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Neutron scattering cross sections of molecules are calculated for the case when the imparted 
energy is of the order of the mean difference between the rotational energy levels of the mol­
ecule and is much smaller than the mean thermal excitation energy of the molecule. The quasi­
classical representation of rotational wave functions is employed in the calculations. Freely 
rotating molecules which possess the properties of a linear or spherical rotator, and arbitrary 
molecules with a preferred axis of free or hindered rotation, are considered. 

THE purpose of this paper is a theoretical study 
of the scattering of neutrons by molecules in the 
region of relatively small energy and momentum 
transfers, where the major role is played by elas­
tic processes or transitions between neighboring 
rotational energy levels. It is assumed that the 
average distance B between the rotational energy 
levels of the molecule are much smaller than the 
energy T of its thermal excitation. For most mol­
ecules this assumption, as is well known, is al­
ready satisfied even at normal temperatures. 

Let us discuss briefly certain peculiarities of 
the processes that occur in the energy-transfer 
region under consideration, that is, when 

e ,..,lJ, B~T. (1) 

They are obviously characterized by a small change 
of the internal energy of the molecule. For this 
reason, they can naturally be called quasielastic 
processes. Another peculiarity of the processes 
in question is that their duration T coll ~ fi/E coin­
cides in order of magnitude with the period of ro­
tation of the molecule Trot~ fi/B (we use 
throughout a system of units in which the Planck 
and Boltzmann constants are assumed equal to 
unity). 

Under such conditions of "unique resonance" 
of the times T coll and Trot• we can expect the 
greatest manifestation of the singularities of the 
rotational motion of the molecules in the corre­
sponding neutron scattering spectrum, as is con­
firmed by the concrete calculations presented be­
low for freely rotating molecules, and also for 
molecules with internal hindered motion. 

SCATTERING OF NEUTRONS BY FREELY 
ROTATING MOLECULES 

Under condition (1) there is no need for using 
the rigorous quantum-mechanical methods devel­
oped in the papers of Schwinger and Teller, [ 11 

Goryunov [ 2 1 and Rahman. [ 31 They would call for 
cumbersome numerical calculation (such as car­
ried out by Griffing[ 41 for the methane molecules). 
It is more convenient to carry out the calculations 
approximately, using from the very outset the ap­
proximations connected with the quasiclassical 
character of rotation of the molecules in the initial 
and in the final states. We note that the assumption 
of classical rotation of the molecules was used by 
Sachs and Teller[ 51 and by Krieger and Nelkin[ 61 

in calculations of the scattering cross sections 
under conditions of large transfer of rotational 
energy E »B. The case E » B was investigated 
also by Z emach and Glauber [ 1 1 and by Volkin. [ 81 

For E » B the collision process is essentially 
classical. In contrast, in the case which we are 
considering (E ~B), the collision process has es­
sentially a quantum-mechanical character in spite 
of the quasiclassical character of the rotational 
motion of the molecule. This is a very important 
circumstance for the calculations that follow. 

We shall assume in the calculation, as usual, 
that the rotational and vibrational degrees of free­
dom of the molecule are independent. In accord­
ance with this and also with the circumstance that 
when E ,...., B the transferred energies are much 
smaller than the distance between the vibrational 
energy levels so that vibrational transitions are 
excluded, the differential cross section for neu-
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tron scattering per unit interval of the angles o 
and of the energies E can be written in the form 

d2a "" k1 1 vv• 
-- = LJ avav•-k J WrodEr, X) 
de do vv' o 

(2) 

where avav' is the product of the amplitudes for 
scattering by nuclei v and v', averaged over the 
spin variable of the neutron and the nuclei of the 
molecule, and k 0 and k 1 = k 0 - K are the neutron 
momenta before and after scattering. In this ex­
pression the probability of a process that is elas­
tic with respect to the lattice vibrations is taken 
equal to unity. It can be shown that in the region 
of the "single-quantum" transitions this is valid 
with accuracy B2/Evib T « 1, where Evib is the 
average vibrational energy of the atoms. 

The probability Wtran in free translational mo­
tion of the molecule (its mass is designated by Mo) 
is given by the well known formulaE 71 

( M0 )''' [ ( Et - x2/2Mo) 2Mo J (S) 
Wtran = 2n:Tx2 exp - 2Tx2 . 

To find the probability Wrot of the rotational 
transition, let us consider a molecule possessing 
the properties of a symmetrical top. The quantum­
mechanical state of the symmetrical top is given, 
as is well known, by the total angular momentum 
L, its projection M on some stationary axis, and 
the projection K on the symmetry axis of the mol­
ecule. The quasiclassical representation of the 
wave function can be readily seen from the corre­
sponding Schrodinger equation, and is equal to 

- 9 V 2 1 I' • [ I d :n: J 1 . 1 . '¢rot= - --p- 12 sm J p 8 +- --=- e•MCj! ~ e•K1P, 
:n: sin 8 e, 4 l'2:rr l'2:n: 

p = (L2 sin2 8 - K2 - },f2- 2Kili cos 8) 'f, I sin 8, 

p(8o) =0, (4) 

e, cp, and 1/J are the Euler angles. 
We consider quasielastic scattering, in which 

the rotational state of the molecules changes in­
significantly, that is, the changes in the quantum 
numbers l (for the momentum L) and k (for the 
momentum projection K) are small: l « L, k « K. 

The integral J pd8 has a large absolute magnitude. 
Therefore in calculating the matrix elements 

Mrot=~'IJ·;otei><P'IJrotdQ (dQ=sin8d8d<pd'iJ) (5) 

(1/J rot and 1/J'rot are the wave functions for the ini­
tial and final states) it is necessary to use the ex­
pression 

e 
1 \ 

Mrot= n J 1 cos [ \ (p' - p) d8 J ei><PeikolldQ, 
psin8 ~ 

where 
• 

p' _ p = Ll _ K + M cos a k 
p p sin2 8 ' 

xp = XPz cos 8 + XPJ. sin a sin"'· 

PJ. = l'P2 - pi, 

(6) 

pz is the projection of the vector p, which joins 
the center of gravity at the center of the molecule 
and the scattering atom, on the symmetry axis of 
the molecule. We note that when using expression 
( 6), we must obviously assume that K < p. 

If we use the variable 

b+t [( K2)( M2)]''• y = arcsin -a-; a = 1 - L 2 1 - L 2 , 

b=KM 
£2 ' 

we can rewrite the integral in (6) in the form 

X exp [ixpJ.l'1- [t(y)]2sin 'iJ + ik'IJ] dy d'IJ, 

\t 1 K +Mt dt 
q(t)= J L l'a2-(b+t) 2 1-t2 

-a-b 

(7) 

The probability of rotational transition, which 
is proportional to the square of the matrix ele­
ment (7) and to the distribution function of the ro­
tational states, can be readily calculated in the 
following three important particular cases. We 
consider first incoherent scattering, that is, the 
terms with v = v' in the sum (2).1> The results 
presented below describe scattering by one of the 
atoms of the molecule (we omit the index of the 
atom). 

1. Diatomic and linear polyatomic molecules. 
The symmetry axis of the molecules lies along the 
line of the atoms. Therefore K = 0 and further­
more pz = p and p 1 = 0. From (7) it follows im­
mediately that 

IM rotl 2 = llz(xrl'1-'-- M2 I £2) 12 , 

Jz(z) is a Bessel function. 

l)For hydrogen-containing molecules, which are presently 
most intensely investigated, the interference scattering is the 
fundamental one. 
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Taking into account the distribution of the mole­
cules over the rotational space. 

BL ( BL2) W(L)=z;-exp - 2T , 
1 

B=-
1' 

where I is the moment of inertia of the molecule, 
we readily obtain for the elastic scattering: 

Wrot 0 = /o(xp} (8) 

and for the inelastic scattering with change of the 
quantum number L by an amount l (l- positive or 
negative integer): 

(9) 

where 
i 

fz(xp) = ~ I /1 (xp 1'1- x2) 12 dx. (10) 

The function fz(Kp) for l = 0, 1, and 2 is shown 
in Fig. 1. 

When Kp » we have fz = 1/2Kp. In this case the 
probability of energy transfer is given by the for­
mula 

1 ( n )''• 
Wrot= 2xp 2BT ' (11) 

which coincides with the Krieger-Nelkin for­
mulas[SJ for B(Kp) 2<T, and E «T,2> made more 
accurate by a more rigorous averaging of the clas­
sical scattering cross section over the molecular 
orientations. 

In the region of greatest interest Kp "' 1, where 
the quantum effect comes significantly into play, 
the experiment that determines energy-transfer 
probability w(E) is in fact represented by only two 
or three terms of w~ot in (9). Substituting (9) in 
(2) we obtain after integration of the following ex­
pression for the experimentally observed doubly 
differential cross section of neutron scattering 

&a kt ~ [ 1 J 2 1 -- = a2 - LJ fz(xp)--6ozfo(xp) --= ---
de do ko z;;.o 2 l' n a12 + ~2 

[ a~ ]} [ "82 J X erf exp - . 
~ l'az2 + ~2 az2 + ~2 

(12) 

2 )The condition B(Kp )' < T is equivalent to the condition 
K < p which we are using. 

lz 
1.0 

6 

FIG. 1. Neutron scattering cross sections (9) and (18) vs. 
momentum transfer K for the elastic process (f0 ) and for the in­
elastic single-quantum (f,) and two-quanta (f2 ) rotational tran­
sitions in the molecule. 

In this formula 
'/.2 

e = e- 2Mo' 

2 "' 
erf x = ---=. ~ e-t' dt, 6oz = 1 for l = 0 

l'n o 

and 6oz = 0 for l =I= 0. 

2. Molecules having symmetrical-top proper­
ties. This class includes the regular-tetrahedral 
molecules (CH4, CC14, etc.). The distribution func­
tion of the molecules relative to the rotational 
states is in this case 

4 ( B )';, ( BL2) W(L)=-----=.L2!- exp -- . 
yn \ 2T 2T 

The quantization axis connected with the mole­
cules can always be chosen such as to pass through 
the scattering atom. Therefore, just as in the pre­
ceding case, we have Pz = p and Pl = 0. However, 
the square of the matrix element, which has for 
the spherical-top molecule the form 

1Mrotl 2 =I lz ( xp V ( 1-~2)( 1-~:)) , 2
, (13) 

is averaged not only over M but also over K. 
Taking this into account, we obtain, after simple 
transformations, for elastic scattering 

Wrot 0 = cpo(xp} 

and for quasielastic scattering 

where 
1 

(14) 

cpz(xp) = ~ lz2(xpx)xK(l'1- z2)dx, (16} 
0 

K(z) is the complete elliptic integral of the first 
kind. 
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The functions cp 2(Kp) are essentially analogous 
to the functions fz ( KP) shown in Fig. 1. For large 
KP (Kp » 1) we have cpz = 7r/4Kp and upon summa­
tion of the partial contributions the probability of 
energy transfer goes over into (11). This is as it 
should be, for in the classical limit the probabili­
ties of the rotational excitation are given by iden­
tical formulas for the linear and spherical rota­
tors. 

The experimentally observed differential cross 
section for neutron scattering by the spherical-top 
molecules is 

d2a 2 k1 "" [ 1 J 4 , dwo = a k .LJ q>z( xp) - 2 <'~oziPo ( xp) - ( otz2 + ~2r '' 
0 z;;.o -v;i 

X [ ~; + e\12 ~ ~2 ] exp (- otz2 ! ~~ ) · ( 17) 

The notation is the same as for formula (12). We 
emphasize once more that in the most interesting 
region (Kp ~ 1) it is sufficient to use in (17), just 
as in (12), only two or three terms of the series 
in Z. We note that when (Kp)2« 1, formula (17) co­
incides with formula (2. 7) obtained by Dzyub[Sl by 
another method. a> 

3. Molecules and molecular groups having a 
preferred axis of rotation. We consider here the 
case when the moment of inertia corresponding to 
rotation of the molecule about some axis, say z, 
is much smaller than the other components of the 
moment of inertia, that is, Iz « Ix, Iy or, if we 
introduce the characteristic distances between lev­
els, Bz » Bx, By. Such a situation arises for mole­
cules which are of great experimental interest, 
for example, dimethyl acetylene H3C-C=:C-CH3 

(preferred axis along the line of the carbon atoms), 
the CH3Cl molecules, etc., and also in rotation (if 
this rotation is free) of individual molecular 
groups, for example H3o+, NH4 in the molecules 
H30Cl04, NH4PH6, NH4Cl04, etc. 

If the energy transfers are chosen such that 
€ ~ Bz, then it is obvious that when the neutrons 
are scattered there will be a very limited number 
of transitions connected with the change in the 
state of rotation of the molecule about the z axis, 
and a large number of transitions for other rota­
tion directions. Assume now that we are interested 
only in transition of the former type; then, sum­
ming over l in the square of the matrix element 
(7), we obtain 

3 lin the region Kp- 1 there is no agreement with the results 
of Dzyub[•]. In our opinion this is due to the fact that his 
method cannot be used in the given momentum-transfer region. 

(18) 

Here p 1 is the shortest distance from the atom to 
the z axis, and the function fk(Kpl) is given by 
formula (10) (for k = 0, 1, 2, see also Fig. 1). 

Formula (18), derived for symmetrical-top 
molecules, has in fact a general character and is 
valid under the condition I z « Ix, Iy for molecules 
of arbitrary type. 

The dependence of the neutron-scattering cross 
section on the energy transfer in the region € ~ Bz 
is given when Kp ..... 1 (p is the distance from the 
center of gravity of the molecule to the scattering 
atom) by formula (18), since all the unaccounted 
for effects connected with the quantum structure 
of rotation of the molecule about the x and y axes 
are significant only in the region € ..... Bx, By « B 7 , 

which is very close to the elastic maximum. But 
if Kp » 1, then the contribution of the rotational · 
transitions for the x and y axes must be taken 
into account. This can obviously be done in classi­
cal fashion. Thus, it is necessary to introduce into 
consideration a molecule that differs from the real 
one in having an infinite moment of inertia Iz about 
the z axis. If we now introduce, following Krieger 
and Nelkin, [Sl the effective masses of the atoms 
M<o > corresponding to such a molecule, we readily 
obtain from (2) the following formula for the neu­
tron scattering cross section, which takes into ac­
count the quantum character of the excitation of 
the rotational state for the preferred axis: 

X 2 1 exp (- 82 ), 
l'n "Va11.2 + ~2 a11.2 + ~2 

~ = e- x2/2M<0>, ~ = y2Tx2jM<o>, a11. = l'2BxTk2. (19) 

We now discuss the role of the interference de­
termined by the contribution of the scattering of 
neutrons by different atoms of the molecule. As 
already mentioned, it is unnecessary to take into 
account interference for hydrogen atoms. There­
fore formulas (12), (17), and (19) proposed above 
can be used directly for hydrogen-containing mole­
cules. For other molecules,it is necessary to cal­
culate in addition the interference terms avv'• tak­
ing into account only the contributions of those 
atoms which are separated from one another by a 
distance such that KIp v - p v' I .$ 1, since there is 
practically no interference in the opposite case 
K I P v - P v' I » 1. 

It is simplest to take into account interference 
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in the case of diatomic and linear polyatomic mol­
ecules. The contribution due to scattering by the 
atoms v and v' is proportional to 

1 

avav• ~ /z(xpv)'1-x2)lz(xpv·l'1-x2)dx, (20) 

in lieu of the quantity a~ J J~ ( KPJJ V 1 - x2) dx, as 
in the case of "direct" scattering by the atom v 
(of v '). We see that the character of the energy 
and the temperature dependences of the cross sec­
tion remains the same as before when interference 
is taken into account. 

For molecules with a preferred rotation axis, 
the cross section avv' is proportional to 

t 

avav• ~ lh (xpvJ..l'1- x2)lk(xpv•J.. 1'1- x2} 
0 

rotation is not free, then formulas (12), (17), and 
( 19) cannot be used directly but it is possible to 
use them, during the interpretation of the experi­
ment, to draw qualitative conclusions concerning 
the degree of constraint of such a rotation. 

DEGREE OF INTERNAL HINDERED ROTATION 
OF MOLECULES 

At the present time, hindered rotation of mole­
cules is the subject of intense experimental inves­
tigation (see, for example, the work of Janik et 
al.[10,t1l). To this end one uses normally there­
gion of relatively high energies and momentum 
transfers, in which the theoretical analysis, how­
ever, entails great difficulties. In most cases, 
therefore, conclusions concerning the character 
of the rotations of the molecules are qualitative in 

X COS [x (Pvz- pv•z} X + k~1jlvv•] dx. (21) nature. 

Here Pvz• Pv'z, Pv1• and Pv' 1 are the projections 
of the vectors p v and p v' on the z axis and on the 
plane perpendicular to this axis, ~l/Jvv' is the angle 
between the vectors Pv and Pv' and the plane per­
pendicular to the z axis. 

For atoms lying in one plane (frequently only 
the contributions of these atoms must be taken into 
account), expression (21) simply becomes 

avav• cos (M¢VV') /k{xpJ..), (22) 

where fk(Kp 1> is given by ( 10). In this case, too, 
the interference can obviously change only the de­
pendence of the cross section on the momentum 
transfer. 

An analysis of neutron-scattering experiments 
is usually carried out by investigating the depend­
ence of the cross section on the values of E, K, 

and T. Formulas (12), (17), and (19), and also the 
formulas which take into account the interference 
effect, give this dependence in a simple and very 
lucid form. It follows from them, in particular, 
that the most convenient from the point of view of 
investigation of the features of molecular rotation 
is the region of "single-quantum" transitions, 
that is, the region 0.5 < Kp < 3. In this momentum­
transfer region the cross section for energy trans­
fer has a qualitative singularity (for example, a 
maximum), which depends essentially on how the 
molecules (or some other group of atoms of the 
molecule) rotate: in three, two, or only in one di­
rection, and whether this rotation is free. 4> If the 

4 )At the same time, in the energy region E- T >> B the 
spectra for the scattering of neutrons by different molecules 
differ only quantitatively. 

Let us see what information on the internal mo­
tion of the molecules can be extracted from quasi­
elastic neutron scattering. We use in our analysis, 
as an example, a symmetrical-rotator molecule 
consisting of two parts with common rotation axis 
z. Their moments of inertia will be denoted I~ 
and I~ (lz +I~ = lz). As regards lz we assume 

5) that I z « lx, ly. 
Let a neutron be scattered by one of the atoms 

of the molecular group with moment I'z· In ac­
cordance with the usual prescription, we set up an 
expression for this part of the matrix element, 
which describes the transitions connected with the 
rotation of the molecule about the z axis (we re­
call that if Iz « lx, ly, then transitions along other 
rotation directions can readily be taken into ac­
count classically) 

111, = I •h '* eixp .L sin a sin~·, •h d•h d•hz J 't'rot 't'rot 't'i 't' ' 

1 . <1> 
'i'rot= ---==e'K 'V(rp), 

"V2:n: 

(23) 

(24) 

where 'lt(cp) describes the relative motion of two 
parts of the molecule. Going over in (23) to the 
variables <I> and cp 

Iz'' 
t~~J = <D --I-q:>' 

z 

we obtain 

J/, = h (Y.fl..L sin 8) 
. I II \ 

~ '¥,. ( q:>) exp ( ik --• q:> I '¥ ( q:>) dcp, 
. ·. I. ' 

k=K'-K. (25) 

5 )In the case I~ << Iz ,Ix ,IY the results are valid for mole­
cules of arbitrary type. 
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Thus, the dependence of the cross section on 
the momentum transfer is determined only by the 
type of transition in the molecule; it is given by 
the expression IJk(KPl sin 8) 12, averaged over the 
orientations of the z axis of the molecule. This is 
the function fk(Kp 1) shown in Fig. 1. 

Inasmuch as the single-quantum transition 
(k = 1) is of greatest interest, we confine our­
selves only to this case. As can be seen from (25), 
the probabilities of single-quantum transitions 
are proportional to the quantities 

l.llzT = I ~ 1JY'* ( rp) exp ( ik Iz'' rp J '¥ ( rp) drr 1
2

, (26) 
• • lz . 

from which we can determine the properties of the 
wave functions, and from the latter, in turn, the 
features of the dynamics of the hindered rotations. 

We calculate the matrix elements M~ under the 
assumption that the internal motion is quasiclassi­
cal. We consider for simplicity the case I~« Iz, 
when the quantum numbers of internal rotation do 
not depend on K. This case occurs, for example, 
for the molecules CH3CC13 etc. 

The periodic hindering potential is chosen in 
the usual form 

(27) 

For excitation energies E < V0 and E > V0, re­
spectively, the quasiclassical wave function is 

( 2 wlz' )''• [ r n l qr ( rp) = n p sin .l p drp + 4-' 
IPo 

For over-the-barrier motion, when the energy 
of the excited level E, measured from the mini­
mum of the potential V (27), exceeds V0, that is, 
when E > V0, we obtain cp(t) from the relation 

t = ~( !i__ )'" F ( nrp ,rv;, J (30) 
n 2E 2'V E,' 

F(k, x) is an elliptic integral of the first kind. The 
motion is periodic, with period 

•=2n=~(!i__)'''p(.!!: 1;v~) <31> 
w n 2E 2'VE1' 

w is the difference between the energy levels. 
It can be shown that in almost the entire region 

E > V0 (with the exception of a very narrow energy 
band adjacent to V0) the function cp(t) can be de­
scribed with good accuracy by the simple formula 

1 Vo 
cp(t) = wt + 2n Esin nwt. (32) 

Substituting (32) in (29) we get I Mi I = 1, accurate 
to terms of order of smallness (1/n) (Vo/4nE) 2/n. 

We now consider sub-barrier motion (E <V0). 

The dependence of the angle cp on the time t is 
given by 

2 ( /z' )''• ( . 1/Vo . ncp 1/E) 
t = n 2Vo F arcsm v Esm2, v l'o .. (33) 

The function cp(t) obtained from (32) is periodic 
and has a period 

• = 2n = ~( !i_)''• F (.!!:, 1/ E). (34) 
w n 2Vo 2 V V 0 , 

where 

( wlz' )'!' { i } W(rp) = -2 - exp J p dqJ , 
np o 

p = {2/z'[E- 1/2Vo(i- cosn«p)]}''•, 

p(cpo) = 0 for E < V0, 

(28) It is convenient to investigate this function by using 
a Fourier expansion in trigonometric functions. 
Analysis shows that cp(t) can be described with 
good accuracy, in almost the entire region E < V0, 

by the first term of the expansion 

w is the distance between the neighboring energy 
levels. 

The transition between neighboring energy lev­
els for E < V0 will be calculated by means of the 
formula 

I' • 
Wnz_ ~cos [ ~o (p'- p)dcp]ei'l'd:. 

We introduce the variable t: 

~ (p'- p)drp::::: lz'w ~ dcp = ~+ wt; 
p 2 

and obtain for E < V0 and E > V0 respectively 

" " Mz' = ~ i sin wteiop(t) dt 2n J ' 
Mz' = .!.': ~ e-iwt+iop(t) dt. (29) 

2n · _, 
-:t 

cp (t) = a (E) sin wt, 

where a(E) can be taken to be 

(35) 

a(E) =~[arcsin l/ E + 0.2 (_! !'], (36) 
n V V0 V0 1 

that is, a quantity close to the classical oscillation 
amplitude. 

Substituting (35) in (29) we obtain for the transi­
tions between the sub-barrier energy levels 

Mz' = Jl(a(E)), (37) 

J 1 is a Bessel function. 
It follows from (37) that the probability of the 

sub-barrier transition, which is proportional to 
IJ1(a(E)) 12, depends on the excitation energy of 
the molecule, and that the dependence increases 
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with increasing oscillation. Obviously, a molecule 
in a sub-barrier state is excited with less proba­
bility than a molecule in the over-the-barrier 
state. 

It is now easy to obtain the dependence of the 
neutron scattering cross section on the energy 
transferred to the neutrons. This dependence is 
given by the formula 

1 1 dE(e) 
w(e) = -e-E(e)/T- --A(E(e) ), 

Z e de 
(" dE Z= .l e-E/T __ ' 

8 
(38) 

where for sub-barrier states E < V0 the quantity 
E(t:) is determined from (34), where w = t:. The 
quantity 

for n ~ 3 we can choose for A(E) approximately 

(40) 

For over-the-barrier states E > V0 we have A(E) 
= 1 and we must use (31) to determine E(t:}. 

Figure 2 shows the dependence of the cross 
section for the scattering of neutrons by molecules 
on the energy transfer in the case of free and hin­
dered internal rotation. Curve 2 is calculated for 
the case n = 3 and T = V0• It is important to note 
that if the constraining potential is chosen in a 
form other than (27}, E(t:) changes in formula (38) 
and a(E) changes in the expression (39) for A(E} 
(these functions can be readily calculated for any 
potential). 

We can thus determine the values of the hinder­
ing potentials and draw certain conclusions con­
cerning their form from the dependence of the 
quasielastic-scattering cross section on the en­
ergy transfer. To this end it is necessary to use 
the temperature range T ~ V0 (in a large number 
of cases of practical interest V0 < 1000 o K}. 

At the same time, when T < V0 there is a cer­
tain additional possibility of investigating the prop­
erties of the potential V. In the calculations above 
we neglected the level splitting connected with the 
sub-barrier transitions of the molecule from one 
equilibrium position to another. Such a level split­
ting always takes place (each of the levels s splits 
into n sublevels), although it does not manifest it­
self noticeably in the energy-transfer region con­
sidered above, since the small probability of the 
sub-barrier transitions makes the distance Asi 
between the sublevels much smaller than the dis­
tance between the levels that characterize the mo­
tion in an isolated potential well. This effect can 
become manifest, however, at energies t: ~ As· 

Ill( E) 

FIG. 2. Cross sections for the transfer of rotational ener­
gies (38) vs. dy'2Bz T in the case of free internal rotation of 
the molecule (curve 1) or hindered .rotation (curve 2). Curve 2 
is plotted for the case n = 3 and T = V 0 in formula (27) for the 
hindering potential. 

The probability of transition between the sub­
levels Si and Sj of the level s in the case of neu­
tron scattering is given by the simple formula 

(41} 

where Qs is a function whose value under classi­
cal conditions (for large s) is IJ0(a(Es}) 12 (Es is 
the energy of the level s and a(E} is the ampli­
tude of the oscillations), and has a value close to 
unity for small s. f3s·s· = 1 for n = 2 and i-:/: j; 

1 J 
when n = 3 we have f3s·s· = 1/ 2 if one of the indices 

1 J 
(i or j) belongs to the fully symmetrical state (rel­
ative to rotation of the molecule through angles 
cp = 27T/3, 47T/3), and f3s·s; = 1/ 4 if i and j do not 

1 J 
pertain to such a state. 

Thus, in the temperature region T < V0 there 
is the possibility of investigating the energy-level 
splitting determined by the magnitude and form of 
the hindering potential. 

In conclusion, let us discuss practical possibili­
ties of experiments in the region of ''single­
quantum" rotational transitions of molecules. We 
note first that the cross sections d2a /dt:do have at 
energies t: ~ B the same order of magnitude as 
the cross sections d2a/dt:do of the customarily in­
vestigated inelastic processes when t: ~ T. The 
advantages of the region of measurement at en­
ergy t: ~ B (compared with the region t: ~ T} are 
the stronger and more detailed dependence of the 
neutron-scattering spectrum on the singularities 
of the rotational motion of the molecules, and the 
relative simplicity and reliability of the theoreti­
cal interpretation of the obtained results; a short­
coming is the relative smallness of the region of 
measurement itself when t: ~ B: in practice it 
amounts to 0.002-0.005 eV. 

In spite of this fact it can be readily shown that 
the corresponding neutron spectra can be investi-
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gated with sufficient accuracy by using the usual 
procedure of measuring the double-differential 
cross sections with the aid of monochromatic 
beams of incident neutrons, a procedure used, for 
example, by Randolf et al. [ 121 To this end, the 
monochromaticity of the beam TJ and the resolu­
tion of the recording apparatus (the time of flight 
selector) o should be such that TJEo ~ B, 6E0 « B 
(E0 is the energy of the incident neutron). The ap­
paratus described in [ 121 has a monochromaticity 
TJ = 0.07 (for E0 = 0.015 eV) and a resolution 
o = 0.02. With suitable choice of E0 (Eo....., 0.005-
0.015 eV) and the scattering angle J (for which 
Kp ~ 1-2, K ~ ..f2 k 0-./ 1- cos J) at the same sta­
tistical measurement accuracy (""5%, as in [121 ), 

such parameters are certain to insure the neces­
sary accuracy in the investigation of quasielastic 
scattering of neutrons by molecules. 

The author thanks Yu. S. Sayasov for interest in 
the work and for discussion of its results. 
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