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It is shown that the interaction between Fermi and Bose particles can lead to the appearance 
of a new acoustic branch of excitations in the Bose system, the velocity of propagation and 
anisotropy of which are determined by the shape of the Fermi surface. 

IT is well known that the account of interactions 
between Bose and Fermi systems in a metal leads 
to such an essential rearrangement of the spec
trum of Fermi particles (electrons) that a qualita
tively new phenomenon appears-superconductivity. 
The reaction of a Fermi system on the excitation 
spectrum of a Bose system (phonons) has received 
much less attention; it usually reduces to the re
normalization of the sound velocity and to its at
tenuation. Kohn [ 1J and Afanas 'ev and Kagan [ 2 J 

have noted that the electron-phonon interaction 
leads to interesting singularities in the phonon 
spectrum. We shall show here, by the example of 
zero sound oscillations, t> that the effect of the 
Fermi system on the Bose system can be more 
significant: in the spectrum of the latter, complete 
new branches of excitations can appear which do 
not exist if the interaction with the Fermi system 
is absent. 

Let us consider the complete Green's function 
of the phonons: 

D-1 = D 0- 1 - II, Do= c2k2 (Cil2- c2k2)-t, 

Il=-2ig~ G(p+k)G(p)f(p+k,p,k)-(2d;~4 , 

k=(k,Cil). (1) 

The function Il(w, k) completely describes the 
effect of the Fermi system on the Bose system. If 
we look for the pole of the D function close to the 
pole of the zeroth approximation w = c I kl, then, as 
Migdal has shown, [ 7 J the electron -phonon vertex 
and the electron Green's function G under the in
tegral sign in II can be replaced by their values g 

1 lwe recall that the zero sound oscillations are Fermi
system oscillations that can propagate at low temperatures, 
when the hydrodynamic sound waves are strongly damped. 
Zero sound was first investigated by Landau[' ·•] and later 
by Silin[s] and Gor'kov and Dzyaloshinskii. [•] 

and G<o> in the zeroth approximation. Then the re
normalization of the sound velocity and its attenu
ation are determined by the real and imaginary 
parts of the function. 

~ d'p 
Ih =- 2ig2 G<0>(p + k)G<Dl(p)-

(2:rt) 4 • 

For w « vF I k I, it has been shown[ 7 J that 

(2) 

Re II:;::, -2!; and I lm II I« IRe II I(!;= mp Fg2/2rr 2). 

As will be shown below, 2) the function (2) is 
large in the vicinity of the frequency w = vFI kl, 
where vF is the velocity of the electrons on the 
Fermi surface. This suggests that the D function 
can have a new pole in the region of high fre
quencies. 

To clarify this question, it is necessary to ob
tain a more exact expression for the electron
phonon vertex r which, as is well known, [ 3J dif
fers at high frequencies from its zeroth approxi
mation g. We shall entirely ignore the Coulomb 
interaction between the electrons; that is, we shall 
assume the Fermi system to be neutral. 3> Then 
the integral equation for the vertex part r can be 
represented graphically as in Fig. 1. 

)--- = >--- + D---
FIG. 1 

The shaded rectangle r<1l denotes the set of 
''irreducible" graphs which do not contain the 
horizontal singular lines G(p + k)G(p) and D0(k). 
For transitions near the Fermi surface, the func
tion rw, as estimates show, can be replaced by 

2)The exact expression for TI,(w, k) for spherical and cylin
drical Fermi surfaces is derived in Appendices A and B. At
tention is called to the fact that the function n2 changes sign 
at w- vFikJ and becomes large in absolute value. 

3lFor the role of Coulomb interaction, see below. 
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the constant r<1> = 2g< 1>g 2(g<1> ~ 1/ 2 ), and the in
tegral equation (Fig. 1) has the solution 

f(p+k,p,k) =g/(1-g<1>IT), (3) 

fi =- 2ig2 ~ G(p)G(p + k)d4p/ (2:rt) 4• (4) 

Substituting ( 3) in ( 1), we find 

IT = fi;(1- g(l)IT) (5) 

and 

D = Do (1- g(l)IT) 
1 - (g(l) + Do) fi 

(6) 

In Eqs. (5), (6) and below, the function IT can be 
replaced by (2) with accuracy to v m/M. We see 
that the self-energy part of the phonons n is de
scribed by the integral (2) only when this integral 
is small. In the region of frequencies where this 
integral is large, the D function has a pole de
scribed by the equation 

fi = (g(!) + Do) -I. (7) 

This pole is identical with the zero-sound of the 
four-fermion vertex part rF, the integral equation 
for which is shown in Fig. 2. In the approximation 
r<t> = const, this equation has the solution 

2g2(g(1) +Do) 
fF= -. 

1-(g<1>+Do)l1 
(8) 

The existence of the high-frequency pole of the 
D function means that the zero sound (collective 
oscillations of the Fermi system) is accompanied 
by excitations of the Bose system (lattice vibra
tions). It can be shown that the observation of the 
latter is experimentally simpler than the direct 
observation of zero sound. 

)(=I+=>-C+ 

+ r~ + =>---()( 
FIG. 2 

If w = w(k) is a solution of Eq. (7), then the in
tensity of the new branch of Bose excitations is 
characterized by the value of the numerator in the 
representation of the D function ( 6) close to the 
pole in the form 

(9) 

Inasmuch as the function D0 ~ (c/vF) 2, for 
w ""'vFikl, the intensity of the new branch is gen-

erally speaking, very small and consequently its 
observation is difficult. However, if the shape of 
the Fermi surface possesses an essential aniso
tropy, then for certain directions of the wave vec
tor the spectrum w (k) approaches the spectrum 
of acoustical vibrations, and the value of A for 
these directions increases sharply. Actually for 
small values of the 4-vector k = (k, w) the function 
(2) can be represented in the following form: 

( 10) 

For the solution of Eq. (7), the principal role is 
played by the region of values of n2 close to the 
"extremal point" W = Wo, at which fi2 goes to in
finity. If the Fermi surface is close to spherical, 
then, for small values of ~ = (w2 - w5)/w5, we get 

(lla) 

If the Fermi surface has regions of cylindrical 
shape, then 

(llb) 

(kl is the projection of the vector k on the plane 
perpendicular to the cylinder). 

Finally, if the Fermi surface contains regions 
of low curvature, then 

liz= ~Vc I~. (llc) 

(the z axis is perpendicular to the plane part of 
the Fermi surface). 

In Eq. (lla), the value of 'Ya is of the order of 
unity. In Eqs. (llb), (llc), the values of /Yb and 
~ are of the order of the ratio of the size of the 
region of the Fermi surface of cylindrical (plane) 
shape to the size of the entire Fermi surface. 

Substituting (11) in (7) and neglecting D0 in 
comparison with g<1>, we find the spectrum of 
zero-sound excitations corresponding to the cases 
a, b, and c: 

~a= '\'a ex'p ( -1 I \;g(l>), 

~b = '\'b ([;g(1l)2, 

~c = '\'cSg<t>, 

Wo = VFk.l., 

Wo = VFkz. 

(12a) 

(12b) 

(12c) 

The expressions (12) are derived under the as
sumption that t g<1> « 1 and w0 » c I k!. Equations 
(12) indicate the sharp anisotropy of the zero-sound 
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oscillations in the case of an anisotropic Fermi 
surface. 

For a spherical Fermi surface with a quadratic 
dispersion law, we also found (see Appendix A) the 
damping of zero-sound oscillations, which begins 
at k = 2pF~a and becomes comparable with the 
real part of the frequency for k ~ PFtg<n. 

Our conclusions are directly applicable only to 
neutral systems of the type of a solution of He3 in 
He4• In metals, for wavelengths 

Jc2 < kc2 = PF2(4:n21;;g(1))-1 

the Coulomb interaction transforms zero-sound 
oscillations into plasma oscillations. Nevertheless, 
in cases with an anisotropic Fermi surface, a re
gion of directions of zero-sound oscillations can 
exist for which the modulus of the wave vector k 
is large enough for the Coulomb interaction to be 
weak and the projection of the wave vector k 1 (or 
kz in the plane case) is such that the frequency 
w(k) remains small in comparison with the Fermi 
energy. The latter is necessary, inasmuch as all 
the conclusions were drawn under the assumption 
that the 4-vector k does not move the Fermi par
ticle far from the Fermi surface. 

In conclusion we note that the preliminary esti
mates show that the new branch of phonon oscilla
tions leads to an essential change in the tempera
ture dependence of the heat capacity of metals with 
anisotropic Fermi surfaces. 

We thank Yu. Kagan, A. Larkin and G. Eliash
berg for useful discussions and Yu. Simonov for 
help in the solution of a number of mathematical 
problems. 

APPENDIX A 

Let us find the solution of the dispersion equa
tion (7) for a spherical Fermi surface. We start 
from an electron spectrum of the form 

1 
Ep = BF + 2m(p2- PF2). (A.1) 

This allows us to determine not only the form of 
the spectrum of zero-sound oscillations but also to 
find their damping in the end region of the spec
trum. 

For real values of w, the integral (2) is equal 
to 

1;; { ~1-a I Re II2 =-- 4x + (.1- a....2)ln -----
4x 1 +a_ 

2 11 +a+ I} + ( 1 - a+ ) ln -1 _ ~ , 

n sign co 
Imiiz = -1;; {(1- a-2)8(1- a_2) 

4x 

- ( 1 - a+2) 8 ( 1 - <H2)} . (A.2) 

Here 

a±= a+ X, 

The shape of the functions Re TI2, lm n2 is shown 
in Fig. 3. 

FIG. 3 

Analytic continuation of (A. 2) in the complex 
plane gives 

liz= l_{ (1- a-2)ln a-+ 1 -(1- a+2)lr{a+ + 1 - 4x}, 
4x 1.. a_ - 1 a+ - 1 

IIz(a) = IIz(-a). (A.3) 

The expression (A. 3) satisfies the condition 
lm II2 = 0 for a:_ > 1 and a~ > 1, and is analytic in 
the complex plane of the variable a with the two 
cuts 

(-1-x+Ul, 1-x+UI), 

( -1 + X - ifl, 1 + X - if>), 

where o- +0. In view of the parity of (16) relative 
to a, one can limit oneself to consideration of the 
case Re a > 0. For K - 0, (A. 3) transforms into 
the well known expression[ BJ 

{ a a+1 } liz= 1;; -ln---1 . 
2 a-1 

(A.4) 

In this limit, the dispersion equation of zero
sound oscillations (see Eq. (7)) 

liz= 1 / g(!) 

has a real solution, found by Landau[ 3, 4J 

2 
a= 1+-xt, 

e 

(A.5) 

Equation (A. 4) was obtained under the assumption 
that a - 1 » K and, as is seen from (A. 6), is 
valid for K « K1 • For K ~ Kt> it is necessary to 
seek a solution of (A. 5) from the exact expression 
(A. 3) for II2• It is evident that in this case (as be
fore, K « 1) the solution is close to unity. There
fore, it is natural to look for a solution (A. 5) in the 
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form Then K2 "'tg<l> and the spectrum of zero sounds 

a= 1 + xz. (A. 7) ends for 

With respect to the unlmown quantity z, Eq. 
(A. 5) is rewritten in the form 

1 
w = T[(z -1)ln(z -1) -(z + 1)ln(z + 1)] 

'X + ln2 =In-. (A.8) 
'Xt 

This function is analytic in the z plane with the 
cuts (-oo, -1+io) and (-oo, 1-io). For z » 1, Eq. 
(A.8) has the solution z = 2KtfeK, which is identi
cal with (A.6). 

The solution of Eq. (A.8) remains real with in
crease in K up to the value K = Kto which corre
sponds to the solution z = 1. For Re z < 1, Eq. 
(A.8) has only complex roots. It is convenient to 
introduce the new real variables x and y: 

z=·1-2(x+iy). (A.9) 

In the variables x, y, Eq. (A.8) takes the fol
lowing form: 

X 1 
Re w =-2 1n(x2 + y2)- 2 (1- x)ln[{1- x)2 + y2] 

+ y( n + arctg_!!_ )+ y arctg-y- =In~, (A.10)* 
"' 1- X 'Xt 

1 y2+(1-x)2 ( y) 
Im w = -2 yIn x , n + arctg -x y2+x2 

+(1-x)arctg-y-=0. 
1-x 

(A.ll) 

Equation (A.ll) defines (in implicit fashion) a 
monotonically increasing function y = y(x) and 

1 • 
y(O) = 0, y( /4) = oo. Close to the end of the spec-
trum, where y » 1, the system (A.10), (A.ll) has 
the solution 

Y = ;n In : 1 , x = { ( 1- 1/In x~). (A.12) 

The spectrum and the damping of zero sound at 
values of the wave vector k » 2pFKt are deter
mined by the formulas 

w = VFk[1 + x(1- 2x) ], 

'\' = 2vFkxy. 

(A.13) 

(A.14) 

It follows from (A.12) -(A.14) that the ratio of the 
damping decrement to the frequency becomes of 
the order of unity as the value of K approaches the 
value of K2, which is determined by the equation 

*arctg = tan_,. 

X2 In ~ "' 1. 
'Xt 

k "' k2 = 2pF~g(l), 

w - w2 =· 4~-t~g<t>, 1-1 = PF2 I 2m. (A.15) 

An example is shown in Fig. 4 for the depend
ence of the phase velocity w/k and the relative 
damping coefficient y / w on the wave vector di
vided by 2PF· 

APPENDIX B 

The integral (2) in the case of a cylindrical 
Fermi surface (Ep = pj_/2m) is equal to (w > 0, 
Reii2(w,k1) =Re II2(-w,k1 ), Imii 2(w,k1 ) 
= -Im TI 2(-w, k1)): 

Rell2 (w, k..L) 

( y812- V8a4• kj_ < q1 

q1 <k..L <qa I - V8a4• 

= - 2~- -~-i 0, 
kj_2 

- f8a4. 

qa < k..L < q, • (B.l) 

q, < k..L < qz 

qz<k..L l V8n- f8a,, 

( 0, kj_ < q1 

ql <k..L <qa 1 -v -812. 

=- k~ 2 { V -812- V -Sa4• 

j_ I v-s12, 
qa < k..L < q4 • (B.2) 

q4<kj_ <q2 

where 

l 0, q2< kj_ 

S12 = (k.L2 _ q12) (k.1_2 _ q2), 

S34 = (k.L2- q32) (k.L2- q42): (B.3) 

q1 = -pF + "VPF" + Zmw, 

q2 = PF + fPF2 + 2mw, 

qa = PF - fPF2 - 2mw, 

q, = PF + fPF2 - 2mw. (B.4) 

A typical form of the function II 2 is shown in 
Fig. 5. 

In the special case w « vFkl, the expressions 
for II 2 were obtained by Kagan and Afanas'ev.[ 2l 

In Fig. 5, k 1 > q3 corresponds to this region. 
Equation (7), which determines the dispersion 

law and the phonon damping, has the form 
w2 _ c2k2 

TI2=------
(t)2gCt> + c2k'l.( 1 - g<t>) • (B.5) 

\ 
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Wjlf 

J'/W 

FIG. 4 FIG. 5 

We are interested in the solution of this equa
tion for values w ~ vFk 1, corresponding to the 
zeroth acoustic branch of the phonon excitations. 
Such a solution can only be for w > ck and k1 < q1. 

This is easily understood by using Fig. 5. For 
values k 1 > q3, the solution (B.5) gives the usual 
acoustic branch of phonon excitations, while in the 
branch q1 < k1 < q3, excitations cannot exist be
cause of the large damping ( I Im II 2 1 ~ IRe II 2 1). 

We therefore consider k1 in the interval 0 < k1 
< q1• So far as the component k 11 parallel to the 
axis of the cylinder is concerned, we shall assume 
its value to be fixed and not small (k 11 :S PF), since 
the role of Coulomb interaction decreases for 
large values of I k 1. 

In the region of small k 1 (k1 « q1), where II 2 

= t; (pF/mw) 2kl the only solution of Eq. (B.5) is 

For values 

c kll 
k..L ~ ki = ----= 

Up fg{1)~ 

(B.6) 

the second term in (B.6) becomes important, and 
the explicit form of the spectrum for such values 
of k 1 is determined by the exact Eq. (B.5). The 
termination point of the spectrum k 1 ~ k2 is de-

FIG. 6 

termined from the condition 

max II2 = 1 / g<1l, 

which gives the value k 2 = 8pF(t;g<1l)2• 

Close to the point k 2, the dependence w(k1 ) is 
determined by the expression (12b) given earlier. 

A typical form of the phonon spectrum is plot
ted in Fig. 6. 

1 W. Kohn, Phys. Rev. Lett. 3, 393 (1959). 
2 A. Afanas'ev and Yu. Kagan, JETP 43, 1456 

(1962), Soviet Phys. JETP 16, 1030 (1963). 
3 L. D. Landau, JETP 30, 1058 (1956), Soviet 

Phys. JETP 3, 920 (1956). 
4 L. D. Landau, JETP 32, 59 (1957), Soviet 

Phys. JETP 5, 101 (1957). 
5V. P. Silin, JETP 35, 1243 (1958), Soviet Phys. 

JETP 8, 870 (1959). 
6 L. P. Gor'kov and I. E. Dzyaloshinski1, JETP 

44, 1650 (1963), Soviet Phys. JETP 17, 1111 (1963). 
7 A. B. Migdal, JETP 34, 1438 (1958), Soviet 

Phys. JETP 7, 996 (1958). 
8 A. A. Abrikosov, L. P. Gor'kov and I. E. 

Dzyaloshinskil, Metody kvantovo1 teorii polya, v 
statistichesko1 fizike, (Quantum Field Theory 
Methods in Statistical Physics) (Fizmatgiz, 1962). 

Translated by R. T. Beyer 
97 


