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It is shown that by using the amplified spontaneous emission of radiation ("super-radiation") 
from negative-temperature media, one can measure the Bose-Einstein distribution function 
for photons in a quantum state. Two possible kinds of experiments are considered. 

1. CONSIDERABLE interest has recently been 
evinced in the study of the statistical properties of 
light (see, for example, [11 ). The main investiga
tions are carried out in three directions: a study 
of the statistical properties of the radiation of new 
light sources-lasers, [ZJ which are essential in 
the determination of the spectral width and the 
noise characteristics of the laser emission, estab
lishing the difference between the statistical prop
erties of laser light and the incoherent light of the 
conventional (thermal or luminescent) sources/ 3• 4] 

and working out a general coherence theory in
cluding a description of laser and incoherent radi
ation. [ 5• eJ The purpose of this note is to draw at
tention to the possibility of an experimental study 
of the properties of incoherent light which pre
sented itself with the appearance of the methods of 
generation of coherent light. 

2. Let us consider certain statistical proper
ties of equilibrium radiation which is an example 
of incoherent light. For equilibrium radiation the 
probability of filling one quantum state of an en
semble of a large number G of quantum states 
filled with a large number N of photons (N/G 
= ( n); N, G » ( n)) with n quanta is given by the 
Bose-Einstein distribution function: [ 7J 

p(n) = \n)n I (1 + (n))n+l. (1) 

In the classical limit (n) » 1 we obtain on ob
serving single quantum states the distribution 
function: 

Pel (n) = <n)-1 exp ( -n I (n)). (2) 

In the classical limit one can go over to the wave 
representation: n ~ A2, where A is the amplitude 
of the light field. In this case the amplitude distri
bution w(A) = I dn/dA I p(A2) is of the form 

w(A) = (2AI<AZ)) exp (-A2 I(A2)). (3) 

Consequently, the amplitude of the light field of the 
photons with a Bose-Einstein distribution (3) has a 
Rayleigh distribution.il 

As was shown experimentally, [ 4] the nonequi
librium laser radiation does not comply with dis
tributions (2) and ( 3). 

In the quantum limit (n) « 1 the Bose-Einstein 
distribution function goes over into 

Pqu(n) =In~) exp(- nln~\). (4) <n (n, 

It is interesting to note that the Bose-Einstein 
distribution function has, as follows from (2) and 
( 4), the same functional form in the classical and 
quantum limit, p(n) = 'Y exp (-yn), the parameter 
'Y being in the classical case 'Ycl = 1/(n) and in 
the quantum case 'Yqu = ln (1/( n)). 

The Bose-Einstein distribution function for pho
tons has not been verified experimentally either in 
the classical or in the quantum limit. Classical 
experiments have until now been unfeasible, since 
for equilibrium radiation of conventional sources 
(n) « 1. Experiments in the quantum limit are dif
ficult for another reason. In order to measure the 
distribution function p(n) one must count photons 
in single quantum states. In particular this means 
that the time constant ~T of the circuit detecting 
the photons should not exceed 1/ ~ v where ~ v is 
the spectral range of the investigated radiation. 

l)The Rayleigh distribution of the amplitude of the equilib
brium radiation field in a narrow spectral range can be ob
tained from the following considerations. Inasmuch as the ra
diation is emitted by a large number of atoms independently, 
the summary field is a random process, and according to the 
limit theorem of Lyapunov has a gaussian distribution func
tion. The amplitude of a gaussian, narrow-band, random pro
cess has a Rayleigh distribution.[•] 
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Distribution function of the amplitude W(B) of the beat signal 
in two experiments: A - the amplitude fluctuations of the 
light oscillations are matched, B - the amplitude fluctuations 
of the light oscillations are independent. 

For the narrowest spectral lines of conventional 
sources Av ~ 109 cps, and one requires therefore 
the difficult to attain value of the time constant 
AT ~ 10-9 sec. 

The development of methods which utilize stim
ulated radiation made it possible to produce new 
sources of incoherent radiation in the optical re
gion which possess a very high brightness temper
ature. They differ from the laser by the absence 
of feedback, [ 9l and indeed radiate a considerably 
intensified spontaneous radiation into a large num
ber of quantum states. This type of radiation is 
often referred to as "super-radiation" in order to 
differentiate it from coherent radiation generated 
when there is feedback. For example, Ross[ 101 

describes a source of super-radiation in the form 
of an optically excited, cooled ruby crystal. The 
radiation of this source according to data cited in 
[ 101 should have an average occupation number of 
the quantum state (n) ~ 10 5, and should fill simul
taneously about 10 7 quantum states. Intense super
radiation has also been obtained in gases. 

The statistics of super-radiation in sources 
without saturation (for instance, in the source of 
[ 10 l) should be close to the statistics of equilib
rium radiation, since in such sources there oc
curs essentially a linear amplification of the spon
taneous emission of a great number of atoms in a 
large number of quantum states. The setting up of 
experiments for measuring the amplitude distribu
tion function of incoherent light in the classical 
limit with the aid of super-radiation sources ap
pears realistic. We restrict ourselves to a discus
sion of precisely this case. 

The main difficulty in carrying out experiments 
in the quantum limit (A v ~ 109 cps) can also be 
eliminated by the use of long Fabry-Perot inter
ferometers in conjunction with conventional radia
tion sources. 

3. Experiments in the classical limit ((n) » 1). 
In this case it is most convenient to apply the 
method of heterodyning two light oscillations of 
different frequencies. The method consists of the 
following. Two light oscillations with different 
mean frequencies w1 and w2 are heterodyned with 
the aid of a photo mixer. The amplitude of the beat 
signal B(t) at the frequency Aw = w2 - w1 is pro
portional to the product of the amplitudes A1(t) and 
A2(t) of the light oscillations E1(t) = A1(t) cos [w1t 
+ CPt(t)] and E2(t) = A2(t) cos [w2t + cp 2(t)]. The am
plitude distribution of the beat signal W(B) is re
lated to the combined distribution of the amplitudes 
of the light oscillations: [ 81 2> 

00 

W(B) = ~ w12 (A1,A2)A1- 1dA1; B = A1A2. (5) 
0 

(The constant coefficient depending on the hetero
dyning efficiency is included in B.) 

The form of the function w12 depends on the ex
perimental conditions. Let us consider two types 
of experiments. 

A. The amplitude fluc1nations of the light oscil
lations are completely matched, i.e., A2(t) = cA1(t), 
where c is a constant coefficient (for brevity, let 
c = 1). Then 

w12(A!, A2) = w(Ai)6(At-A2), 

where w(A) is the ampli1nde distribution of the 
light oscillation. According to (5) and the equa
tion w(A) = I dB/dA jp(B) we then have 

W(B) = 1j;B-'"w(1B) =Pel (B). (6) 

Thus the measured pulse-height distribution of the 
beat signal W(B) coincides with the distribution of 
the number of photons Pcl(n). If the investigated 
light obeys a Bose-Einstein distribution function 
then W(B) should coincide with the distribution (2). 

To carry out such an experiment, it is suffi
cient to select a narrow spectral range Av ~ 1 Mcs 

2)Strictly speaking, the distribution of the amplitude of the 
beat signal can change owing to a certain stochastic nature of 
the emission of a photoelectron in the absorption of a photon. 
It was shown by Mandel[•] and Ghielmetti["] that the photo
electron distribution P(N) is related to the photon distribution 
p(n) by the Poisson transformation: 

00 1V 
P (N) = ~ (qn)- e-qN p (n) dn, 

• N! 
0 

T 

n=~m(t')dt', 
0 

where T is the time constant of the observation, q is the 
detector efficiency, and m(t) is the intensity of the photon flux. 
One can readily show that if p(n) obeys the distribution (2), 
then P(N) = p(n) and therefore the stochastic nature of the rela
tion between the photon and the photoelectron does not change 
the distribution function p(n). 
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with a long (meter) Fabry-Perot interferometer, 
split the ray at the interferometer exit into two 
rays, and shift the frequency of one of the rays by 
means of the Doppler effect by VD = 10-15 Mcs 
before heterodyning. Then one must separate the 
beat signal in the entire frequency band ~2~v with 
its center at vD and measure the distribution den
sity of its amplitude with a pulse-height analyzer. 

B. The amplitude fluctuations of the light oscil
lations are completely independent. In this case 

W!2 (A!, A2) = w (A!) w (A2). 

If w(A) is the Rayleigh distribution (3), then 
according to (5) 

W(B)· = BBo-2Ko(B / Bo), (7) 

where Bo=27!"-1(B), Ko(x) is the cylinder function, 
and it is assumed that (AD =(A~). The form of 
W(B) for experiments A and B with photons hav
ing a Bose-Einstein distribution is shown for com
parison in the figure. 

To carry out experiment B, one can employ 
spectrally narrow rays (~v ~ 1-10 Mcs) from two 
super-radiation sources, or two neighboring spec
tral lines appearing in the transmission of the 
super-radiation line of one source through a long 
Fabry-Perot interferometer (transmission 
''modes''). 

Finally it can be shown that the ratio ; of the 
power of the beat signal to the power of the shot 
noise in observing the radiation in single quantum 
states is given by the expression 

6 = q(n), (8) 

where q is the efficiency of the photomixer (in 
electrons per photon), and (n) is the mean occu
pation number of the quantum state. If any type of 
absorbing element (for instance, an interferome
ter) is placed between the radiation source and the 
photomixer, then ; is somewhat smaller (see [ 12 J). 

It follows from (8) that for photomixers with 
q ~ 0.01 one can attain with available sources[ 10 J 

; ~ 103• 

There exists thus a real possibility of measur
ing the amplitude distribution of incoherent light 
directly. 

In conclusion I take this opportunity to express 
my deep gratitude to N. G. Basov for a discussion 
of the problem and critical remarks. 
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