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The Cowling theorem regarding the impossibility of a stationary axially-symmetrical hydro­
magnetic dynamo is formulated as a theorem stating the impossibility of a short-circuited 
axially-symmetrical dynamo, defined as a hydromagnetic dynamo with a zero electric field. 
Formulated in this way, Cowling's theorem can be extended to include the arbitrary three­
dimensional case. It is concluded that generation of a magnetic field in the stationary case 
must necessarily involve separation of the electric charges in the fluid; in other words an 
electric field must also appear in space along with the magnetic field. 

IN magnetohydrodynamics, there is a theorem by 
Cowling[1•2J, according to which a stationary 
axially symmetrical hydromagnetic dynamo is 
impossible. In the initial formulation of the prob­
lem, Cowling assumed that the azimuthal compon­
ents of the magnetic field Hep and of the fluid veloc­
ity Yep are equal to zero. Backus and Chandrasek­
har [2] have generalized Cowling's theorem to 
include the case when Hep and vep differ from zero, 
while Braginskil [3] extended it to the nonstationary 
case. 

As initially formulated, Cowling's theorem can 
be phrased differently. Namely, from the condition 
Hep = 0 and Yep = 0 it follows that the components of 
the electric field in the meridional planes are 
equal to zero, and from the axial symmetry con­
dition it follows also that Eep = 0 and consequently 
E = 0. A hydromagnetic dynamo with zero electric 
field can be called "short-circuited," since the 
density j at each point of the fluid is determined by 
the value of the emf and the conductivity a at the 
same point. Thus, Cowling's theorem can be 
formulated as follows: a short-circuited, axially 
symmetrical hydromagnetic dynamo is impossible. 

In such a formulation, Cowling's theorem can be 
generalized to an arbitrary three-dimensional 
case. 

The equations of a short-circuited hydromag­
netic dynamo (E = 0) in the kinematic formulation [ 3] 

the magnetic field. It is assumed that the liquid 
occupies a certain finite volume V of space. Out­
side this volume u = 0. It is required to find a 
continuous solution of equations (1) and (2) with 
zero boundary condition for H at infinity. 

It follows from (2) that H curl H = 0, and there-
fore H can be represented in the form 

(3) 

Outside the volume V Eq. (2) goes over into 
curl H = 0, and consequently, outside V the field H 
can be represented in the form H = V'<I>'. Without 
loss of generality we can assume that <I>' = <I>. 
Then the representation (3) will hold true in all 
space if we put 1/! = 1 outside V. The zero condition 
for H at infinity then yields 

lim <I>= 0 as r-+ oo. (4) 

Substituting (3) in (1) and (2) we obtain 

')JL'l<l> + (V'''l<l>)· = 0, (5) 

[V')JV<I>] = ')J[uV<I>]. (6) 

The application of the divergence operation to 
(3) necessitates by the same token that <I> be some 
twice-differentiable function. As regards the func-
tion of 1/!, its properties are determined in many 
respects by the properties of the vector function u. 

Let us assume that the system (5) and (6) has 
nontrivial solutions. We can then show that, sub-
ject to certain assumptions concerning the vector 

are 
divH = 0, 

(1) function u, there should be satisfied in the volume 
V the conditions 

rotH= [uH], (2)* 

where u = v/Dm, vis the velocity field of the con­
ducting liquid and Dm the diffusion coefficient of 

*rot = curl; [u H] ~ u x H. 

'ljJ =I= 0, l'ljJ I =I= oo, I (V')J),I =I= oo, (7) 

where (V'I/!)T is the projection of the gradient on the 
direction of H. Indeed, assume that the conditions 
(7) are not satisfied at some point inside V. We 
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introduce at this point a Cartesian coordinate sys­
tem with z axis directed along H. In this coordinate 
system, Eq. (6) can be written in the form 

1 o..p 
--=u,. 
'ljJ OX , 

,1 o..p 
--=Uy. 
..P oy 

Integrating the system (8), we obtain 

(8) 

'ljJ = qJ(z)exp 0 Uxdx + ~ uydy- ~ ~ 00~ dx dy}, (9) 

(V..p)T = o..p = ( dqJ + ql oF) eF(x,y,z) 
oz dz oz ' 

(10) 

where cp(z) is an arbitrary function of the coordinate 
z and F(x, y, z) is the expression in the curly 
brackets of (9). 

We note that if we reverse the order of integra­
tion of (8), then Bux/By will be replaced in (9) by 
Buy/Bx. This does not change the values of 1/J, since 
Bux/By = Buy/Bx, as follows from (2) to which we 
apply the divergence operation H curl u = 0, that 
is, (curl u)z == 0 in the chosen coordinate system. 

If the vector function u is such that 

F(x,y,z) = ~ zixdx+ ~ Uydy- ~ ~ ~:x dxdy =I=± oo, 

oF/oz =F +oo, (11) 

then, as follows from (9) and (10), violation of con­
dition (7) can result only if the arbitrary function 
cp(z) assumes values zero or ± 00 , or else if its 
derivative becomes equal to ± 00 • These values of 
cp(z) or dcp/dz will remain the same at all points of 
a surface orthogonal to the magnetic field, inde­
pendently of the value of u. (The proof of the exis­
tence of surfaces orthogonal to H, for fields for 
which the condition H curl H == 0 is satisfied, can 
be found in [ 4] .) If the surface goes outside the 
region V, we arrive at a contradiction, for outside 
V we have 1/J == 1 and BI/J/Bz == 0. Consequently, the 
conditions (7) are satisfied at those points of the 
volume V through which it is possible to pass sur­
faces orthogonal to H and going outside V. 

We shall show that the surfaces orthogonal to H 
go outside the limits of V. Indeed, assume that 
there is inside V an orthogonal surface that does 
not go outside the limits of the region V. This sur­
face should be closed and smooth. The intersection 

of the orthogonal surfaces is excluded by the re­
quirement that the magnetic field be unique. For 
an arbitrary point lying inside a closed orthogonal 
surface, the orthogonal surface should also be 
closed, etc. These surfaces which are imbedded in 
one another should contract to a certain point, 
which will be a singular point of the magnetic field. 
But this is impossible because of the continuity 
of H. 

Thus the conditions (7) are satisfied everywhere 
in space if u is such that the conditions (11) are 
satisfied inside V, the condition u == 0 is satisfied 
outside V, and His a continuous function. 

But when conditions (7) are satisfied together 
with boundary conditions (4), Eq. (5) has as a 
twice-differentiable function only the trivial solu­
tion [5] <I> = 0. This contradicts the assumption 
made that the system (5) and (6) has a nontrivial 
solution. Consequently, a short circuited hydro­
magnetic dynamo is impossible. 

The theorem proved leads to the following con­
clusion: when a magnetic field is generated in the 
stationary case, there must occur a separation of 
electric charges in the liquid, that is, along with 
the magnetic field there should be produced in 
space also an electric field. Indeed, in the station­
ary case, curl E = 0; further, div E == 471'P, and if 
p(r) == 0 then E == 0 and a hydromagnetic dynamo 
is impossible. 

The author is sincerely grateful to M. A. 
Gol'dshtik for a discussion of the work. 
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