R0) 2 

« 1 determines the fraction of the dislocations 
whose orientations are such that they remain dur­
ing their entire growth in the strip indicated above. 

The required condition has a simple physical 
meaning: at a distance on the order of the average 
distance between the sources of the dislocations, 
the elastic field of each individual dislocation can 
be smaller than the external field. If we write 
down the resultant inequality in the form a 3 

» G3(na3), then it becomes clear that for a speci­
fied dislocation-source density this inequality 
limits those stresses at which the assumption pro­
posed is valid. 2> We shall henceforth assume this 
condition to be satisfied. 

For a specified intensity of the loop sources, 
i.e., for a specified right side, Eq. (1) for f(R, cp, t) 
can be solved if we know the function V = V(R, cp, t). 
The function V(R, cp, t) is determined, naturally, 
not only by the state of the individual dislocation 
with parameters R and cp, but also by the interac­
tion of the dislocations. It is easily understood 
that in the case of a uniform dislocation flux the 
average elastic field of the dislocation loops does 
not change the velocity V. As to the diffusion in­
teraction of the dislocation, we shall take it into 
account only via the self-consistant supersatura­
tion of the point defects. The rate of diffusion 
growth of each individual dislocation loop, due to 
the supersaturation of point defects in the crystal, 
was calculated by us earlier. [ 51 The influence of 

2 )The fact that the obtained inequality does not depend on 
the grain dimension R 0 is the consequence of the isotropy of 
the assumed model. In a single crystal the Burgers vector of 
the dislocations can have only certain chosen directions, and 
therefore there exist only several independent systems of 
parallel planes in which prismatic dislocations can develop. 
Collisions of dislocations in precisely such a system of 
planes are "dangerous" in the sense discussed, and the con­
dition for their small probability is of the form rR~na << 1, 

where n is the density of the sources of dislocations belong­
ing to the given system (the discrete index a numbers differ­
ent dislocation systems). 
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the external load on this rate was taken into ac­
count in [S ] • 

Let c~ and c~ be the equilibrium translations 
of the point defects of the two types (vacanci~s and 
interstiti.al a_toms), !::;. v = (cv - vf)/cti and !::;.1 

= (ci- c~ )/c~-their average relative. supersatura­
tions in the crystal, while Dv and D1 their respec­
tive diffusion coefficients. Then the number of 
point defects of each sort, entering per unit time 
and per unit length of the vacancy loop in an iso­
tropic medium, is 

Accordingly, we obtain in lieu of (2) for the in­
flux of point defects per unit length of interstitial 
dislocation 

( f>Nv).=covDvA(R)[11v+ aw cos2cp_L B(R) J 
' {jt 1 kT I R ' 

( f>Ni) =c0iDiA(R)[11i+ awcos2qJ- B(R) ], (3) 
f>t i kT R 

where 
2n 

A (R) = wIn (8R/ro)' ' 

a wG ( R ) 
B(R) = 4n(1- v) kT .In-;:;;-+ a ' 

a-magnitude of the Burgers vector, equal to the 
lattice constant, r 0 -characteristic radius of the 
''dislocation tube'' (r0 ~ a), w-atomic volume 
(w = a3), G-shear modulus, v-Poisson coefficient, 
a some constant quantity determining the linear 
energy of the crystal-structure defect along the 
dislocation axis, and kT the temperature in en­
ergy units. 

If we relate in the obvious manner the influx of 
point defects to the variation of the area of the dis­
location loop, then we can usually obtain on the 
basis of (2) and (3) the rates of growth of the dis­
location loops: [ 5• 6 ] 

vv = a2D* A (R) [11• - x cos2 qJ - R-1B (R)], 

Vi = a2D*A (R)[ -11* + x cos2 qJ - R-1B (R)], (4) 

where 

(J(J) 

x= kT' 

K > 0 corresponds to tension and K < 0 to compres­
sion. It will be shown later that in the case of in-

terest to us !::;. * has the same sign as K, and 
therefore t::;.*/K > 0. 

For those orientations for which cos2 cp < t::;.*/K, 
all the interstitial loops must decrease (Vi < 0), 
and ultimately they are completely "dissolved" in 
the crystal. As to the vacancy loop, some of them 
are also dissolved, and those having radii larger 
than a certain critical value R~r increase in size. 
The critical radius is determined by the obvious 
relation 

B (Rcrv) I Rcrv = 11*- X cos2 (j) for 11* > X cos2 (j). (5) 

Analogously, in the angle interval cos2 cp 
> t::;.*/K all the vacancy loops are dissolved, and 
the fate of the interstitial ones depends on the ratio 
of their radii to the corresponding critical radius 
R~r' defined by the equation 

B (Rcri) I Rcri = -11* + x cos2 cp for 11* < x cos2 (j). (6) 

For tension (K > 0) and for compression (K < 0) 
the regions of the angles cp in which either va­
cancy or interstitial loops grow are interchanged. 

Let us assume that all the spatial orientations 
of the dislocation loops have approximately the 
same probability. Then the characteristic critical 
radius of the dislocation loops Rcr• as follows 
from ( 5) and (6), is connected only with the quan­
tity t::;.*. Since in order of magnitude B(R) 
~ a(Gw/kT), we have for Rcr the estimate 

R a ( wG) 
cr~y kT. • (7) 

If the dimensions of the crystal grain greatly 
exceed the characteristic critical radius of the 
dislocations (Ro » Rc), then at sufficiently late 
stages of the flow process the grain contains a 
large number of dislocation loops, whose radii 
greatly exceed the average critical dimension Rcr· 
These are precisely the dislocations which deter­
mine the course of the developed flow of the ma­
terial. Indeed, the contribution of the different dis­
location loops to the rate of plastic deformation is 
proportional to their radii (their lengths), and 
therefore the principal role in the creation of flow 
of materials should belong to the dislocations 
whose radii greatly exceed the corresponding crit­
ical values, since their over-all perimeter deter­
mines the total flow of the point defects. 

We note that dislocation loops with radii smal­
ler than the critical values can also be disregarded 
because they are "dissolved" very rapidly. Since 
furthermore intense "pumping over" of the mate­
rial takes place between vacancy and interstitial 
loops of large dimensions, the complete dissolu­
tion of the small dislocations does not influence 
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the over-all balance of the matter carried by the 
diffusion fluxes. We shall henceforth disregard 
such dislocations, confining ourselves in all for­
mulas to integration with respect to R, starting 
with Rcr(cp). 

Let us use this circumstance and simplify ex­
pressions (4) for the growth rates of the disloca­
tion loops, leaving out the last term in the brack­
ets, which is connected with the linear tension 
force of the dislocation: 

yv = a2D* A (R) [6.* -X cos2 <p], R > Rcrv (<p); 

lli = a2D'A (R) [ -Ll• + x cos2 <p], R > R cri(<p). (8) 

In addition, we note that the dependence of the 
function A(R) on the dislocation radius is very 
weak, and therefore in differentiation with respect 
to R in (1) it can be regarded as constant: 

an at+ rat 1 aR = Q. (9) 

The velocity V in (9) is now given by formulas 
(8), and therefore Eq. (9) determines the functions 
f(~, cp) only if R > Rcr(cp), where R6r(cp) and 
R~r(cp) are obtained in turn from (5) and (6). 

The rate of creation of dislocation loops Q(R, cp), 
which enters in (9), is connected with the charac­
ter of the dislocation source. In the model assumed 
by us for the dislocation sources, it can be written 
with sufficient accuracy in the form 

Q(R,<p)=p-r(~,~) 8[R-Rcr(<p)], 

S(x) = { 1, x > 0 
0, x< 0 

(10) 

where p (R, cp) is the volume density of the disloca­
tion segments of length R (and of corresponding 
orientation), capable of forming the dislocations, 
and T (R, cp) is the time of creation of a single dis­
location with parameters R and cp, i.e., the time 
necessary to increase, by diffusion, the length of 
the dislocation segment in question by an amount 
of the order of R. 

Since the curvature of the dislocation segment 
increases during the course of dislocation forma­
tion, the radius of the dislocation must at all time 
be larger than the critical value. But in this case, 
as already noted above, the velocity V is practi­
cally independent of the radius, and we can put 

-r =RIll. (11) 

Formula (11) is only an estimate when it comes 
to the accurate numerical value of T, but in our 
opinion it is perfectly valid for an explanation of 
the main relation. 

We substitute (10) and (11) in (9): 

_!!_+ ll(t)_!j_ = ll(t) p(R,<p) 
at aR R R > Rcr(rp). (12) 

In Eq. (12) the very weak dependence of the ve­
locity V on the radius R has very little effect, but 
the time variation of the velocity, i.e., the rela­
tion .0.* = .0-*(t), is very important. On this basis, 
when solving (12), we can assume the rate of 
growth of the dislocation loop to be a function of 
the time only: V = V(t). To find this function we 
must write out a balance equation for the matter 
carried by the diffusion fluxes. 

3. STATIONARY SUPERSATURATION OF POINT 
DEFECTS 

Let us analyze first the evolution of the solution 
of Eq. (12) in order to ascertain the influence of 
the initial distribution of the dislocation loops in 
the form of the function f(R, cp) for large times. 
An examination of the role of the dislocations of 
different sizes, carried out in Sec. 2, has led us to 
the conclusion that in the most important region of 
the dimensions the velocity V can be independent 
of the dislocation radius. Under such a condition, 
the solution of (12) of interest to us can be ob­
tained quite simply. If the distribution of the dis­
location loops by dimensions is described at the 
initial instant of time (t = 0) by the function 
f0(R, cp), then the distribution function of the loops 
at any instant of time t is given by the following 
solution of Eq. (12): 

!(R, t) = /o[R-L(t)]8[R -L(t)] 

R dz + ~ p(z)8(z- Rcr)-, 
R-L(t) . z 

(13) 

where 
t 

L(t) = ~ ll(t')dt', 

and all the functions depend on the angle cp as a 
parameter. We have purposely introduced the 
function e(z) as a multiplier in the first term of 
the right side of (13), in order to take into account 
the physical meaning of the argument of the func­
tion f0(R) (there are no dislocations with negative 
radii). 

Naturally, the function (13) describes the dis­
tribution of the dislocation loops inside the grain, 
i.e., only for R < Ro· It follows from this that the 
first term in (13), which depends on the initial dis­
tribution of the dislocations, makes a contribution 
only during the initial state of development of the 
flow of the material, so long as L(t) < Ro· For suf-
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ficiently long times (t > tcr• where tcr is deter­
mined by the equation L(tcr) = R0), the function 
(13) ceases to depend on the initial distribution of 
the dislocation loops. It is easy to see that the 
characteristic time tcr• beyond which the "mem­
ory" of the initial distribution vanishes, has an 
order-of-magnitude estimate 

Ro aRo ln(Ro/ro) 
tcr~ V ~ D* f1 • . (14) 

Inasmuch as for t > tcr we have by definition 
I(t) > R0, the lower limit of integration of the sec­
ond term of (13) for such times is actually equal to 
Rcr(<;O). Consequently, for long times t > tcr the 
distribution function is of the form 

R d 
f(R,qy,t)= ~ p(z,qy)--:i for R>Rcr(qy), 

Rcr('l') 

j(R, qy, t) = 0 for R < Rcr(qy). (15) 

Thus, the question of the time variation of the 
distribution function at large times is uniquely re­
lated with the question of the change of the corre­
sponding critical radius of the dislocation loops, 
which is determined in turn by the form of the 
function ~* = ~*(t). 

When the concentration of the point defects is 
small, the change in their supersaturation occurs 
in our model as a result of the settling of the de­
fects on the dislocations (or evaporation from dis­
location loops). It is easily understood that the 
rate of increase of the supersaturation of the va­
cancies (i.e., actually the rate of increase of their 
concentration in the volume of the material) is 
given by the relation 

dfiv " [ oNv) 
cov- = -(J) \ sinqydqy \ (- jV(R qy) 

dt • .l ot v ' 
0 

+ ( {):ev) i fi (R, qy) J 2nR dR. (16) 

A similar formula can be written out in. per­
fectly obvious fashion also for the rate d~1jdt. 

Strictly speaking, a contribution to d~v/dt is 
made also by the total flux of vacancies going into 
the formation of new dislocation loops (to ensure 
the operation of the dislocation sources). We shall 
assume, however, that the average radius of the 
produced dislocations l is much smaller than the 
dimension of the grain ( l « Ro). Under this condi­
tion, as already explained in Sec. 2, the role of the 
diffusion fluxes going to formation of new loops is 
insignificant in the overall balance of the trans­
ported matter and they can be disregarded. 

Let us substitute in (16) the corresponding ex­
pressions for oNjot from (2) and (3), and let us 
effect simplifications connected with the import­
ance of growing dislocations only: 

X[F v(qy) + F i (qy)] sin qy dqy. (17) 

The constant A* ~ A(Ro), and the function F(<;O) 
determine the total perimeter of all the dislocation 
loops of a given type participating in the process, 
with orientation characterized by the angle <;0: 

Ro 

F(q;) = 2n ~ f(R, qy)R dR for Rcr (qy) > 0, 
Rcr('l') 

F(qy) = 0 for Rcr(qy) < 0, 

where for sufficiently long times the function 
f(R, <;O) is given by expression (15): 

Ro R dz 
F(qy)=2n \ RdR I p(z,qy)-• .l z 

Rcr('l') Rcr('l') 

Ro d 
= Jt ~ p(z, qy) (Ro2- z2) zz-. 

(18) 

(19) 

Since by assumption the average radius of the 
produced dislocations l is much smaller than the 
dimension of the grain R0, the ratio (19) can be 
simplified (Rcr(<P) > 0): 

"" dz 
F(qy) = nRo2 ~ p(z, qy)z. (20) 

Rcr('l') 

We see that the total perimeter of all the dislo­
cations of specified orientation, which determines 
the supersaturation of the point defects, is propor­
tional to the crystal grain cross section area. 

In analogy with (17), we have for the rate of 
growth of supersaturation of interstitial atoms 

. " 
d!! 1 . A • ~ [ i aw 2 J -- = -wD 1 !! +----cos qy 
dt kT ,, 

X [F v(qy) + Fi (qy)]sinqy dqy. (21) 

The most important feature of (17) and (21) is 
the presence in them of stationary solutions, i.e., 
solutions which do not depend on the time: d~ v /dt 
= d~ijdt = 0. 

The stationary values of ~ v and ~ i are deter­
mined by two equations obtained by setting the left 
sides of (17) and (21) equal to zero. However, ~v 
and ~i taken separately do not enter themselves 
in the expressions of interest to us, since the dis-
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location-width growth process depends on the 
quantity D..*, i.e., only their linear combination. 
It is therefore sufficient for us to consider only 
one equation for D..*. This equation is obtained by 
subtracting (21) from (17) and reduces to the dif­
ferential form of the material balance. In the sta­
tionary mode [d(c~ D..v- ~ D..i)/dt = 0] the equation 
for D..* is 

~ Vv(qJ)Fv(qJ)sinqJd(jl 
Vv(<P)>O 

(22) 
Vi(<P)>O 

where the dependence of the velocities V(({') on the 
angle ({' is determined by the relation (4). 

Equation (22) has the simplest form in the case 
when the distribution of the sources of the disloca­
tion loops does not depend on their orientation. The 
functions F(((J) are positive by definition, and there­
fore it follows from (8) that (22) has a solution 
when 

!!.: = uo2.x., 0 < uo2 < 1, (23) 

and the positive property u~ =~(a/G) for p = p(z) 
is a root of the following transcendental equation: 
uo 

~ (u02- u2) 'I' (u02- u2) du 
0 

i 

= ~ (u2- u02) 'I' (u2- u02) du, (24) 
Uo 

where 

U = COS(jl. (25) 

Since the right and left sides of (24) have a simi­
lar structure, the parameter u~ of interest to us 
should have a value of the order of unity: -~""' 1 
- u.3 ""' 1. It follows from (22) and (24) that 11o does 
not depend on the same dimension. 

Thus, an external load produces in the crystal 
a stationary supersaturation of point defects, char­
acterized by a quantity D..* = u~K. The exact value 
of the parameter 11o depends on the form of the 
function p (z) and on the value of the load a. 

Equation (24) can be readily transformed into 
(K > 0) 

co d ,,(z) 

~ p(z)-i ~ (u02-u2)du 
0 

where 

ul{z) =cos (jl1, 

u2(z) = cos (jl2, 

Rcrv((jl!) = z; 

Rcri ( (jl2) = Z. 

For compression (K < 0) the symbols "v" and 
"i" in (26) are interchanged. 

Let us illustrate the solution (26), using a very 
simple example and assuming that a/l «a/G. 
Since, as follows from (5) and (6), 

Rcr ( ~-) ~ Rc,i(O) ~ - 4a (!!__) ln ( Rcr) , 
'\ 2. :n: a ro 

the integration limits in both integrals of (26) are 
much smaller, under the assumptions made, than 
the average dimensions of the produced dislocations, 
and can therefore be replaced by zero. In addition, 
we can simultaneously assume here that u1 (z) 
= u2 (z) = 11o and (26) is replaced by the equation 

i 

~ ( u2 - uo2 ) du = 0, 
0 

from which it follows that u~ = 1i3. 
In the general case, when the requirement a/l 

« a /G is not satisfied, the connection between the 
parameter 11o and the form of the function p (z) and 
the magnitude of the load is much more compli­
cated. In our model, however, we can pretend only 
to yield the correct order of magnitude of the quan­
tities characterizing the flow of the crystal, the 
concrete value of this parameter does not have 
great significance. 

The formulated result, which consists in the 
presence of stationary supersaturation of the point 
defects, shows that an ensemble of dislocation 
loops of different type, situated in an external 
stress field, can ensure the realization of a defi­
nite stationary regime that differs qualitatively 
from the coalescence process. [ 51 Whereas in the 
coalescence process the supersaturation of the 
point defect decreases and tends to zero with time 
time, [ 51 a certain forced constant supersaturation 
of the point defect, caused by the action of the elas­
tic field on the dislocations occurs in the stationary 
flow of material in question. It turns out that after 
this flow is established neither the distribution of 
the dislocation loops by dimensions (15) nor rates 
of their growth (8) change with time, and plastic 
deformation at a constant rate takes place in the 
crystal. 

4. RATE OF PLASTIC DEFORMATION 

The rate of plastic deformation due to the 
(26) change in the areas of the closed dislocation loops 

is determined by the formula [ 1 J 
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s=sn, (27) 

where b are the Burgers vectors of the disloca­
tions, s the areas of the dislocation loops, and n 
the vectors normal to the dislocation loops; the 
summation takes into account all the dislocation 
loops per unit volume. The directions of the vec­
tors b and n are related in the usual manner with 
the direction of circuiting around the dislocation 
loop. [ 71 In a case of prismatic dislocation loops 
b = bn for interstitial dislocation loops and 
b = -bn for the vacancy ones. 

If we choose the z axis on the direction of the 
effective axis of the external load, then formula 
(27) for the nonvanishing elements Eik assumes in 
our case the form (b = a) 

rl/2 

Bzz = 2a{- ~ Vv(qJ).Fv(qJ)cos2 qJsinrpdqJ 
<Po 

'Po 

+ ~ Vi ( qJ) F i ( qJ) cos2 qJ sin qJdqJ} 
0 

4:rt .D. crw (covDv +Col 1 )-
ln(8Ro/a) kT 

... 
X { ~ u2(u2-uo2)1Jf(uo2-u2)du 

0 

i 

+ ~ u2 ( u2 - u02) '¥ ( u2 - u02) du}. 
u., 

Analogously 

Bxx = 8yy = 
2:rt ( D + . D. aro cvv cl 1 

ln(8Ro/a) 0 0 )l?f' 
uo 

x{~ (1- u2 ) (u2 - u02)'V(u02 - u2)du 
0 

i 

+ ~ ( 1- u2) (u2- u02) '¥ (u2- u02) du}. 

(28) 

(29) 

Using (24), we can represent (29) in a different 
form: 

(30) 

As expected, Eii = 0. 
The first striking factor is that the rate of plas­

tic deformation is proportional to the square of the 
linear dimensions of the grain. Indeed, if we sub­
stitute (25) and (20) in (28) and (30), then it be­
comes clear that all the elements of the tensor Eik 
are equal to the products of the cross section area 
by certain functions of the external load. In addi­
tion, a natural linear connection between the rate 
of flow of the material and the density of the 
sources of the dislocation loops follows from (29) 
and (30). 

Let us subject (28) to the transformations that 
have previously led us to Eq. (26): 

Assuming a/l « a/G, formula (31) takes the 
form 

JH ( vv + iD. crw Ro2 
ezz = ln(8Ro/a) Co v Co 1) kT ---z;-n, 

where M = 47f /45, 

n "" dR 
y=4:rt ~p(R)-R, 

0 0 

00 

n = 4:rt ~ p(R)dR, 

(31) 

(32) 

n is the total number of sources of dislocations of 
all dimensions per unit volume of the crystal. 

Thus, for sufficiently intense loads (a» G(a/Z)), 
the rate of flow of the material is directly propor­
tional to the first power of a: 

· ( Ro2 ) wcr 
Ezz ~ D*n1-- --. 

\ lo 1 kT 
(33) 

Using (33) as an example, we see also the char­
acteristic dependence of the rate of flow on the 
density of the dislocation grid or the dimensions 
of the mosaic blocks in the crystalline grain (on 
the quantity Z0). Naturally, for a fixed grain dimen­
sion the rate of plastic deformation increases with 
increasing density of the dislocation grid (with de­
creasing Z0). On the other hand, for a fixed block 
structure of the grain (fixed Z0), the rate of flow 
increases with increasing grain dimension, the de­
pendence on the grain dimension being stronger 
than the dependence on l 0• 

For smaller loads (and fixed Z0), a nonlinear 
dependence of E on a should appear. In the gen­
eral case this dependence is very complicated and 
is determined essentially by the form of the func­
tion p(R). 

In order to illustrate the nonlinear dependence 
of the rate of flow on the external load, let us con­
sider below an example of the case when the func­
tion p (R) describes a Gaussian distribution: 

{ (z-1)2} p(z) =Po exp ----- , 
2!.,2 

n 
Po=--=-· (34) 

4:rt l'2rt '), 

We substitute (34) in (24) in (31). Then the in­
tegrals entering in (24) and (31) take the form 
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l(R) = r p(z)P(z)dz =Po I exp{- J_z 21-.;) 2 }P(z)dz, 

R R (35) 

where P(z) is a certain continuous function, which 
vanishes at the lower limit of integration; P(z) 
= P0(z- R)a as z- R (P0 = const, a > 0). 

Let us assume that R~r(7T /2) - l »A. and 
Rhr(O) -l »A.. Then the condition R -l »A. is 
satisfied in (35), making it easy to obtain asymp­
totic estimates for these integrals 

( ')..,2 )et+t { (R-l)2} 
= poPof(a + 1) \ R -[ exp - --~ , (36) 

where r(a) is the gamma function. 
The main dependence on R in (36) is given by 

the exponential function, and therefore if Rcr - l 
»A. Eq. (26) can have a solution only if R~r(7T /2) 
~ R~r(O), i.e., when u~ ~ 1/ 2• 

We use now the asymptotic expression (36) to 
estimate the flow rate by means of formula (31). 
When Rcr - l » A., the main load dependence of 
the rate of plastic deformation is given by a func­
tion of the type exp [- (R -l )2/2A.2], where Rcr 
...., a(G/u). Thus, when the load is decreased, the 
rate of flow decreases exponentially. In other 
words, when the critical radii exceed the dimen­
sions of all dislocations "generated" in the grain, 
the rate of flow becomes vanishingly small. In 
such a formulation, the last deduction is perfectly 
natural and, of course, does not depend on the con­
crete form of the distribution function (34). 

we must bear in mind, however, that at low 
loads, when the discussed mechanism of crystal 
flow does not work in practice, the diffusion mech­
anism of transfer of matter from certain surfaces 
of the crystal grain to others comes into being and 
becomes predominant. [ 2- 41 Consequently, at a 
fixed the dislocation-grid density (fixed lo) the 
diffusion-dislocation mechanism which we have 
considered can determine the flow of crystals un­
der relatively large loads (at which the gliding of 
dislocations still does not begin). 

In conclusion we are grateful to I. M. Lifshitz 
for a useful discussion of the work. 
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