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A calculation of the thermal diffusion coefficient of Brownian particles is made by using an 
idea of Luttinger, who suggested the introduction of an auxiliary dynamical field such that the 
matter and energy fluxes arising through its action are related to those that arise when there 
is a temperature gradient in the system. It is shown that the thermal diffusion coefficient fi 
of the Brownian particles is connected with the diffusion coefficient D by the relation 73 = Dn/T. 

INTRODUCTION 

SERIOUS difficulties are often encountered in the 
solution of problems ~f calculating kinetic coeffi­
cients in the presence of a temperature gradient 
(thermoelectric emf, thermal diffusion, thermal 
conductivity). For example, such difficulties arise 
when the problem is essentially a quantum one, or 
even in the classical problem, if the departure of 
the system from equilibrium is not described by 
the one-particle distribution function. 

There have been several papers [t, 2J whose pur­
pose was to give a general solution of this problem 
analogous to the Kubo formula [3] in the theory of 
electric conductivity. The results of these papers 
are formulas expressing the kinetic coefficients in 
terms of the correlation functions of the matter 
and energy fluxes. These formulas, however, are 
in a certain sense without content, since the method 
used to derive them does not give any recipe for 
an unambiguous determination of the operators for 
the matter and energy fluxes. Actually, the choice 
of these operators has to be motivated by definite 
physical conditions, analogous to those that were 
formulated by Obraztsov[ 4J in the problem of the 
thermoelectric emf of electrons in a quantizing 
magnetic field. 

There has recently appeared a paper by 
Luttinger [ 5] in which an auxiliary field is intro­
duced which is chosen so that the matter and 
energy fluxes that arise in the system under the 
action of the field are the same as those that arise 
under the action of a temperature gradient. Among 
actual fields, a relativistic gravitational field has 
this property. Despite the fact that the final result 
derived by Luttinger in general form suffers from 
the same shortcomings as the papers mentioned 

earlier, [1, 2] the idea of the auxiliary field seems 
to us to be a very fruitful one. 

In the present paper this idea is applied to the 
problem of thermal diffusion of Brownian particles. 
It is shown that the thermal diffusion coefficient 73 
is connected with the diffusion coefficient D by the 
relation 

~ =Dn/ T, 

where n is the concentration of the particles. For 
this purpose we introduce in Sec. 1 a purely formal 
auxiliary field which does not exist in nature. In 
particular, one could also introduce an actual rela­
tivistic gravitational field. By a consistent use of 
the apparatus of general relativity it can be shown 
that this leads to the same result for {'i. 

1. INTRODUCTION OF THE AUXILIARY FIELD 

We consider particles which are in an external 
field cp (r) and in this field have a Hamiltonian func­
tion of the form 1 > 

3t'(p,r) =p2 /2m(1+cp(r)). (1.1) 

The equations of motion are the canonical equa­
tions 

83£ p 
r=v=-= (1.2) 

8p m(i + cp) ' 

· 83£ mv2 8cp 
p=-ar-=Tar· (1.3) 

From (1.2) and (1.3) it is easy to derive the equa­
tion 

. 1 ( v2 8cp 8cp ) 
V; = ( 1 + cp) -2- 8X; - V;VR. 8XR. • (1.4) 

1)There is evidently no such field in nature, but this is of 
no importance for what follows. 

536 



THEORY OF THERMAL DIFFUSION OF BROWNIAN PARTICLES 537 

In a state of thermodynamic equilibrium the dis­
tribution function of such a gas is of the form 

{ p2 J..to} 
f(p,r)= exp - 2m(1 +<p)To +-To ' (1. 5) 

where JJ.o and T 0 are the thermodynamic chemical 
potential and the thermodynamic temperature, 
which in the equilibrium state are independent of 
the coordinates. The function f is normalized so 
that 

~ f (p, r)d-r:p = n(r). (1.6) 

Instead of this function it is convenient to intro­
duce a function f normalized by the condition 

~ f(v,r)d3v=n(r). 

It is easy to see that 

where 

( m )''• { mvz} f(v, r) = n Z:tT exp - ZT , 

T=To/(1+<p), 

f = const·f(1 + <p) 3• 

(1. 7) 

(1.8) 

(1.9) 

(1.10) 

Here Tis the "physical" temperature, determined 
from the mean square speed of the gas particles. 
In the equilibrium state it is not a constant, but 
depends on the coordinates, while 

T(1 + <p) = const. (1.9') 

The difference between the physical and thermo­
dynamical temperatures is an unavoidable conse­
quence of the Hamiltonian (1.1). An effect of this 
sort occurs in nature when there is a relativistic 
gravitational field. [sJ 

The dependence of the equilibrium temperature 
on the coordinates can be obtained by substituting 
(1.5) in (1.6). We get 

J..to = ln n(r) (Zltlil:..__ = const. (1.11) 
To (2ltmTo)'"(1 + <p)''• 

From this we find 

n(r) (1 + <p)-'" = const. 

Let iJ.(n, T) be the "physical" chemical poten­
tial of the ideal gas: 

(n T) = T l n(21t:li)3 
J..t ' n (21t:mT)'I; 

(1.12) 

Then 

J..to/ To= J..LI T- 3ln (1 + <p). (1.13) 

Let us now proceed to dissipative processes. If 
a one-component gas is not in a state of thermo-

dynamic equilibrium, an energy flux q arises in it 
which is proportional to the gradient of the thermo­
dynamic temperature. Therefore in the presence 
of the field cp (cp « 1) 

q = -xV [T(1 + <p)] = -xVT- xTV<p, (1.14) 

where K is the thermal conductivity coefficient. 
In a mixture of gases or in a solid the approach 

to equilibrium is also accompanied by diffusion 
and thermal diffusion. In this case there is a parti­
cle flux i proportional to the gradients of the 
thermodynamic chemical potential and of the tem­
perature. Using (1.13), we get 

i =- ;iv [*- 3ln(1 + <p) J- ~v [T(1 + <p)], (1.15) 

where a and (3 are kinetic coefficients, or 

i = -aVJ..t- yVT- <'IV<p; 

y = ~- aJ..t IT, a= -;_IT; 
6 = ~T- 3aT. 

(1.16) 

(1.17) 

(1.18) 

The coefficient a is connected with the diffusion 
coefficient D by the relation 

aT /n =D. (1.19) 

On the other hand, it is easy to calculate D by 
means of the Einstein relation. Therefore to calcu­
late y it is sufficient to determine the coefficient 
6. In order to do this, we shall argue as follows, 
following Luttinger. [ 5] Suppo!;)e that initially, for 
t - -oo, there was no field cp. We then turn it on 
according to the law cp = cp 0eik·r+s ·t, choosing s 
so that 

(1.20) 

where T is the microscopic relaxation time in the 
system and TM is the macroscopic time for equal­
ization of concentrations or temperatures (T~ 
~ k2D or T~ ~ k2x, where x is the temperature 
conductivity). Then initially and also immediately 
after the turning on of the field the physical tem­
perature T and the chemical potential JJ. were con­
stants. Thereafter they gradually change, and after 
the time TM take the equilibrium values given by 
(1.9) and (1.13). This means that immediately after 
the turning on of the field the system was not in a 
state of equilibrium, since in it there were grad­
ients of the thermodynamic temperature (defined 
as the derivative of the energy of a volume element 
with respect to its entropy) and of the chemical 
potential, which get equalized during the time TM 
by the matter and energy fluxes which are set up. 

The condition s » Ti\\: means that we can set 
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1J. = const and T = const in (1.14) and (1.16) and 
obtain the coefficients o and K by calculating the 
matter and energy fluxes in the field cp, and then, 
knowing a, obtain the coefficient y from (1.17). 
The condition s « T-t is necessary so that the 
kinetic coefficients will not contain any temporal 
dispersion, i.e., not depend on s. The condition 
TM » T is always satisfied if the nonuniformity of 
the field is sufficiently weak. 

We note that the arguments given here are in 
essence the same [sJ as those in which the Einstein 
relation is used. 

2. SOME EXAMPLES OF THE SIMPLEST SORT 

Let us consider a one-component gas which is 
in a field cp. Using (1.10), we can obtain the kinetic 
equation for the function f, which is of the following 
form: 

at at 3 acp at . 
ae+arv- (1 +cp/arv+ av v+I(/ft)=O. (2.1) 

Here I (ff1) is the usual collision integral for a gas 
(cf., e.g., [7J), in which the integration is taken 
over d3v1 and over the two collision parameters. 

We integrate this equation over d3v with the 
weight factors 1, mv, and mv2/2. The results are 
the system of hydrodynamic equations: 

on 
- + div (nv0) = 0, at 

aT aT 2 1 ( avoa ) -+vo--+-- divq+pa:~--ot or 3 n ax~ 

2T acp 
+ (1 +cp) Voar=O, 

where 

r 
nvo = .I fvd3v, p = nm_ 

~nT= I fm(v-vo)2 d3v 
2 J 2 ' 

(2.2) 

(2.4) 

a:X{3 describes the viscosity of the gas, and q the 
flux of energy: 

I mv2 
q = J t-2-(1 + cp) v.d3v. 

An unusual feature of Eq. (2 .3) is that there is 
a pressure gradient for v0 = 0. It is, however, easy 

to see from (1.11) and (1.9) that in equilibrium 
p = nT satisfies the equation 

ap 1 nT o<p 
OXj = 2 (1 + qJ) OXj' 

which follows from Eq. (2.3). Equation (2.4) can be 
rewritten in the form 

a . 1 div q ' OVoa: 
at-(nso)+ diV(nsovo) =- T (1 + cp) + cra:~ ox~ , (2.5) 

where 

is the entropy per unit volume. 
We can solve Eq. (2.1) by the Chapman-Enskog 

method [7] and find an explicit expression for the 
flux q. It turns out that 

q = -xV [T(1 + <p)], (2.6) 

where K is the ordinary thermal conductivity of the 
gas, so that this confirms the phenomenological 
arguments of Sec. 1. 

As a second simple example we consider the 
calculation of the coefficient y in Eq. (1.16) for 
semiconductors with an isotropic and quadratic 
spectrum of charge carriers. As has already been 
said, this problem can be solved by making a cal­
culation of the current proportional to '\lcp. Using 
the approximation of the relaxation time for sim­
plicity, we get from Eq. (2.1) 

3 acp ar f<1> 
-:-----,--fO-v+-v=--
(l+cp) or av 't' 

(2. 7) 

where f = f0 + f(t), and f0 is the equilibrium distri­
bution function with constant T and IJ.. 

Substituting the value of v from (1.4), we get 

( mv2 ) ocp 
j<1) = jD 3--- --V't 

2T or ' 
. 1 ocp "' ( mv2 ) Za: = --- LJ jDv2 3--- 't 

3 OXa; 2T ' 
p 

(2.8) 

The quantity a can be found independently: 

1 
a= 3 ~ /0v2-r. (2.9) 

p 

Finally, from (1.17) and (1.18) we have the result: 

'Y = _!__1 ~ fDv2( m~- 1-1:) 't 
3 T 2T T ' 

(2.10) 
p 

which can easily be obtained by introducing the 
temperature gradient into the kinetic equation in 
the usual way. 
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3. THERMAL DIFFUSION OF BROWNIAN PARTI- where 
CLES 

Let us imagine Brownian particles which are in 
a liquid or gas in which there is a temperature 
gradient, but no pressure gradient and consequently 
no mass transfer. Then besides the Brownian mo­
tion the particles will have also a directed velocity 
from the hot end to the cold end. The cause of this 
motion is as follows. A particle at a given point 
has equal probabilities of going to the right or the 
left owing to fluctuations, but if the temperature is 
higher on the right, then if the particle goes there 
it will make its next transition more quickly than 
if it had gone to the left. The result of this is that 
the particle will be repelled from the hot region 
into the cold one. 

The considerations developed in Sec. 1 enable us 
to give a theory of this effect without difficulty. 
For this purpose we are to find the flux of parti­
cles in the field cp. When this field is turned on the 
particles begin to move with acceleration, but 
owing to the fact that the force of resistance, which 
we shall call the Stokes force, is proportional to 
the velocity, this motion becomes a uniform one 
after a certain time. This velocity can be found 
from the following arguments. 

In the linear approximation in cp and Vcp the 
equation of motion in the field cp is 

Here Ai (t) is the random force, 7'/ is the viscosity 
of the medium in which the motion occurs, and R 
is the radius of the spherical Brownian particle. 

Let us average Eq. (3.1) over the time. Since 
on the average the motion of the particle is uni­
form, vi -= 0. Moreover, Ai (t) -= 0. Then 

_ 1 T a!Jl 
Vi=-----. 

2 6n'r]R axi ' 

1 nT 
l> = - 2 6n'l1R . 

(3.2) 

(3.3) 

As is known from the theory of the Brownian mo­
tion, [ 8] 

D = T I 6n'r]R, {J = - 1/JJn. (3.4) 

Using (1.17)-(1.19), we get 

Dn11 5 Dn 
v=-T2+2r' (3.5) 

which solves the stated problem. 
When there is no field cp the expression (1.16) 

can also be written in the form 

i = -DVn- ~VT, (3.6) 

13 = 'Y + aa!J. I aT. (3.7) 

Using (1.12), we get 

~ = DniT. (3.8) 

Consequently (3.6) can be rewritten in the form 

i = -T·-1DV(nT). (3.9) 

This means that if a situation is produced in which 
the flux is zero, the particles are distributed so 
that the gradient of their osmotic pressure is zero. 

We point out that in our opinion this is not a 
trivial result. For example, it does not hold in the 
usual problem of the thermal diffusion in a gas 
mixture with binary collisions, nor for electrons 
in a solid, where the expression for the thermo­
electric emf contains parameters associated with 
the scattering. 

4. RIGOROUS THEORY OF THE THERMAL 
DIFFUSION OF BROWNIAN PARTICLES IN A 
GAS 

The theory expounded in Sec. 3 is not fully con­
sistent, in the sense that we took the medium in 
which the Brownian motion occurs to be neutral in 
relation to the field cp. Physically this means that 
it is assumed that the presence of a thermal flux 
in the medium has no effect on the motion of the 
Brownian particles. In this section we shall prove 
the legitimacy of this assumption for the case in 
which the medium is a gas. It is reasonable to 
suppose that replacement of the gas by a liquid 
cannot lead to the appearance or disappearance of 
an effect of this sort. 

Accordingly, let us consider the Brownian par­
ticles and the medium surrounding them as a mix­
ture of two ideal gases. The quantity that plays the 
role of the chemical potential for such a mixture 
is [ 8] 

(4.1) 

We shall use the index 1 for the Brownian parti­
cles, and 2 for the molecules of the medium. The 
quantities JJ- 1 and JJ- 2 are given in terms of the 
concentrations by Eq. (1.12). 

In the absence of the field cp the flux of one com­
ponent relative to the other can be written in the 
form 

i = -aVf.!- yVT. (4.2) 

By using Eq. (1.13), it is easy to show that the 
quantities that are constant in the presence of the 
field cp are 

\ 
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~-to I To = 11 I T - ( 1 I m1 - 1 I m2) 3 In ( 1 + rp), 

To= T(1 + rp). 

Therefore in this case we must write 

i = -;i'V[JA.I T- 3(1 I m1-1 I m2) In (1 + rp)] 

-~V[T(1+rp)] (4.3) 

or 

i = -av 11- vVT- 6Vrp, 

v = 6 IT+ 3a(1 I m1- 1 I m2) - aJl IT, 
; =aT. (4.4) 

Thus we have again expressed the coefficient yin 
terms of o and a. In order to obtain o we must 
calculate the velocity of one component relative 
to the other in the field cp. 

The motion of the gas surrounding the Brownian 
particles is determined by Eqs. (2.2)-(2.4). Fur­
thermore it is easy to see that we can turn the 
field on so rapidly that the motion will occur with 
constant n, T, and p. The equation of motion then 
takes the form 

(4.5) 

An analog of this sort of motion is a gas flowing in 
a gravitational field because the time for establish­
ing the barometric equilibrium distribution 
[ ~(k2D)-1 ] is much longer than the time in which 
the field has been turned on. 

The Brownian particles will move initially with 
a different acceleration. Very soon, however, the 
Stokes force will make their acceleration equal to 
that of the gas. Of course it is necessary that the 
time for establishing this motion, which in this 
case plays the role of the time T, be much smaller 
than the time TM; this condition is always satis­
fied for sufficiently small k. 

The speed of the uniform motion of the two com­
ponents relative to each other can be found from 
the following considerations. The equation of 
motion of the Brownian particles is 

m(Vfi = mt (1/2v2b;k- V;Vh) acp I fJXk 

+ A;(t)- UJCYJR(Vti- V2i). (4.6) 

We average (4.6) over time, and when we use the 
fact that 

we get 
--- 1 T m2- m1 fJcp 
Vt-V2=--- -

2 6:n:11R m2 fJr • 

From this we get 

(4. 7) 

1 Tnt ( 1 m1\ 
I) = - 2- 6n11R - m2J ' (4.8) 

and by using (4.4) we can find 'Y. 
In ignoring the influence of the Brownian parti­

cles on the motion of the medium we have actually 
been assuming that n1 « n2, m1n1 « m 2n2• Assum­
ing this also in what follows, we can conveniently 
take the chemical potential iJ. as a function of the 
variables n1, p, T, where p = (n1 + n2)T. Then we 
can rewrite Eq. (4.2) in the form 

(4.9) 

where 

D = a 8J.tlfJnt, 

kp = ~ ( ~; ) n,, J( ::J p,1', (4.10) 

k1'=__!_( a~t \ /(all\ + vT -, (4.11) 
n 1 . fJT i n,, p fJn1 J p, 1' n1D 

or, when we substitute (4.4) in (4.1), 

6 +--. 
Dn.1 

(4.12) 

The derivatives that appear in (4.10)-(4.12) can 
be calculated easily, and we get 

m1 1 m1 3 I) 
kp = --; kT = --2 -+-2 +-D. (4.13) 

m2 m2 n1 

Substituting (4.8) in (4.13) and using (3.4), we 
get 

k1' = 1. (4.14) 

From here on it is immaterial whether we re­
gard the process as occurring at constant total 
pressure p or at constant gas pressure n2 T. In the 
former case \7p = 0 exactly in (4.9), and in the 
latter case this term is of the order of nr. 

Accordingly, we have finally from (4.9) and 
(4.14) 

i = -DVnt- T-1DntVT, 

which is the same as Eq. (3.9). 
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