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The free macroscopic electromagnetic field in a homogeneous, transparent, nonmagnetic, 
dispersive, and anisotropic medium is quantized taking into account all types of waves ex
cited in the medium. The Green's function and the retarded Green's function of the elec
tromagnetic field are obtained. The method is used to determine the radiation from an im
purity atom in an anisotropic dispersive medium. Selection rules for the emission of 
longitudinal quanta are derived. The probability for long-wave emission of transverse and 
longitudinal quanta is calculated for an impurity molecule located in a homogeneous iso
tropic plasma with spatial dispersion. 

IN problems of crystal optics and plasma physics 
as well as in the investigation of electromagnetic 
phenomena, it often occurs that only the long-wave 
part of the spectrum is important. Then the elec
tromagnetic field can be regarded as macroscopic. 
In such problems the quantum approach may be 
very useful, as it is based on the well developed 
methods of quantum electrodynamics. In order to 
translate the methods of quantum electrodynamics 
into the above-mentioned region, we must first of 
all quantize the macroscopic electromagnetic field 
in the medium. The phenomenological approach of 
taking account of the medium through the introduc
tion of the dielectric tensor is often sufficient. In 
the absence of dispersion and absorption such a 
quantization of the field has been carried out 
earlier for isotropic [i- 3] and anisotropic media.[4J 
Some problems of the phenomenological quantum 
electrodynamics in a transparent dispersive iso
tropic medium have been considered in[5- 7J. In 
absorptive media the quantum approach is based 
on the use of Green's functions.[B] 

Below we shall quantize the free macroscopic 
electromagnetic field in a transparent, nonmag
netic, dispersive, and anisotropic medium. By 
free macroscopic field we always understand a 
radiation field which can be excited in the medium 
and exists thereafter independently of its sources 
(variable charges and currents). In the Schrodinger 
representation the operator of the interaction of an 
arbitrary quantum system with the free macro
scopic field is determined by the laws of quantum 
mechanics. The interaction with other fields is 
accounted for in the usual way. Hence the result 
of the quantization given below allows us to solve 

the electrodynamical problems in a transparent 
dispersive medium by the methods of quantum 
electrodynamics. This circumstance is of para
mount importance for problems in which the 
classical description loses its power.E.9J 

For the sake of generality we have considered 
media with frequency and spatial dispersion whose 
dielectric tensor Eaf3 ( w, k) is known. In contrast 
to nondispersive media, we encounter here a num
ber of new features, which justify a detailed con
sideration of the field quantization in a dispersive 
medium. These features are essentially connected 
with the fact that the number of wave types in a 
dispersive medium is greater.[1o] We use a classi
fication for these which arises in natural fashion 
from the formal solution of the field equations for 
a medium with given Eaf3( w, k). The generaliza
tion to other cases is obvious. 

As an illustration we consider the long wave 
radiation of an impurity atom in an anisotropic 
dispersive medium. In the transition from a given 
excited level, the impurity atom may with definite 
probability emit quanta of different types, which 
have the same energy but different polarizations 
and dispersion laws. This circumstance leads to 
a spreading of the spectral line owing to the in
crease in the probability of an atomic transition 
from the excited level. Among the emitted quanta 
there are also longitudinal quanta, which do not 
occur in the absence of dispersion. The formula 
for the radiation and the selection rules for the 
emission of longitudinal quanta have their specific 
character. For example, magnetic dipole transi
tions are forbidden, and the 0 - 0 quadrupole 
transition is allowed. Analogous remarks apply 
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also to the radiation from an impurity atom in an 
isotropic medium with spatial dispersion. In an 
anisotropic medium the longitudinal quanta may 
have a distinguished direction of propagation,U 0J 
which has a noticeable effect on their emission 
probability. In particular, longitudinal quanta 
which propagate only along a distinguished axis or 
in a plane are not emitted by individual impurity 
atoms in an infinite anisotropic medium. Such 
longitudinal quanta can be emitted, for example, in 
a wave-guide or a resonator filled with an aniso
tropic dielectric if the axis of the waveguide 
(resonator) coincides with the distinguished direc
tion of the wave vector of the longitudinal quantum. 

The resulting formulas for the radiation of an 
impurity atom in an anisotropic medium allow for 
a new approach to the explanation of the polariza
tion of the light of luminescent crystals and also 
of the solid state lasers [ 4]. In particular, these 
formulas give the possibility, using the corre
spondence principle, to determine the angular dis
tribution and the frequency spectrum of the radia
tion of classical (not quantal) objects in the aniso
tropic medium. 

1. QUANTIZATION OF THE ELECTROMAGNETIC 
FIELD 

As usual, we assume that the free electromag
netic field is enclosed in a volume V of the form 
of a right parallelepiped whose linear dimensions 
are large compared with the characteristic wave 
lengths of the problem under consideration. We 
choose a gauge in which the scalar potential is 
identically zero. The vector potential is written 
as a superposition of plane waves: 

1 
A (x, t) = ,Tv ~[a (k, A.; t) eikx + a• (k, A.; t) e-ikx]Ik'-

r k'-

+ ___;,_ ~ [al(k, v; t) eikx+ az• (k, v; t) e-ikx] ~, (1) 
-yv ~ k 

where k runs through a discrete sequence of 
values determined by the expansion of the free 
field in a triple Fourier series, and the amplitudes 
a ( k, A; t) and a l ( k, v; t) depend on the time t 
through the factors exp ( -iWkAt) and exp ( -iwkvt ), 
respectively. 

For each value of the wave vector k in (1) the 
frequencies wkv ( v = 1,2, ... ) of the purely longi
tudinal waves as functions of k are determined by 
the solution of the equation 

(2) 

which follows from the equation for the longitudinal 

waves 

(3) 

The frequencies wkA (A = 1,2, ... ) and the direc
tions of the polarization vectors l k A of the ordi
nary wavesn are found by solving the system of 
algebraic equations 

[c2 (kakll- k26all) + Wk'-28ajl ( Wk:>., k) ]lllk'- = 0. ( 4) 

Setting the determinant of the system ( 4) equal 
to zero, we obtain the known Fresnel equation 

I c2(kakjl- k26all) + wu28ajl{Wk:>., k) I= 0, (5) 

which for each fixed value of the wave vector k 
determines the frequency wk A as a function of k: 

(6) 

The index A runs through the integer values 
A = 1,2, ... , labeling the different roots of the 
Fresnel equation ( 5). For each value of the fre
quency ( 6) Eq. ( 4) determines the direction of the 
unit vector of polarization l k A in the form 

Jk'- = ('tkA _ k ka'ttJk'-llatJ { Wk'-• k) ) _1_ (7) 
kwkjl•lla•tJ• ( Wk:>., k) g k'- ' 

where 

gk'-2 = 1 + k2 ( ka'ttJk'-lla;tJ ( Wk'-• k) )2' 
ka'k!l•llrx•jl• {wk-., k) 

and Tk A is a unit vector perpendicular to k. The 
transverse vector TkA is easily determined by 
going to a coordinate system with a Z axis di
rected along k. In this coordinate system the vec
tor Tk A is directed along one of the two principal 
axes of the two-dimensional reciprocal dielectric 
tensor Ea,B- 1(wkA• k), where the indices a and 
/3 run through the two values 1 and 2 correspond
ing to the projections on the X and Y axes. By: a 
coordinate transformation we find the vector Tk A 
in an arbitrary reference system. 

In the chosen gauge of the potentials, the Max
well equations together with the relations ( 4) and 
(7) lead to the following general relations for the 
polarization vectors of ordinary waves: 

lla;jlkaZr,kJ,. = 0, ( 8) 

llaf!Zr;.kAlpkA' =I lla!lZrxk'-Zr.k'-{j"'-'• ( 9) 

8 ( Wk'-28ap) 2Wk:>.2 8k 
---;c---·Zak'- ZilkA = lla!lZa.k'- zllk'-----' ( 10) 

awk:>. k awk-. 

where Wk A• as a function of k is determined 

1>For brevity we call ordinary those plane waves for which 
the dispersion law and the polarization vector have the forms 
(6) and (7), respectively. In the case of a uniaxial crystal 
these waves are further subdivided into ordinary and extraor
dinary waves. 
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from the Fresnel equation (5), and the unit polari
zation vector l k A refers to given k and Wk A· In 
all formulas (8) to (10) the partial derivatives are 
taken for fixed direction k, and the dielectric 
permittivity tensor Ea{3 depends on the frequency 
Wk A and on the wave vector k: 

Ba~ = Baa ( rou, k). 

In an arbitrary gauge of the potentials, Eq. (4) 
and the relations (7) to (10) are satisfied by a unit 
vector directed along the electric vector of a 
monochromatic plane wave. Purely longitudinal 
waves do not, of course, satisfy equations (7), (9), 
and (10), since for these equation (4) turns into (3) 
with the necessary condition (2). 

It is known that in a transparent medium with 
frequency and spatial dispersion the energy of a 
packet of monochromatic waves with wave vector 
k and a narrow distribution of frequencies near 
the main frequency w is given by lit] 

~ I [ &(roeaa) Ea(ro)E~(ro) + Ha(ro)Ha(ro) J dV, (11) 
8n J oro 

where the bar denotes the time average over the 
period 2rr/ w, and the electric and magnetic field 
intensities E ( w) and H ( w) have a harmonic time 
dependence with a slowly varying amplitude. 

The expression (11) does not depend on the 
small width of the distribution of frequencies near 
the main frequency w and therefore remains valid 
in the limit of an infinitely narrow packet. This 
means that the energy of a monochromatic wave in 
a transparent dispersive anisotropic medium is 
also given by (11). Hence the total energy of the 
electromagnetic field in a transparent dispersive 
anisotropic medium can be written as a sum of 
the energies of the individual plane waves. Then 
the quantization of the field is carried out in the 
usual manner.C4J As a result the Hamiltonian 
Hy of the free macroscopic electromagnetic field 
in a homogeneous, transparent, nonmagnetic, dis
persive, and anisotropic medium and the operator 
of the vector potential A ( x) in the Schrodinger 
representation take the form 

H.,= ~lirokA(ckA+ckA + 1/z) 
kA 

kv 

(12) 

where CkA and CkA+ are the absorption and 
creation operators for a quantum with wave vector 
k, polarization zk A and energy liwk A• where the 
quantities WkA. and zkA are for each fixed k de
termined from equations (5) and (4). Finally, 
ckv and ck / are the absorption and creation 
operators for a longitudinal quantum with wave 
vector k and energy liwk v, where the frequencies 
Wkv (v = 1,2, ... ) for given k are found from equa
tion (2). The creation and absorption operators 
satisfy the following commutation relations: 

+ + 
CkA Ck'A'- Ck'A' CkA = 1\kk' 1\AA'• 

The first and second terms in (12) and (13) re
fer to the ordinary and purely longitudinal waves, 
respectively. In the absence of dispersion the 
purely longitudinal waves vanish, and we have the 
relation 

so that formulas (12) and (13) coincide with those 
obtained earlier for a nondispersive medium.C4J 
Formulas (12) and (13) are valid also for homo
geneous isotropic media with frequency and spatial 
dispersion. The generalization of our results to 
gyrotropic media presents no difficulties. 

In many applications it is important to know the 
Green's function 

Dap(x-x', t-t') = -i(T(Aa(x, t)A~(x', t'))> (14) 

and the retarded Green's function 

Da~R (x- x', t- t') 

= {- i (A a (x, t) A a (x', t')- A~ (x', t') A a (x, t) >, 
0, 

t' < t, 
t' > t 

(15) 
of the free electromagnetic field in an anisotropic 
dispersive medium. Here T denotes the T 
product [l2] of Heisenberg operators of the vector 
potential A ( x, t ), and the brackets denote the 
quantum mechanical average over the ground state 
of the field. 

Expanding the T product in (14) with the help 
of (13) and (10), we obtain 

Da~ (x, t) = - 1- IDa~ (k, (J)) ei(kX-wt) dk d.:o, 
(2n)' J 

(16) 

4n /ic2 ZakA ZakA 
Dadk, (J)) = ~ ro2E~·a· ( ro, k) z .. ,kA la,kA- c2k2 + c2 (kJkA) 2 + ib 

4n lic2 kak~ 

+ 1Jl 2Ea'~' ( IJl, k) ka,k~, + i/1 ' 
(17) 

where the unit polarization vector l k A is for each 
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fixed value of k defined by (7), and the infinitesi
mal term io ( 6 > 0) in the denominators of (17) 
indicates the way in which the poles must be by
passed in the integration over w. The contribution 
from the pole w = 0 in the second term of (17) 
must be discarded, i.e., this pole has no relation 
to the free macroscopic field. 

For an anisotropic medium without spatial dis
persion, formula (17) coincides with the expres
sion obtained by another method in [B]. We note 
also that the quantity Wk i\ which enters in l k i\ in 
(17) can be formally replaced by w. This does not 
alter the Green's function (16). After this replace
ment the components of the vector l Qlk i\ will be 
proportional to the cofactors Ai\QI of the elements 
of the i\-th row of the determinant 

I w2ea~ ( w, k} - c2k26a~ + (P•kak~ I, 
and the expression (17) is rewritten in the form 

Da~ (k, w} = 4nlic2 A a~ I I w2e"~ ( w, k) - c2k26a~ + c2kak~ j. 

The first and second terms in (17) refer to the 
ordinary and purely longitudinal waves, respec
tively, where the second term vanishes if the 
purely longitudinal waves are directed along a 
distinguished axis or in a plane. Hence such 
purely longitudinal waves are not emitted in an 
infinite anisotropic medium. The second term in 
(17) is different from zero only if the directions 
of the wave vectors k of the purely longitudinal 
waves lie in a solid angle of finite dimensions. 
For example, this is the case in an anisotropic 
medium with the dielectric constant [to] 

( 18) 

where the CO' ( Ql = 1,2,3) are constants. The di
rections of the wave vectors of the purely longi
tudinal waves are in the general case determined 
from (2) and (3). 

Analogously, the Fourier transform of the re
tarded Green's function ( 15) is written in the form 
(17) without the imaginary term io in the denom
inator. The poles are in this case circumvented 
in the usual way by displacing the integration 
contour into the upper half-plane of the complex 
variable w. The analytic properties of the Green's 
function remain the same as for an isotropic 
medium. 

In solving specific problems in electrodynamics 
it is convenient to go to the interaction represen
tation, in which the operators of the interacting 
fields depend on the time in the same way as the 
free field operators, and the presence of the in
teraction of the fields is reflected only in the 

change of the wave function of the entire quantum 
mechanical system. Thus formulas (12), (13), and 
(17) permit the use of a graph technique in a 
transparent dispersive medium in analogy to the 
graph technique in vacuum.L 13 ] 

2. EMISSION BY AN ATOM IN A DISPERSIVE 
MEDIUM 

To solve the problem of long-wave radiation by 
an impurity atom in a dispersive medium we use 
the !mown S matrix formalism.L 13J Simple calcu
lations lead to the following value for the proba
bility dWk i\ for the emission per unit time of a 
quantum fiwk i\ with wave vector k in the solid 
angle dQ and polarization l k i\ from an impurity 
atom located in a transparent dispersive aniso
tropic medium: 

IIk1-M12I 2 k 3 dQ 
dWk~.= . ~ 

2nliw212Ba~ ( W21, k) laki.Z~kl. 
(19) 

Here M12 is the matrix element for the transition 
of the atom from an excited state characterized 
by the complete set of quantum numbers n2 and 
energy .Wn2 to the lower state n1, &nt= 

Ma12 = W21da + c[~tk]a- iw210a~k~ I 2, (20)* 

where d, IJ., and QQI{3 are the corresponding 
matrix elements of the dipole, magnetic dipole, 
and quadrupole moments of the atom, respectively, 
and w21 is the frequency of the atomic transition 

(21) 

For a given direction k the absolute value of 
the wave vector in (19) is expressed through w21 

via the energy conservation law: 

Wk).(k, k I k} = W2!, (22) 

where from all roots of (22) one must take only 
such values k which together with Wki\ = w21 

satisfy the Fresnel equation (5). 
We emphasize that in (20) the trace of the 

quadrupole tensor of the impurity atom, 

Qa~ = e ~ ¢n,+(x)xax~¢n,(x)dV, (23) 

is different from zero, where e is the electron 
charge, and 1/Jn1 ( x) and 1/Jn2 ( x) are the electron 
wave functions normalized to unity. This is con
nected with the fact that the polarization vector 
zki\ of the ordinary waves in an anisotropic 
medium (7) has in general a longitudinal component. 

The probability for emission of ordinary waves 
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into the solid angle dfl (19) has the same form as 
in the absence of dispersion.C4J In problems of the 
emission and absorption of ordinary waves in a 
transparent dispersive anisotropic medium one 
can therefore ignore the dispersion in the inter
mediate calculations and regard the dielectric 
constant in the final result as dependent on the 
wave vector and the frequency of the atomic transi
tion. An analogous conclusion was arrived at 
earlier in [13• 14] for media without spatial disper
sion. However, in a medium with frequency and 
spatial dispersion the number of wave types in
creases, so that the index A. must now assume 
several values instead of just two, corresponding 
to all the roots of the Fresnel equation for given 
k. 

In the absence of spatial dispersion the Fresnel 
equation (5) has no multiple roots. For a given 
frequency of the atomic transition (21) only one 
ordinary wave is therefore emitted whose fre
quency WkA. satisfies (22). If spatial dispersion is 
present the ranges of variation of the functions (6) 
with different A. may partly overlap, so that for 
some frequencies of the atomic transition (21) the 
equation (22) will be satisfied by several functions 
WkA. with different values k and A.. This means 
that the atom can with definite probability emit 
quanta of different types having the same energy 
and differing among themselves in their polariza
tions and the dispersion law (6). Hence the proba
bility for radiation from an impurity atom in an 
anisotropic medium with spatial dispersion is in 
general increased in correspondence with the in
crease of the statistical weight of the final states 
of the system. 

In the problem of the radiation of longitudinal 
quanta the dispersion of the dielectric constant 
is important at all stages of the calculation. Using 
the standard S matrix formalism, we find for the 
probability wZ of the emission of a longitudinal 
quantum per unit time by an impurity atom in a 
transparent dispersive anisotropic medium 

Wl = _1_ ~ lkMtzl2k2d~ (24) 
:nliro212 1 arokv/ ak 1 ka:k~ ae"~ < ro21, k) faro21 ' 

where the numerical value of k for given direction 
k is determined from the energy conservation law 

(25) 

and the frequency of the longitudinal quantum 
Wkv ( k, k/k) is determined by (2). From all the 
roots of (25) one must choose only those values k 
which together with Wkv == w21 satisfy (2). 

The region of integration over the angles of the 
vector k in (24) is determined from (2) and (3). 

For example, if the vector k lies in a plane or is 
directed along a straight line, the volume V will 
remain uncompensated in the denominator of (24). 
In this case the probability for the emission of a 
longitudinal quantum in an infinite medium 
V - ao vanishes in accordance with what we have 
said earlier. However, if the radiation of the atom 
takes place in a wave guide or a resonator with 
anisotropic dielectric filling, the probability for 
the emission of a longitudinal quantum is different 
from zero if the axis of the wave guide or the 
resonator coincides with the distinguished direc
tion of the wave vector k of the longitudinal quan
tum. Formula (24) holds also for an isotropic 
medium with frequency and spatial dispersion. 

In the general case the matrix element M12 in 
(24) must be written in the form 

ie i . 
M12 = -2 \ '1Jln,+(x)e-•~(2p- ik)'IJln,(x)dV, m. 

where m and p are the mass and the momentum 
operator of the radiating electron, respectively. 
For long-wave emission of a longitudinal quantum 
the e;epansion (20) is valid. 

It follows from (24) and (20) that there are no 
magnetic dipole transitions with emission of a 
long-wave quantum, and for quadrupole transitions 
the transition 0 - 0 is allowed. The remaining 
selection rules are easily established in each 
specific case, starting from the form of the corre
sponding matrix elements (20) (cf., for example[10] ). 

It should be noted that in contrast to the iso
tropic medium, the division into dipole, magnetic
dipole, and quadrupole radiation in the anisotropic 
medium is of formal character, connected with the 
expansion of the matrix element (20) in the small 
parameter a/A., where a is the radius of the 
radiating atom and A. the wave length of the 
emitted wave. Since the angular momentum is in 
general not conserved in an anisotropic medium, 
the radiated field cannot be expanded in multipoles 
with definite angular momentum and projection. 
As a consequence, only a quantum with definite 
energy, wave vector, and polarization is emitted 
in dipole as well as quadrupole transitions of an 
impurity atom in an anisotropic medium. Owing to 
the smallness of the coupling constant with the rad
iation field one usually introduces selection rules 
with respect to quantum numbers characterizing 
the state of the radiating electrons in the impurity 
atom. These quantum numbers may also contain 
the angular momentum and its projection. One 
must only keep in mind that the angular momentum 
may not be conserved in the long-wave radiation 



QUANTIZATION OF THE ELECTROMAGNETIC FIELD 613 

in a transparent anisotropic medium (in contrast 
to the energy). 

For definiteness we apply formulas (19) and 
(24) to the long-wave ( krn « 1) radiation from 
an impurity molecule in an isotropic plasma with 
dielectric constant:C11 J 

WL2 
8 1r(w,k)= 1--2 (1+k2rv2), 

(0 

WL2 
8 1(w, k) = 1--2 (1 + 3k2 rv2 ), 

(0 

where rn is the Debye radius and WL is the 
Langmuir frequency of the electrons of the plasma. 
Let us consider the case where the frequency w21 

of the molecular transition is close to the Lang
muir frequency, ( w21 - WL )/ WL « 1, where w21 

> WL· For w21 < WL no longitudinal waves are 
emitted. As a result the probabilities for dipole 
emission per unit time of transverse, wdtr, and 
longitudinal quanta, wdl• are given by the formu
las 

where Wl is the dipole transition probability in 
vacuum, K is the Boltzmann constant, T is the 
plasma temperature, and Ne is the electron 
density in the plasma. 

In writing (26) and (27) we have assumed that 
before the radiation of the impurity molecule the 
electromagnetic field of the plasma was in 
thermodynamical equilibrium with the charged 
particles of the plasma. Therefore the number of 
quanta nw with frequency w and definite direction 
of the polarization vector and wave vector is 

n., = (exp (liuo / xT) - 1]-1. 

The quantity nw21 + 1 in (26) and (27) takes ac
count of the spontaneous and induced emission of 
the impurity molecule. 

It is seen from (26) and (27) that the probability 
for the emission (absorption) of longitudinal waves 
is much larger than for transverse waves in the 
frequency region indicated. This remark holds not 
only for the long-wave radiation by an impurity 
molecule in a plasma. According to the corre
spondence principle, the radiation of a classical 
charged system characterized by a variable dipole 
moment d ( t) is also described by (26) and (27) 

with the matrix element d replaced by d ( t )/12. 
This means, for example, that the radiation of 
transverse waves from a linear antenna in the 
ionosphere in the indicated frequency region is 
strongly weakened through power losses to the 
radiation of longitudinal waves who~e radiation in
tensity is larger by a factor ( 1/6Y 3 )(mco/ KT )a/2• 

3. RADIATION OF A CLASSICAL CHARGED 
SYSTEM IN AN ANISOTROPIC MEDIUM 

Above we have obtained formulas for the radia
tion from an impurity atom in an anisotropic dis
persive medium. However, if the correspondence 
principle is applied one can also easily determine 
the radiation law for classical (unquantized) ob
jects. We note in this connection that the direct 
integration of the Maxwell equations in an aniso
tropic medium is mathematically much more 
complicated even in the dipole case and has not 
yet been carried out. 

For simplicity we write down the formulas for 
the radiation in a uniaxial nondispersive crystal. 
The direction of the polarization vectors of the 
ordinary and extraordinary waves and the angular 
distribution of the atomic multipole radiation with 
wave vector k lying in a solid angle dQ 
= 21rsin 8d8 were given in[4J. Here 8 is the angle 
between the vector k and the optical axis of the 
crystal. 2 > The Poynting vector of the extraordinary 
wave lies in the same plane as the wave vector k 
and the optical axis of the crystal, spanning the 
angle 8' with the latter, where 

8..1.2 cos2 8' 
cos2 e = ' ' (28) 

81J2 + (8..L2 - 81ncos2 e 
with El and Ell the dielectric constant of the uni
axial crystal in the transverse and longitudinal 
directions with respect to the optical axis, re
spectively. 

Using the correspondence principle and (28), 
we find for the energy d~nw radiated with fre
quency w into the solid angle dQ' = 21r sin 8'd 8' 

in the form of an extraordinary wave 

1 ii (w) 12 81J2 8..L dQ' dw (29) 
d{S =-- 1'1' 

nro 12n2c3 [811 + ( 8..L- 811) COS2 e 2 

where d ( w ) is the Fourier transform of the sec
ond derivative of the dipole moment d ( t) of the 
classical charged system located in a uniaxial 
crystal. The refraction of the rays as the radia
tion leaves the crystal is calculated with the laws 

2 )We take this opportunity to note that there is a printing 
error in formulas (15) to (17) of[•]. The first term en in the 
square bracket in the denominator must be replaced by £j_· 



614 A. I. ALEKSEEV and Yu. P. NIKITIN 

of geometrical optics. For a random orientation 
of the dipole moment the frequency distribution of 
the radiation of ordinary waves is the same as in 
an isotropic medium with dielectric constant q. 

Expression (29) is averaged over the direction 
of the dipole moment. If the electric dipole mo
ment is directed along the optical axis, then for
mula (29) is multiplied by 3 sin2 e', and there is 
no radiation of ordinary waves. 

For magnetic dipole radiation from a classical 
charged system with random orientation of the 
magnetic moment p. ( t) one must make the re
placement 

ii (w) -> ~ (w), 

in formula (29), and the exponent % of the square 
bracket in the denominator must be changed to %. 
In this case the radiation of ordinary waves is the 
same as in an isotropic medium with dielectric 
constant El. If the magnetic moment is directed 
along the optical axis, no extraordinary waves will 
be emitted, and the energy d<%'nw of the radiation 
with frequency w into the solid angle dQ' in the 
form of ordinary waves is 

I ~-(w) 12 s.L'12.sin2 8' , 
dfS = dQ dw. 

nw 4n2c3 

The quadrupole radiation of a classical charged 
system is calculated in an analogous fashion. For 
example, the energy d<%' nw radiated with frequency 
w into the solid angle dQ' in the form of ordinary 
waves is 

Xeu2 + (3e.L- e11)_0~ eu) cos2 8'- 2 ( e.L- eu) 2 cos~ 8'dQ'dw 
[eil + (e.L- eu)cos2 8']'/, ' 

(30) 

where Qa{3 ( w) is the Fourier transform of the 
third derivative of the quadrupole moment 
Qa{3(t) of the classical charged system. Expres
sion (30) is averaged over the directions of the 
axes of the quadrupole tensor. 

The authors are very grateful to V. M. 

Galitski'i', V. I. Kogan, and M. M. Ryazanov for a 
discussion of the results of this paper. 

1 V. L. Ginzburg, JETP 10, 589 (1940). 
2 A. A. Sokolov, DAN SSSR 28, 415 (1940). 
3J. M. Jauch and K. M. Watson, Phys. Rev. 74, 

950 and 1485 (1948). 
4 A. I. Alekseev and Yu. P. Nikitin, JETP 48, 

1669 (1965), Soviet Phys. JETP 21, 1121 (1965). 
5J. M. Jauch and K. M. Watson, Phys. Rev. 75, 

1249 (1949). 
sM. I. Ryazanov, JETP 32, 1244 (1957), Soviet 

Phys. JETP 5, 1013 (1957). 
7 M. L. Ter-Mikaelyan, Izv. AN Arm SSR, ser. 

fiz.-mat. 11, 13 (1958). 
8 A. A. Abrikosov, L. P. Gor'kov, and I. E. 

Dzyaloshinski'i', Metody kvantovo'i' toerii polya v 
statistichesko'i fizike (Quantum Field Theoretical 
Methods in Statistical Physics), Fizmatgiz 1962, 
p. 325, Engl. Transl. Pergamon Press, (1965). 

9 B. M. Bolotovskil, UFN 62, 201 (1957) and 75, 
295 (1961), Soviet Phys. Uspekhi 4, 781 (1962). 

10 v. M. Agranovich and V. L Ginzburg, Kristal
looptika s uchetom prostranstvenno'i' dispersil i 
teoriya eksitonov (Crystal Optics with Account of 
Spatial Dispersion and the Theory of Excitons), 
Nauka, 1965, p. 59. 

11 V. P. Silin and A. A. Rukhadze, Electromag
nitnye svo'i'stva plazmy i plazmopodobnykh sred 
(Electromagnetic Properties of the Plasma and 
Plasma-like Media), Atomizdat, 1961, p. 14, 26, 
86. 

12 C. G. Wick, Phys. Rev. 80, 268 (1950). 
13 A. I. Akhiezer and V. B. Berestetski'i', 

Kvantovaya elektrodinamika (Quantum Electrody
namics), Fizmatigiz, 1959, p. 232 and 250. 

14 V. L. Ginzburg, JETP 10, 601 (1940). 
15 V. L. Ginzburg and V. Ya. E'i'dman, JETP 36, 

1823 (1959) and 43, 1865 (1962), Soviet Phys. JETP 
9, 1300 (1959) and 16, 1316 (1963). 

Translated by R. Lipperheide 
116 




