
SOVIET PHYSICS JETP VOLUME 23, NUMBER 3 SEPTEMBER, 1966 

ANGULAR DISTRIBUTION OF BREMSSTRAHLUNG RADIATION AND THE LANDAU

POMERANCHUK EFFECT 

N. P. KALASHNIKOV and M. I. RYAZANOV 

Moscow Institute of Engineering Physics 

Submitted to JETP editor October 14, 1965 

J. Exptl. Theoret. Phys. (U.S.S.R.) 50, 791-794 (March, 1966) 

The effect of multiple scattering on the direction and frequency distribution of bremsstrahlung 
radiation is considered. It is shown that, in the range in which the Landau-Pomeranchuk effect 
is encountered, multiple scattering decreases the radiation intensity at small angles, but does 
not affect the large-angle radiation. This agrees with the results of a qualitative treatment. [ BJ 

Integration of the formula derived leads to the results obtained by Landau, Pomeranchuk, and 
Migdal. [ 1• 2J 

J. In 1953, Landau and Pomeranchuk[i] pointed 
out the inapplicability at very high energies of the 
Bethe-Heitler formula for bremsstrahlung, the 
reason being the effect of multiple scattering on 
the radiation length of the quantum. The quantum 
theory of this effect was given by Migdal; [ 2 J how
ever, in [ ZJ, as in later papers by other authors, 
only the energy spectrum of bremsstrahlung was 
studied. The study of the energy spectrum was 
preferred because the form of the energy spec
trum depends on multiple scattering only through 
the effective radiation length and is not at all de
pendent on the direction of the initial particle's 
momentum, and, consequently, does not depend on 
multiple scattering prior to the emission of a 
quantum. On the other hand, the angular distribu
tion depends on the multiple scattering of the par
ticle before the time of emission and, therefore, 
on the path traversed by the particle in the sub
stance. 

The difficulty in calculating the photon fre
quency and direction distribution lies in the fact 
that it is impossible to separate beforehand the 
nontrivial effect of the influence of multiple scat
tering on the effective length from the trivial ef
fect of multiple scattering before emission, which 
results in directional dispersion of the initial mo
mentum of the particle. Gol'dman's study of the 
angular distribution of the quanta [ 3 J was limited 
in that the expression was formally derived from 
the classical theory in the form of a certain inte
gral of the Fourier transform of the distribution 
function, and the integration was not carried out 
explicitly. 

2. It is convenient to carry out the study of the 
bremsstrahlung angular distribution by describing 

multiple scattering in the language of quantum me
chanics, that is, by characterizing the state of a 
spinor particle in a material by the wave func
tion [ 4J 

W(r, t) = exp(ip0r- iE0t) (1- i(2E0 )-1 ) (aV)u0 
(2.1) 

xexp{L;<D(po,r-Ra) }. 
a 

As was shown in [ 4J, the quantity <P(p0, r- Ra) 
is expressible in terms of the amplitude for single
center scattering (the retention of terms of order 
E-1 is connected with the specific nature of the 
bremsstrahlung problem [ 5J ). By inserting the 
wave function of Eq. (2.1) into the matrix element 
and averaging the probability of bremsstrahlung 
over the positions of the atoms by the method de
veloped in [ 4J, it is not difficult to obtain an ex
pression for the bremsstrahlung probability per 
unit path length (h = c = 1): 

L 

dW = d3p2d3k6 (Et- E2- w) ~ d3lWo(P2, k, l) ~ dxo ~ d3R 
0 

[ L-xo-IRxl/2 Xo-IRxl/2 IRxlw ]} 
X 2 - 2 +-4E2 .(2.2) 

P2 Pt 1 

Here w « E and the notation 

has been used. The number of atoms per unit vol
ume of material is no, L is the thickness of the 
slab of material, and U0(q) is the Fourier trans-
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form of the potential due to an individual atom. 
The function W0(p2, k, 1) is connected with the 
Bethe-Heitler radiation probability by the formula 

dW BH= d3p2d3k ~ d3l6 (E!- E2- (J)) 

X 6 (PI- Pz- k + l) Wo(Pz, k, l). (2. 3) 

In the low-density limit (n0 - 0), Eq. (2.2) tends to 
Eq. (2.3). To obtain the angular and frequency dis
tribution of the radiated photons, Eq. (2.2) must be 
integrated over p2• In doing this, it is convenient 
to change to the variable P2 = p2 + J (L- x0 

- 1/ 2 IRx I), the vector J being defined as the 
change in the particle momentum as a result of 
multiple scattering along the distance L- Xo 
- 1/ 2 1Rxl, that is, as a vector satisfying the condi
tions 

<tt2(x}> = (EsiE) 2 (xiLrad), 

<2p2tl'(x)) = -- (Es I E) 2 (x I Lrad); 
(2.4) 

(E;/E2Lrad) is the rms multiple-scattering angle 
per unit path length. From (2.4) it follows that 
(P2>2 = (P2)2. 

In the integration below, it is assumed that the 
effective radiation length is small in comparison 
with the total path length of the particle in the ma
terial, (E2/wm2 ) « L. In this case, it is possible to 
neglect boundary effects and to extend the integra
tion to the whole x axis. Taking this into account, 
the distribution per unit path length of the proba
bility for radiation of photons with frequency w by 
a fast particle, in the direction of the element of 
solid angle dQk, can be put in the form 

dW L 
----- = L-1 ~ dx ~ dQpW(x,tl'p) W..,(p + \'tp; w,tl'k), 
dw dQk 0 (2. 5) 

where W(x, Jp) is the usual probability for the 
deflection of the particle into the angle Jp on the 
path x because of multiple scattering. Wy(P + J p, 
w, Jk) is the probability that a particle which has 
been deflected into the angle J p by multiple scat
tering will emit a quantum with frequency w at an 
angle Jk to the original direction: 

00 00 

W..,(p+ttp,w,ttk)= ~ ds ~ d~Z2e6 lnM-w 

= (2n)b-IZ2e6lnA1Imyexp(y~/4)D-1 (y). (2.6) 

Here D_1 (y) is a parabolic-cylinder function[ 61 

and 

1 ( wm2 w } 
y = -12ib l2E12 + 2" (ttk- tl'p) 2 , 

M-1 = (mw I 2£2} 2 + e4Z'"· 

Formulae (2.5) and (2.6) give the exact expres
sion for the bremsstrahlung angular and frequency 
distribution. We will show that these formulae 
yield, in limiting cases, results which coincide 
with those of other authors. 

In the low density limit, w » (E;E2/m4Lrad), 
(y » 1, that is, when the influence of multiple scat
tering is not yet important), W y(P + Jp; w, Jk) 
coincides with the Bethe-Heitler cross section, as 
is easily seen by making use of the asymptotic 
formula[ 61 

the integration of Eq. (2. 5) for this case was car
ried out in [ 1 1. 

In the other limiting case, w « (E;E2/m4Lrad), 
for large values of .9-k (.9- 2 » [E;/ E2wLradl112 ), we 
have y » 1 and again W y (p + J p; w, Jk) coin
cides with the Bethe-Heitler cross section. For 
small angles (.9- 2 « [E~/E2wLradl 1 / 2 ), y will be 
much less than unity and, in this case, multiple 
scattering in the effective region of bremsstrah
lung changes the form of W y substantially: 

X vn3w[(m/E) 2+(ttk---:ttp)2] 
2 [E,2/£2LradJ3!2 . 

(2.7) 

This formula is valid if 

Thus, multiple scattering suppresses brems
strahlung when the quantum is emitted at small 
angles and does not change the intensity of radia
tion when emission occurs at large angles. This 
leads to an increase of the effective angles for 
bremsstrahlung. 

Analysis of formula (2.6) shows that the maxi
mum of the angular distribution corresponds to 
angles 

(2.9) 

This expression supports the estimate of the 
broadening of the bremsstrahlung angular distri
bution in the presence of multiple scattering, which 
was obtained from the qualitative study by Galit
skil and Gurevich. [BJ 

If Eq. (2. 5) is also integrated over the angles of 
emission of the photon, the energy spectrum of the 
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radiation is obtained: 

da 1 
- = e2a2 lnM· (2n)2(-2)1m-= 
dw "¥2ib 

X exp (- i ~) D-1 ( - i a ) , 
8b "¥2ib 

a= (m2w / 2E2). (2.10) 

In the low-density limit, Eq. (2.10) gives the 
Bethe-Heitler spectrum, while for 
w « (E~E2/m4Lrad) it tends to the expression ob
tained by Landau, Pomeranchuk, and Migdal. [ 1• 2 l 

In conclusion the authors take the opportunity 
to thank V. M. Galitski1 for useful discussions. 
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