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It is shown that by using the amplified spontaneous emission of radiation ("super-radiation") 
from negative-temperature media, one can measure the Bose-Einstein distribution function 
for photons in a quantum state. Two possible kinds of experiments are considered. 

1. CONSIDERABLE interest has recently been 
evinced in the study of the statistical properties of 
light (see, for example, [11 ). The main investiga­
tions are carried out in three directions: a study 
of the statistical properties of the radiation of new 
light sources-lasers, [ZJ which are essential in 
the determination of the spectral width and the 
noise characteristics of the laser emission, estab­
lishing the difference between the statistical prop­
erties of laser light and the incoherent light of the 
conventional (thermal or luminescent) sources/ 3• 4] 

and working out a general coherence theory in­
cluding a description of laser and incoherent radi­
ation. [ 5• eJ The purpose of this note is to draw at­
tention to the possibility of an experimental study 
of the properties of incoherent light which pre­
sented itself with the appearance of the methods of 
generation of coherent light. 

2. Let us consider certain statistical proper­
ties of equilibrium radiation which is an example 
of incoherent light. For equilibrium radiation the 
probability of filling one quantum state of an en­
semble of a large number G of quantum states 
filled with a large number N of photons (N/G 
= ( n); N, G » ( n)) with n quanta is given by the 
Bose-Einstein distribution function: [ 7J 

p(n) = \n)n I (1 + (n))n+l. (1) 

In the classical limit (n) » 1 we obtain on ob­
serving single quantum states the distribution 
function: 

Pel (n) = <n)-1 exp ( -n I (n)). (2) 

In the classical limit one can go over to the wave 
representation: n ~ A2, where A is the amplitude 
of the light field. In this case the amplitude distri­
bution w(A) = I dn/dA I p(A2) is of the form 

w(A) = (2AI<AZ)) exp (-A2 I(A2)). (3) 

Consequently, the amplitude of the light field of the 
photons with a Bose-Einstein distribution (3) has a 
Rayleigh distribution.il 

As was shown experimentally, [ 4] the nonequi­
librium laser radiation does not comply with dis­
tributions (2) and ( 3). 

In the quantum limit (n) « 1 the Bose-Einstein 
distribution function goes over into 

Pqu(n) =In~) exp(- nln~\). (4) <n (n, 

It is interesting to note that the Bose-Einstein 
distribution function has, as follows from (2) and 
( 4), the same functional form in the classical and 
quantum limit, p(n) = 'Y exp (-yn), the parameter 
'Y being in the classical case 'Ycl = 1/(n) and in 
the quantum case 'Yqu = ln (1/( n)). 

The Bose-Einstein distribution function for pho­
tons has not been verified experimentally either in 
the classical or in the quantum limit. Classical 
experiments have until now been unfeasible, since 
for equilibrium radiation of conventional sources 
(n) « 1. Experiments in the quantum limit are dif­
ficult for another reason. In order to measure the 
distribution function p(n) one must count photons 
in single quantum states. In particular this means 
that the time constant ~T of the circuit detecting 
the photons should not exceed 1/ ~ v where ~ v is 
the spectral range of the investigated radiation. 

l)The Rayleigh distribution of the amplitude of the equilib­
brium radiation field in a narrow spectral range can be ob­
tained from the following considerations. Inasmuch as the ra­
diation is emitted by a large number of atoms independently, 
the summary field is a random process, and according to the 
limit theorem of Lyapunov has a gaussian distribution func­
tion. The amplitude of a gaussian, narrow-band, random pro­
cess has a Rayleigh distribution.[•] 
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Distribution function of the amplitude W(B) of the beat signal 
in two experiments: A - the amplitude fluctuations of the 
light oscillations are matched, B - the amplitude fluctuations 
of the light oscillations are independent. 

For the narrowest spectral lines of conventional 
sources Av ~ 109 cps, and one requires therefore 
the difficult to attain value of the time constant 
AT ~ 10-9 sec. 

The development of methods which utilize stim­
ulated radiation made it possible to produce new 
sources of incoherent radiation in the optical re­
gion which possess a very high brightness temper­
ature. They differ from the laser by the absence 
of feedback, [ 9l and indeed radiate a considerably 
intensified spontaneous radiation into a large num­
ber of quantum states. This type of radiation is 
often referred to as "super-radiation" in order to 
differentiate it from coherent radiation generated 
when there is feedback. For example, Ross[ 101 

describes a source of super-radiation in the form 
of an optically excited, cooled ruby crystal. The 
radiation of this source according to data cited in 
[ 101 should have an average occupation number of 
the quantum state (n) ~ 10 5, and should fill simul­
taneously about 10 7 quantum states. Intense super­
radiation has also been obtained in gases. 

The statistics of super-radiation in sources 
without saturation (for instance, in the source of 
[ 10 l) should be close to the statistics of equilib­
rium radiation, since in such sources there oc­
curs essentially a linear amplification of the spon­
taneous emission of a great number of atoms in a 
large number of quantum states. The setting up of 
experiments for measuring the amplitude distribu­
tion function of incoherent light in the classical 
limit with the aid of super-radiation sources ap­
pears realistic. We restrict ourselves to a discus­
sion of precisely this case. 

The main difficulty in carrying out experiments 
in the quantum limit (A v ~ 109 cps) can also be 
eliminated by the use of long Fabry-Perot inter­
ferometers in conjunction with conventional radia­
tion sources. 

3. Experiments in the classical limit ((n) » 1). 
In this case it is most convenient to apply the 
method of heterodyning two light oscillations of 
different frequencies. The method consists of the 
following. Two light oscillations with different 
mean frequencies w1 and w2 are heterodyned with 
the aid of a photo mixer. The amplitude of the beat 
signal B(t) at the frequency Aw = w2 - w1 is pro­
portional to the product of the amplitudes A1(t) and 
A2(t) of the light oscillations E1(t) = A1(t) cos [w1t 
+ CPt(t)] and E2(t) = A2(t) cos [w2t + cp 2(t)]. The am­
plitude distribution of the beat signal W(B) is re­
lated to the combined distribution of the amplitudes 
of the light oscillations: [ 81 2> 

00 

W(B) = ~ w12 (A1,A2)A1- 1dA1; B = A1A2. (5) 
0 

(The constant coefficient depending on the hetero­
dyning efficiency is included in B.) 

The form of the function w12 depends on the ex­
perimental conditions. Let us consider two types 
of experiments. 

A. The amplitude fluc1nations of the light oscil­
lations are completely matched, i.e., A2(t) = cA1(t), 
where c is a constant coefficient (for brevity, let 
c = 1). Then 

w12(A!, A2) = w(Ai)6(At-A2), 

where w(A) is the ampli1nde distribution of the 
light oscillation. According to (5) and the equa­
tion w(A) = I dB/dA jp(B) we then have 

W(B) = 1j;B-'"w(1B) =Pel (B). (6) 

Thus the measured pulse-height distribution of the 
beat signal W(B) coincides with the distribution of 
the number of photons Pcl(n). If the investigated 
light obeys a Bose-Einstein distribution function 
then W(B) should coincide with the distribution (2). 

To carry out such an experiment, it is suffi­
cient to select a narrow spectral range Av ~ 1 Mcs 

2)Strictly speaking, the distribution of the amplitude of the 
beat signal can change owing to a certain stochastic nature of 
the emission of a photoelectron in the absorption of a photon. 
It was shown by Mandel[•] and Ghielmetti["] that the photo­
electron distribution P(N) is related to the photon distribution 
p(n) by the Poisson transformation: 

00 1V 
P (N) = ~ (qn)- e-qN p (n) dn, 

• N! 
0 

T 

n=~m(t')dt', 
0 

where T is the time constant of the observation, q is the 
detector efficiency, and m(t) is the intensity of the photon flux. 
One can readily show that if p(n) obeys the distribution (2), 
then P(N) = p(n) and therefore the stochastic nature of the rela­
tion between the photon and the photoelectron does not change 
the distribution function p(n). 
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with a long (meter) Fabry-Perot interferometer, 
split the ray at the interferometer exit into two 
rays, and shift the frequency of one of the rays by 
means of the Doppler effect by VD = 10-15 Mcs 
before heterodyning. Then one must separate the 
beat signal in the entire frequency band ~2~v with 
its center at vD and measure the distribution den­
sity of its amplitude with a pulse-height analyzer. 

B. The amplitude fluctuations of the light oscil­
lations are completely independent. In this case 

W!2 (A!, A2) = w (A!) w (A2). 

If w(A) is the Rayleigh distribution (3), then 
according to (5) 

W(B)· = BBo-2Ko(B / Bo), (7) 

where Bo=27!"-1(B), Ko(x) is the cylinder function, 
and it is assumed that (AD =(A~). The form of 
W(B) for experiments A and B with photons hav­
ing a Bose-Einstein distribution is shown for com­
parison in the figure. 

To carry out experiment B, one can employ 
spectrally narrow rays (~v ~ 1-10 Mcs) from two 
super-radiation sources, or two neighboring spec­
tral lines appearing in the transmission of the 
super-radiation line of one source through a long 
Fabry-Perot interferometer (transmission 
''modes''). 

Finally it can be shown that the ratio ; of the 
power of the beat signal to the power of the shot 
noise in observing the radiation in single quantum 
states is given by the expression 

6 = q(n), (8) 

where q is the efficiency of the photomixer (in 
electrons per photon), and (n) is the mean occu­
pation number of the quantum state. If any type of 
absorbing element (for instance, an interferome­
ter) is placed between the radiation source and the 
photomixer, then ; is somewhat smaller (see [ 12 J). 

It follows from (8) that for photomixers with 
q ~ 0.01 one can attain with available sources[ 10 J 

; ~ 103• 

There exists thus a real possibility of measur­
ing the amplitude distribution of incoherent light 
directly. 

In conclusion I take this opportunity to express 
my deep gratitude to N. G. Basov for a discussion 
of the problem and critical remarks. 
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