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A theory is developed for the oscillations and stability of a plasma in a high-frequency electrie 
and stationary magnetic spatially homogeneous field. Small deviations of the system from the 
ground state in which relative motion of the electrons and ions is produced by the presence of 
external fields are considered by employing a self-consistant interaction kinetic equation. A 
dispersion equation for the potential-oscillation spectrum of such a system is derived. The 
equation is solved for the case of a cold plasma. The frequency range of an external magnetic 
field in which the plasma is unstable is determined. Expressions for the increments of growing 
potential oscillations are obtained in the instability region. Since the proper oscillations of a 
plasma in a magnetic field occur only in a finite frequency range, the region of instability of 
plasma with relatively large increments turns out to be much broader than in the case of a 
plasma in the absence of a magnetic field. The maximum value of the instability increment is 
plotted as a function of the external field frequency (in this case the ratio of the square of the 
electron cyclotron frequency to the square of the Langmuir frequency is assumed to be 3.5). 

1. In experiments on radiative acceleration [i] it 
is necessary to deal with a fully ionized plasma 
situated in a strong high-frequency electric fieldY 

It was shown in [ 21 that a plasma situated in a 
high frequency electric field with frequency close 
to the Langmuir frequency of the electrons or 
smaller, turns out to be stable against buildup of 
potential oscillations. The reason for the occur­
rence of such an instability is relative motion of 
the electrons and the ions under the influence of 
the electric field. fu this sense, the situation is 
similar to that in the ordinary current instability 
of a plasma (see, for example, [ 31 ). The theory 
developed in [21 cannot satisfy completely the ex­
perimental demands, primarily because it consid­
ers a plasma without an external magnetic field. 
To the contrary, the present paper is devoted to 
the theory of instability of a plasma situated both 
in a high-frequency electric field and in a constant 
magnetic field. Just as in [ 21 , we consider poten­
tial oscillations with wavelengths much shorter 
than the characteristic dimensions of variation of 

l) Indeed, in these experiments the electron temperature is 
"'lo eV and the frequency of the alternating field is w 0 <t 2 x 
10 sec-1 • For such parameters the field E ~ mvT w 0 /e, at 
which the velocity of the oscillations vE becomes comparable 
with the thermal velocity, turns out to be '"" 300 V /em. In real 
devices, on the other hand, we are dealing with fields that are 
larger by one order of magnitude. 

the external field. This is precisely why the high­
frequency electric and constant magnetic fields 
will be assumed to be spatially homogeneous (see 
also [ 4 1). 

The theory developed below makes it possible 
to determine the alternating electric field frequen­
cies at which the plasma is unstable. In the insta­
bility region, we obtain expressions for the incre­
ments of the growing potential oscillations of the 
plasma. By virtue of the fact that in a magnetic 
field the natural high-frequency oscillations of the 
plasma occur in a finite region of frequencies, of 
width determined by the relation between the gyro­
scopic and the Langmuir frequencies of the ions, 
and the region of instability of the plasma with 
relatively large increments, turn out to be much 
larger than in the case of a plasma without a mag­
netic field. 

2. The fundamental state of a plasma in a con­
stant magnetic field and a high-frequency electric 
field, both spatially homogeneous, is described by 
the particle distribution functions satisfying the 
equations 

iJj a(O) { 1 } iJj a(O) 
- 0 - + ea E(t)+ [vaB] -- = 0. 

t C Opa 
(2.1)* 

The corresponding solution can be written in the 
form 

626 
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t 

fa<0>(pa, t) =lao ( Pa- ea ~ dt' {b (bE (t')) exp {ik, r.- r;} = exp {iaB sin ( w0t + <p)} 
-oo 

+ [E(t')b] sin Qa(t- t') + [b[E (t')b]] cos Qa(t- t')}), 

(2.2) 

where b = B/B and fao(Pa) is, for example, a 
Maxwellian distribution. 

To study the stability of such an equilibrium 
state let us consider the states of a plasma whose 
distribution functions over small Ofa differ from 
the equilibrium functions (2.2). Because of the 
spatial homogeneity of the fundamental state we 
can assume a coordinate dependence of the non­
equilibrium increment Ofa ,... exp (ik • r). Then the 
linearized kinetic equation with self-consistent po­
tential field can be written in the form 

(2.3) 

Having in mind the argument of the right side of 
(2.2), it is convenient to introduce the function 
(see [ 51 ) 

t 

'I' a (Pa, t) = Ma ( Pa + ea ~ dt' {b (bE (t')) 
-oo 

+ [E ( t') b] sin Qa ( t- t') 

+ [b [E (t') b)] cos Qa (t- t')}, t) eikra<t>, 

where 
t t' 

la(t)=~ ~ dt' ~ dt"{b(bE(t")) 
ma 

-6)0 -oo 

+ [E (t") b) sin Qa (t'- t") + [b{E (t") b)] cos Qa (t'- t")}. 

For such a function, in accord with (2. 3), we 
have the equation 

iJ'¥ a ea iJ'I' a 
-+ ikva'l'a +-[vaB]--

iJt C iJpa 

'k iJfao(Pa) ~ 4:rteaeb {'k ( ) ( )} -z LJ--2-exp z, la t -rb t 
iJpa b k 

X ~ qrb dpb = 0. (2.4) 

We confine ourselves further to the case of a 
plasma consisting of electrons and one species of 
ions. Let the time dependence of the electric field 
be E(t) = E sin W()t. 2> Then the dependence on the 
electric field in (2.4) appears in the form 

2> The case when the fields vary like 

E(t) = I Et sin (wot + Br) 
r 

is considered in Appendix I. 

00 

= ~ /z(aB)exp{il(wot+<r)}, 
l=-oo 

where Jz is a Bessel function and qJ is the phase. 
In a rectangular coordinate system with z-axis di­
rected along the magnetic field we have 

UB2 = [ kzEz (!__ _ 2) 
w02 m m; 

+ (E.,k.,+Eyky) ( e - e; )]2 

m ( wo2-Q.2) m; ( wo2- Q;2) , 

(Exky- Eykx) 2 [ eQ6 e;Q; ]2 

+ wo2 m(Q.2- wo2) - m;(Q;2- wo2) ' 

(2. 5)* 

Qa = eaB/mac is the gyroscopic frequency of the 
particle of species a. 

Making in (2.4) a change of variable w0t + qJ 

- w0t, we seek a solution in the form 

n=-oo 

We then obtain for the functions iJ!~n> a system of 
equations 

e aw.<n) 
-i(nw0 + w- kv.)'l'.<n> +- [v.B]---

c ap. 

= "k iJfeo { 4:rte2 \ d 1 'I' (nl( ') 
z iJp. k2 J Pe e Pe 

+ 4:rt;e; ~ ln-l(aB) ~ dp;''l:';(ll(p/) }. 
l 

e· aqr.(n) 
-i(nwo + w- kv;)'l';<n> + ~[v;B]-a-'-

c p; 

iJf-o {4:rte·2 \ 
= ik iJ~; T J dp/ 'l';<nl(p;') 

+ 4~~e; ~ /1-n (a B) ~ dpe''l'.<1> (pe') } . 
l 

From this system of integro-differential equations 
we can readily obtain a system of algebraic equa­
tions for the quantities 

*ctg =cot. 
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Assuming that fao(Pa) depends only on the projec­
tion of the momentum on the direction of the mag­
netic field and on the absolute magnitude of the 
transverse projection of the momentum, and intro­
ducing the notation 

4nea2 \ ~ 1 
ilea(w,k) = -k2 J dpa LJ + .0 g k 

n=-oow ' - n a- I!Dall 

X ln2 ( k.lPaJ.. ') (ku 8/ao + nQa 8/ao ) , 
Qa ) 8pall VaJ.. 8Pa.l.. 

(2.6) 

we obtain in this case 

() ilee(nwo+w,k) ~/ ( ) ( l 0 Ue n + LJ n-m aB U; m = , 
1 + l'>ee(nwo + w, k) m 

u;<n) + l'>e;(nwo + w, k) ~~m-n(aB)ue(m) = 0. (2. 7) 
1 + ile;(nwo + w, k) m 

Finally, eliminating the ionic function, we can 
write the following system of equations for only 
the electronic functions u~> (n = 0, ± 1; ± 2, ... ): 

00 

m=-oo 1=-oo 

We have used here the notation 

Ra<nl = l'>ea (nwo + w, k) 
1 + ilea(nwo+ w, k) 

(2.9) 

The infinite determinant of this system of equa­
tions, set equal to zero, constitutes the dispersion 
equation for the potential plasma oscillations. 

It is obvious that the natural frequencies of the 
plasma oscillations are determined accurate to a 
term nevo. 

3. For the qualitative analysis of the spectrum 
of the natural oscillations of the plasma, which we 
are about to present, it is convenient to introduce 
the concept of resonant frequencies, of the elec­
trons and ions, respectively, defined as frequen­
cies satisfying the equations 

1 + ilee(Wre, k) = 0, 

1 + l'le;(Wr;, k) = 0. 

(3.1) 

(3.2) 

We shall distinguish below between the case where 
the overtone of the external frequency is close to 
the resonant frequency of the electrons ( ln2w~ 
- w~e I « w~e), which we shall call the resonance 
at the overtone of the external frequency, and the 
nonresonant case when the overtones of the exter­
nal frequency are not close to the resonant elec­
tron frequencies. 

We confine ourselves further to an examination 
of a case in which the frequency of the external 

field greatly exceeds the gyroscopic and Langmuir 
frequencies of the ions, and therefore also the res­
onant frequencies of the ions. This enables us to 
state immediately that R\m> « 1 when m * 0. We 
consider first the nonresonant case. For not too 
rarefied a plasma (wLe » Q~) we can distinguish 
in this case between the low frequency branch of 
the oscillations with frequency w of the order of 
Writ and the high-frequency branch with frequency 
of the order of Wre· 

For the high-frequency oscillations R\m> « 1 
(m = 0, ± 1, ... ),the solutions of Eq. (2.8) exist 
therefore only when R~n> » 1 for a certain n, 
whereas for the remaining m * n we have R~> 
....., 1. From Eq. (2. 8) we see in this case that the 
largest is the function u~n>, so that we can imme­
diately write the following dispersion equation for 
the high frequency oscillations: 

... 
1 = Re(n) ~ 1!-m(aB)R;<mJ. (3.3) 

m=-oo 

For the low frequency oscillations R~m> ....., 1 for 
all m. In the study of these oscillations we have 
confined ourselves to frequencies of the external 
electric field w0 greatly exceeding the resonant 
frequencies of the ions Wri. Therefore, bearing in 
mind the smallness of all the Rm when m-:~: 0, we 
can replace (2. 8) by the following approximate 
equation 

co 

Ue(n) = Re<n>R;<0>ln ~ /zu/1>. (3.4) 
l=-oo 

From this we get the dispersion equation 
co 

1 = R;<0l ~- ln2 (aB)Re<n>. (3.5) 
n=--oo 

In the limit when the magnetic field vanishes, Eq. 
(3.5) goes over into Eq. (4.8) of [ 2J. 

In the vicinity of the resonance at the overtone 
of the external frequency with I w I « w0 it is ob­
vious that not only R~> but also R<;n> is large. It 
then follows from (2.8) that u<tn> » u~m> (m-:1: ±n). 
We shall therefore use in place of (2.8) the follow­
ing approximate equation 

co 

Ue(k) = Re<"> { hR;<0> ~ lzue<Zl + ~- l,...,Jllm) [/ n-mUe<n> 
l=-oo m""'O 

+ Ln-mUe(-nl]}. (3.6) 

Expressing with the aid of this equation 
00 

l=-oo 

in terms of u<t n>, we obtain a system of two equa­
tions, the vanishing of whose determinant leads to 
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the following approximate dispersion equation (we 
take account here of the fact that in the vicinity of 
the resonance we have R<in> » R~m> (m * ±n)): 

1 = R;<o>{ i lm2Re(m) + 2Re<n>Re<-n)Jn2 -00 
X ~R;(ml(-l!-m+{-1}nJn-mLn-m} }. (3.7) 

m*O 

The difference between this equation and Eq. (3.5) 
lies in the presence of an additional term in the 
right side of (3. 7). For oscillation frequencies 
which greatly exceed Wri• this term is propor­
tional to the small quantity R \m> (m * 0) and is 
therefore a small correction. As seen from for­
mula (4.8), which is derived from (3.5), the oscilla­
tion frequencies greatly exceed Wri if 

ln2wo2 - w:el> w~i· 

Thus, Eq. (3. 5) is convenient also for the study 
of the natural oscillations of a plasma under condi­
tions of parametric resonance, provided this reso­
nance is not very exact. This is connected with the 
fact that when the overtone of the external fre­
quency approaches resonance, we have together 
with the increase in R<i n> also an increase of the 
increment of the oscillations, and therefore R~> 
decreases. 

In the direct vicinity of the resonance, when 
I n2 w~ - w~e I.S w~i• the first term in (3. 7) de­
creases, because of the cancellation of large reso­
nant terms, and becomes equal to the second. Then 
the frequencies of the oscillations also decrease 
appreciably, and become of the order of Wri· 

4. In the case of a cold plasma, when the ther­
mal motion of the particles is insignificant, we 
have 

6ea(oo,k) =-wla {oo2 -Qicos2 8}/oo2{w2 -Qa2), 

(4.1) 

where the (J is the angle between the magnetic 
field and the wave vector k, and WLa 
= (47re~na/ma) 1 /2 is the Langmuir frequency of 
the particles of species a. In this case, in ac­
cordance with Eq. (3.1), the electron resonance 
frequencies are of the form 

(OOre±)Z = 1/2 {Qe2 + WLe2 ± [ (Qe2 + wi)2 

- 4QiooLe2 cos2 8]'1•}. (4.2) 

Far from resonance of the overtones of the ex­
ternal frequency, i.e., in the case when (nw0)2 dif­
fers noticeably from w~e• the high-frequency os­
cillations in the electric field differ little from the 
frequencies (4.2): 

X~ ln2(aB) [(nwo + Wre±)2- Q;2 cos2 8)}. (4 .3) 
n=--<x> (nwo + Wre±) 2 [ (nwo + oore±)2- Q;2] 

To the contrary, the low-frequency oscillations de­
pend essentially on the electric field. Thus, far 
from resonance, at the overtone of the external 
frequency we have for the spectrum of the low­
frequency oscillations ( e * 7r /2) 

w2 = 112{Qi2 + wdA (roo, k) :1: ( [Q;Z + WLi2A (<.oo, k) ] 2 

- 4Qi2WLi2A cos2 S)'i•}, (4.4) 

where 

(4.5) 

Formulas (4.4) corresponds to buildup of oscilla­
tions for a minus sign and for A(w0, k) < 0. For­
mula (4.5) assumes a specially simple form when 
aB « 1. Then 

aB2wo2 ( wo2 - Qe2) 
A (roo, k) = 2[ooo4 - oo1NQe2 + WLe2)'+ Qe2WLh~OS2 8] · (4·6) 

It is easy to see that at an external-field fre­
quency smaller than the gyroscopic electron fre­
quency, the buildup of oscillations is possible 
when w0 < WLe· In the opposite case (w0 > Qe ), the 
threshold of the buildup of the oscillations is de­
termined by the inequality Wo < (wLe + n~ )1/ 2• We 
note that at the threshold of the instability the 
growing waves are those whose wave vectors are 
almost perpendicular to the magnetic field. 

In the vicinity of the resonance of the overtone 
of the external frequency, the increments increase 
appreciably. For the waves that grow most rapidly 
we have here aB"" 1. The greatest are the incre­
ments in the regions where the following equality 
holds 

.1\n = (wre± / nooo) 2 - 1 = l4gn I'''TJ· 
Here 

(4. 7) 

(4. 7') 

1J is a real number of the order of unity. In this 
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region the solution of the dispersion equation takes 
the form 

(w I nwo) 2 = 1lsl4gn I '''{'1]2 ± l''IJ4 + 8'1]}. ( 4. 8) 

Formula ( 4. 8) was obtained under the assumption 
that w2 » ni. If the opposite inequality holds, the 
right sides of formulas ( 4. 7') and (4. 8) must be 
multiplied in addition by (cos e)2/ 3 and (cos e)413, 

respectively. 
Let us consider certain consequences of for­

mula (4.8). In the case of a minus sign, the maxi­
mum increment of the buildup takes place for 
1J = 1. In the case of a plus sign, the buildup of the 
oscillations is possible if -2 < 1J < 0, with 

(w I nwo) = ± (gn I 16) '"{[1'8111 I + '1]2]'1> 

+ i [1'8--w- '1]2] .,, } • 
(4.9) 

The maximum increment corresponding to formula 
(4.9) occurs when 1J = -2-113• 

Formulas (4.7), (4.8), and (4.9) can be written 
in a somewhat different form, if we note that in the 
vicinity of resonance the angle e can be repre­
sented as a function of 

and An. Namely, for the resonant angle we obtain 

cos2 8r = n3~(1 +~n) [1 +a- n2~(1 + ~n)] I a. (4.10) 

Thus, because in a magnetic field different fre­
quencies of the external field correspond to dif­
ferent resonant angles, the region of frequencies 
in which the dispersion equation (3. 3) is valid and 
gives the maximum values of the increments of the 
parametric resonance broadens. Inasmuch as An 
is a small quantity, it can be neglected in expres­
sion ( 4.10) everywhere except for angles close to 
zero or 1r /2. In this case the values of the param­
eters a and {3, at which resonant buildup of the 
oscillations is possible, are determined from the 
condition 0 ~ cos 2 er ~ 1 and satisfy the inequali­
ties 

n2~ < min(i, a), max(i, a)< n2~ < 1 +a. (4.11) 

From formulas (4.8) and (4.9) we obtain the fol­
lowing expressions for the buildup increments 
y =lim wl: 

(4.12) 

(4.13) 

For specified a and {3, the buildup increments 
have maximum values when the arguments of the 
Bessel function J~(aB) correspond to its maxi­
mum. Therefore, if the resonant angle is not close 
to zero or 1r /2, then y 2 has a maximum which is 
given by formula (4.12), in which we substitute 
1J = 1. Near angles er equal to zero and 1r /2, the 
possible values of 1J are bounded by the conditions 
cos2 er > 0 and cos2 er < 1, from which we get by 
means of (4.10) 

n2~(1 +~n) <min {1, a), 

max (1, a) < n2~(1 +An)< 1 +a. (4.14) 

Using the inequality (4.14) we can readily see that 
near the upper limits of the values of n2[3, when 
n2{3 ~min (1, a) or n2[3 ~ 1 + a, corresponding to the 
start of the resonant buildup of the oscillations at 
the n-th harmonic of the external frequency, the 
value of 1J is negative and thus resonant buildup of 
the oscillations always begins from the branch 
(4.9), with the maximum negative value 1J = -2, 
and the corresponding maximum value of the fre­
quency at which the buildup of the oscillations be­
gins is equal to 

or 

[ 
WL" 2 ]'/, ~max= a+ 1 + 2 4-'~(a + i)max/12 
WLe2 

The resonant angle is in this case close to 1r /2. 
When 1J >0 (which is possible only when n2{3 
<min (1, a) or n2{3 < 1 + a), buildup of oscillation 
in the mode (4.8) is possible. The maximum in­
crement for this branch is reached at 1J = 1 and 
exceeds the maximum increment (reached when 
1J = -2-113) for mode (4.9). 

The figure shows the dependence of the maxi­
mum increment of the oscillation buildup on the 
frequency of the external electric field for the 
case when a= Q~/wte = 3.5. In the region of val­
ues 3. 5 < {3 < 4. 8 resonance occurs at the fre­
quency (w;e )2, and for 4.5 < {3 < 4.8 the increment 
is described by formula (4.13), while in the region 
3.5 < {3 < 4.5 it is described by formula (4.12) with 
n = 1. With decreasing frequency of the external 
electric field, resonances become possible at the 
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overtones of the external frequencies, when n2{3 
:::: (w;e)2, and also resonances at the branch (w~e) 2 • 
For the given values of the parameters this takes 
place in the region {3 < 1.2. In the vicinity of the 
points {3 = (1 + a) /(n2 + m2), double resonance is 
possible, at which 

n2~ ~ (rore+)2, m2~ ~ (rore-) 2, 

where n and m are integers satisfying the condi­
tions n2/m2 > a > 1 (or m2/n2 < a< 1). The build­
up increments under these conditions are obtained 
by solving a cubic equation with respect to w2, the 
form of which is given in Appendix II. 

APPENDIX I 

If the external high-frequency field is of the 
form 

E(t) = ~ Er sin(root + 6r), 
r 

then it is necessary to use throughout in the argu­
ments of the Bessel functions the quantity aB, 
defined by 

Maximum value of the increment of the instability 
y = I lm cui as a function of the frequency of the external 
high frequency electric field at fie 2

/ CULe2 = 3.5; CUo is 
the frequency of the external high frequency field. 

In particular, if the field E(t) is a circularly po­
larized wave propagating along the magnetic field, 
we have for a wave with a polarization vector ro­
tating counterclockwise 

For a wave with polarization vector rotating 
clockwise, 

Eo2 (k,,.._2 + ki) ( e ei ) 2 
a B2 - - ---:-::::--:------:-

- 2roo2 m(Qe+roo) mi(Qi+roo) 

where E0 is the absolute value of the electric field 
intensity vector. 

APPENDIX II 

In the plasma situated in a magnetic field there 
exist two electronic resonant frequencies (w~e) 2 

(4.2). Because of this the possibility of double 
resonance exists, in which one of the overtones of 
the external frequency is close, say, to w;e, and 
the other overtone is close to w;e. Let 

dn = (rore+ / nroo)2- 1, dm = (rore-/ nroo) 2 - 1, 

Then, recognizing that in this case the large quan-
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I <I>y(l) I <I>y(2) 

1 I 6 0.573 0.0293 0.0238 
1 I, 0.558 0.00159 0.0136 
1ls o:537 --0.0405 --O.COI61 
1f2 0,454 --0.190 --0.0542 
2ls 0.271 --0.515 --0' 166 
sl• 0.0833 --0,850 --0.278 
5 I a --0.305 --1.515 --0.496 
• I 6 2.037 2,427 0.232 
• I • 1.644 1.733 0.525 
'Is 1.499 1.363 0.401 
8/2 I .249 0.914 0.258 

tities are not only R<n> and R<-n> but also R<m> e e • e 
and R~-m>, we can obtain from (3.5) an equation 
for determining the oscillation spectrum. (As be­
fore, we disregard the case of exact resonance, 
when the frequencies become close to wri.) 
Namely, we obtain 
w6 -- ti,wo2 (n2.fJ.n2 + m2!lm2) w<•> + 

+ 1/2wow2 ( -gnlln - gmllm + 1/sn2m2wo3Lln2Llm2) 

+ 1/snmwo3Llnllm(Llngm + Llmgn) = 0. (A.1) 

The values of gn are given by (4. 7'). 
In the case of simple resonance, we have Am 

.G 1 and Eq. (A.1) can be approximately repre­
sented in the form 

(w2 - 1/,m2wo2Llrr.Z) (w4 - 1/,n2wo2/:~on2w2 - 1!2nwollngn) = 0. 

(A.2) 

The vanishing of the second factor leads to an equa­
tion whose solutions are the previously-obtained 
formulas for the oscillation frequencies for reso­
nance at the overtone of the external frequency 
(see (4.8)). 

The numerical solutions of Eq. (A.1) in there­
gion Am « 1 are shown in the figure. 

APPENDIX III 

We present below a table of values of the func­
tion 

:n:v 
<Dv(z) = -. -Jv(z)Lv(z), 

sm:n:v 
v2 =I= 1, 4, 9, ... , 

II 

5 /s 1.131 0,508 0.154 
7 I • 1.081 0.207 0.103 

nl 6 0.996 --0.334 0.0488 
Js I 6 1.261 2.541 -0.121 
• I 4 1.180 2.019 -0.204 
7 Is 1.147 1.732 --0.295 
• 12 I. 115 1.453 --0.554 
sis 1.056 1.269 --1.017 

11 I 4 1.246 1.171 --1,466 
l7 I 6 1.089 1.023 --2.292 

which determines the increment of the buildup of 
the oscillations in the nonresonant case (see for­
mulas (4.4) and (4.5)). For z « 1 the following ex­
pansion is valid 

1 3z4 
<Dv(z) ·~ 1- z2 + 

2(1-v2) 4(1-v2)(4-v2) 
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