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The scattering of conduction electrons is calculated in the effective mass approximation for 
very thin semimetal films in which the de Broglie wavelength is comparable with the film thick
ness. The probability of the electron scattering by phonons, electrons, and geometric defects 
of the film surface is determined. It is assumed that the electron mean free path is large in 
comparison with the film thickness, and that the reflection of electrons from the boundaries is 
mainly specular. The allowed electrons states are then arranged in layers in momentum space 
(see the figure), each layer having its value of the quantized transverse energy. It is therefore 
necessary to distinguish between longitudinal and transverse electron scattering. The longitu
dinal scattering is connected only with the rotation of the longitudinal quasimomentum of the 
electron. The transverse scattering is accompanied by a transition of the electron from one 
layer to another. Owing to the conservation of the longitudinal momentum, elastic transverse 
transitions can be caused only by phonons of finite energy. At very low temperatures, when 
the latter are missing, transverse electron-phonon scattering is therefore due entirely to 
spontaneous phonon emission. If this emission is forbidden, as in a normal metal, the scatter
ing probability decreases exponentially with temperature. In a film with identical conditions on 
both surfaces, the transverse electron-electron scattering connected with transitions between 
layers of different parity is forbidden in virtue of symmetry. Therefore there is no electron
electron transverse scattering in the second layer. The probability of longitudinal electron
electron scattering is proportional to the third power of the longitudinal quasimomentum. Ow
ing to the quantization of transverse motion, the transverse diffusivity of the electron reflection 
from the film surface is strongly inhibited in comparison with the diffusivity of a single surface. 

1. INTRODUCTION 

IN this paper we deal with the scattering of con
duction electrons in very thin films; "very thin" 
means that the film thickness d is comparable 
with the de Broglie wavelength A. of the electron, 
A.~d. If T denotes the kinetic energy in eV and 
m* the effective mass of the electron, then 
A.= 12.3A/(Tm*/m)112• In normal metals m*/m~ 1 
and the Fermi energy is EF...., 5 eV, so we obtain 
A. ,..., 5 A. In metals with small effective masses, 
m*/m ~ 0.1, and small Fermi energies, EF""' 0.1eV, 
we obtain A. ~ 100 A. In semimetals of the Bi type, 
where m*/m ~ 0.01 and EF...., 0.01 eV, we obtain 
A. ~ 103 A. In practice it is possible to prepare 
sufficiently homogeneous films of thicknesses down 
to 100 A.. Therefore, the very thin films consid
ered here can be prepared from metals with suf
ficiently low electron concentration, from semi
metals, and finally, from semiconductors. 

It is assumed that the volume mean free path 
A of the electron is much larger than the film 

thickness, A » d, so that A » A., because d ,..., A.. 
This means that the scattering over one wavelength 
is small, which is always so if one may use the 
quasimomentum concept. It is also assumed that 
the film is sufficiently "good," i.e., the height~ 
of the roughnesses and other geometrical defects 
of the film is small in comparison with its thick-
ness; thus ~ « A.. Hence, the reflection of con
duction electrons from the film surface is mainly 
specular, i.e., the diffusivity is small, p « 1. 

When these conditions are fulfilled, the elec
trons in the film form a sort of Knudsen gas, with 
specific features resulting from the quantization of 
the transverse motion of electrons. The quantiza
tion is due to the fact that electrons interfere in 
the thin film just like light interferes in thin trans-
parent sheets. Interference may lead to resonant 
electron tunneling through the system of dielectric 
barriers. [i, 21 Thin-film electron interferometers 
using these effects have been proposed. [ 31 These 
devices will probably be utilized in due time. The 
study of interference resonances may yield new 
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In a very thin film the electron states form a system of dis
crete layers (n = 1, 2, ... ) in momentum space, this being 
caused by the quantization of the transverse energy. The elas· 
tic transition of an electron from the point B of the second 
layer to point C of the first one corresponds to a scattering by 
an angle 1't = rr/3. 

information on electron behavior in thin films, 
particularly on the properties of comparatively hot 
electrons. Unfortunately, there is no experimental 
work in this direction as yet, except the short 
communication[ 4J on the observation of interfer
ence resonances in a thin aluminum film. 

The sharpness of the interference resonances 
depends upon the electron scattering in the film. [ 5J 

The study of electron scattering in very thin films 
is therefore of interest for the construction of 
thin-film electron interferometers. This was the 
reason for undertaking the present calculations. 
It has turned out, however, that electron scattering 
in very thin films has a number of interesting fea
tures which seem to be of physical interest per se, 
and is worth investigating regardless of the pros
pects of its practical application. 

The question of electron scattering in very thin 
films was first raised in connection with the dis
covered anomalies of the electric conductivity of 
thin nickel films. [ 6 J An idea was expressed that 
the quantization of the transverse motion should 
reduce the scattering, but no calculations were 
made in either [ 6J or in later work. The only pub
lished calculation deals with scattering by phonons 
in very thin semiconductor films, [?J assuming that 
all electrons lie in the lowest transverse level, 
i.e., that they actually form a two-dimensional 
gas. 

In the present work we calculate the electron 
scattering by phonons, electrons, and geometrical 
defects of the surface. It is shown first that the 
substantial difference between the electron scat
tering in a very thin film and in a thick sample 
arises from anisotropy caused by the quantization 
of the transverse motion. So, in a film with abso
lutely impenetrable walls the transverse motion of 

the electron is described by a standing wave with 
nodes on the surface: A.n = 2d/n (n= 1, 2, 3, ... ), 
with quantized transverse quasimomentum 

I P ..L I = nnn 1 a 
and transverse energy 

E.1_ = P..L2 I 2m*= 0.0038 eV. (m I m*) (100 A I d)2n2• 

The longitudinal energy E 11 = p 11 /2m* is not quan
tized. Because of quantization, the momentum dis
tribution of the electrons in a thin film is substan
tially modified. The distribution is shown in the 
figure, where I kzl = IP 1I/Ii is the transverse com
ponent of the electron wave vector, and kx and ky 
are the longitudinal components. The electron 
states are located in layers, each layer having its 
corresponding definite transverse quasimomen
tum and energy. The number of filled layers in
creases with electron concentration Ilo· Thus, for 
example, the filling of the second layer begins at 
point B under condition that the longitudinal elec
tron energy in the first layer reaches a value 

equal to the difference between the transverse en
ergies of the second and first layers. Assuming 
that any electron state in the layer has in the 
phase-space a corresponding unit cell of volume 
(27rfi) 2, we find that electrons fill up the lower 
layer, while the second and next layers are unpopu
lated, if n0 ~ 37r/2d3• For d = 100 A this yields 
n0 ~ 5 x 1018 em - 3 , corresponding to the electron 
concentration in the Bi type metals. 

For the electrons in the first layer there is 
only a longitudinal elastic scattering connected 
with the rotation of the longitudinal quasimomen
tum; the transverse quasimomentum cannot change, 
and the electrons actually behave like a two
dimensional gas. On the contrary, an electron 
situated at point B in the second layer does not 
participate in the longitudinal motion but can pass 
to point C of the first layer as a result of elastic 
scattering. Its transverse momentum changes 
then from 27rfi/d to 1rfi /d; owing to momentum 
conservation, a longitudinal momentum Pil =f37rfi/d 
appears simultaneously, corresponding to scatter
ing by an angle J. = 7r/3. Elastic transverse scat
tering by a smaller angle is impossible because 
the energy and momentum conservation laws would 
not be simultaneously satisfied. In the general 
case, an electron from the second and higher lev
els can undergo both longitudinal and transverse 
scattering. Longitudinal scattering by any small 
angle is possible, whereas transverse scattering 
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is always connected with a large-angle rotation of 
the quasimomentum; therefore it can be caused by 
mechanisms which are capable of ensuring suffi
ciently large scattering angles. 

2. SCATTERING BY PHONONS 

Transverse scattering. Let us find the average 
time T21f an electron can spend in the second 
layer before experiencing a transition to the first 
layer due to interaction with longitudinal acousti
cal phonons. We shall use the deformation poten
tial method, as in [ 7 J • 

The wave functions of an electron in a plane
parallel layer with absolutely impenetrable walls 
are chosen in the form 

_ ( 2 )''• ikr{ cos (nnz/ d) } _ d d 
'¢k,n(r)- Sd e sin(nnz/d) ' 2~z~2 '(1) 

where r is the radius vector of the electron, lik 
is its longitudinal momentum, and S is the area of 
the film; sin corresponds to even, and cos to odd 
values of n, n being the number of the layer. 

Calculation in the first approximation of per
turbation theory yields for the probability of a 
transition with phonon emission 

1 C2 \ -- = 26n 2 - J dq·q([exp(nv1q/kT)- l]-1 + 1) 
't"21 t povl 

( qzd) 2 cos2 ( qzd/2) 
X ,-------'-

[n2- ( qzd) 2)2 [ (3n) 2- ( qzd) 2)2 

(2) 

Here C is the electron-phonon interaction con
stant, Po is the mass density of the film, vz is the 
longitudinal sound velocity, k is the Boltzmann 
constant, and liq is the momentum of the phonon. 

We assume that the phonon spectrum in the 
film is the same as in a large sample. We replaced 
the number of phonons by the average value at the 
given temperature T; the 6-function in the inte
gral takes care of energy conservation. 

The probability of a transition with absorption 
of a phonon differs from (2) by not having the unity, 
which accounts for spontaneous emission, in the 
brackets in the integral, and by the changed sign of 
q-containing terms in the argument of the 6-func
tion. In what follows we shall neglect the phonon 
energy livz q in comparison with the change in the 
transverse electron energy 37r21i 2/2m*d2• 

We consider the case k2 = 0, which corresponds 
to a state represented by the point B in the figure. 
Calculation of the integrals yields for the total 
probability of the transition 

_1 __ ;::::::; _ nC2m* { (1 + l'3) + __ 2 __ + __ 2l'_3 __ } 
,.21 f pov/i2d2 eTo/T- 1 e~3 TofT_ 1 ' 

(3) 
where 

To = 2nnv1 I kd. (4) 

The term (1 + /3) represents the contribution 
from spontaneous phonon emission, and the expo
nential terms are connected with induced emission 
and absorption. 

At sufficiently low temperatures, T « T0, (for 
d = 100 A and vz = 3 x 10 5 em/sec we obtain 
T0 = 14.4 o K) all phonons able to cause scattering 
are frozen, and scattering is due totally to spon
taneous phonon emission. However, if a degener
ate electron gas partially fills the two lower lay
ers, then, because of the Pauli principle, radiative 
transitions are forbidden as in a usual metal. 
Therefore with decreasing temperature the proba
bility of transverse scattering on phonons tends 
exponentially to zero. This effect is caused by the 
fact that the transition from the second layer to 
the first one is associated by a change in longitudi
nal electron quasimomentum of the order of 
-13 1rli/d; phonons with smaller momentum cannot 
give rise to scattering because the longitudinal 
momentum is conserved. 

At sufficiently high temperatures, T » T0, one 
may neglect the spontaneous emission in compari
son with the induced one; then 

1 I 't"21t ;::::::; 2CZm • kT I Povrn3d. (5) 

We have considered the case k2 = 0, but in the 
case 0 < k2 < 1r /d the results will not differ notice
ably. 

Longitudinal scattering. Longitudinal scattering 
of electrons of the first layer has been discussed 
by Demikhovskil and Tavger. [ 7J For second-layer 
electrons the result does not differ qualitatively. 

3. SCATTERING OF ELECTRONS BY 
ELECTRONS 

Transverse scattering. Let us find the proba
bility of an electron transition from the second (or 
third, etc.) layer into the first one due to interac
tion with the electrons which fill up the first layer. 
We write the matrix element of the screened inter
electron interaction in the form 

(k\, (1); k'2, (1) jHee[ kh (1); k2, (2)) 

_ 2~ •h* ( )'ljJ* ( ) exp(-iri-r2[/rD) - e "' k · 1 r1 k · 1 r2 '' '' Jr1-r2[ 

X '¢k,,t(ri) '1'~<,,2 (r2) dr1 dtz, (6) 

ki and ki are the longitudinal momenta of the i-th 
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electron before and after scattering, respectively, 
and ru is the Debye screening radius; we assume 
that ru «d. 

It turns out that in a film with identical condi
tions on both surfaces the matrix element (6) van
ishes for transitions between layers of different 
parity, in particular for transitions between neigh
boring layers. This is caused by the fact that by 
virtue of the symmetry of the problem the electron 
wave-functions in odd layers are symmetrical 
(antisymmetrical in even layers) relative to re
flections from the central plane of the film. The 
integrand in (6) is therefore an odd function z 2 and 
the integration between symmetrical limits yields 
zero. This can easily be proved by substituting, 
say, the functions (1). We note, however, that the 
zero result is a consequence of the problem's sym
metry and does not depend on the explicit form of 
the wave functions. Thus the transverse interelec
tron scattering is forbidden for electrons of the 
second layer. 

Let us now find the probability of a transition 
from the third layer to the first one. The matrix 
element for such a transition, calculated with the 
aid of the functions (1), is 

2:rte2 6k,-k/, k,-k,' 

(Sd) lk/- k1 12 + 1/rv2 ' 
(7) 

and the use of any other functions of z leads to a 
change in the numerical coefficient only, which is 
of no importance to us. 

The probability of the corresponding transition 
is, in the first approximation, 

_f = 2: ~ l<kt',(1);kz',(1)IHeelk~o(1);k2,(3})j 2 
'tate kl, kh k1' 

(8) 

Here f1 (k) is the longitudinal momentum distribu
tion of the electrons in the first layer. In place of 
it we take the Fermi function at T = 0. We assume 
that the second and next layers are unpopulated, so 
that the longitudinal Fermi momentum is fik1F 
~ -f37rli/d. Calculating (8) in the case ru « d, we 
obtain 

1 
(9) 

The scattering probability (9) is proportional to 
klF• i.e., to the number of electrons in the first 
layer. This should be expected because it was as
sumed that the transverse energy of the scattered 

electron is much larger than the Fermi energy. 
The appearance of factors 1/d2 and rb is due to 
the matrix element (7). 

Taking, for an estimate, d = 100 A, k1F = 1/d, 
m* = O.lm, and ru =lOA, we obtain T 31 e = 3.9 
x 10-13 sec. The corresponding transit time of the 
electron across the film is To = 0.92 x 10-14 sec, 
so that during the time T 31 e the electron accom
plishes 42 transits. However one should have in 
mind that expression (9) was obtained in the Born 
approximation and certainly has therefore too large 
a coefficient. 

Longitudinal scattering. Let us find the proba
bility of longitudinal scattering of an electron from 
the second layer, due to collisions with electrons 
which fill up the first layer. Proceeding as in the 
calculation of the transverse scattering, we obtain 

the factor k~ results from the conservation laws, 
by virtue of which the longitudinal momentum 
transfer for k2 « k1F can take place only in a nar
row range of angles ~(kdk1 F), the increment of 
the longitudinal momentum being (ki - k1) 
~ k~/k1 F· The probability (10) of longitudinal scat
tering decreases therefore quickly with k2• Thus, 
iffor k2 ...., ktF"' 1/d we have T 22e"'lo- 13 sec, as 
in the foregoing example, then already for k2 

= O.lk1F we obtain T 22e...., 10-10 sec. Therefore, 
longitudinal scattering of electrons with sufficiently 
small longitudinal quasimomentum, k2 « k1F, is 
insignificant. If these electrons, moreover, lie in 
the second layer, then their transverse scattering 
is forbidden, too. 

4. SCATTERING FROM SURFACE DEFECTS OF 
THE FILM 

For electrons in a thin film one has to consider 
separately the coefficients of longitudinal diffusiv
ity Pil and of transverse diffusivity p1 . We shall 
estimate the transverse diffusivity for second
layer electrons using the diffraction method devel
oped in [ 8 J. It is shown there that for normal 
incidence of a plane wave on a rough surface, the 
angular intensity distribution of the reflected wave 
is 

(11) 

where cp2 = l61r 2 (~h) 2j 11.2; s = sin J, J is the scat
tering angle, and ~ is the longitudinal dimension 
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of the roughness. The first term in (11) describes 
a specularly reflected wave. The second term de
scribes a bundle of scattered beams and charac
terizes the diffuse reflection. The diffusivity of a 
single surface is 

p = 1- exp(-mp2). (12) 

It depends on the ratio of the height 6h of the 
roughnesses to the wavelength A.. The angular in
tensity distribution of the reflected light depends 
on the form of the roughnesses. If these are mildly 
sloping, so that 41!"6-h « 6x, small angle scatter
ing occurs, and vice versa. 

The small-angle transverse scattering is in
hibited in thin films; only scattering by large an
gles of the order of J. is allowed. For example, it 
was shown above that for the state represented on 
the figure by point B, we have J-0 = 1!" /3. Taking 
into account the inhibition of the small angle scat
tering, we obtain the transverse diffusivity in a 
thin film by integrating the second term in (11) over 
angles larger than J-0 (we put s0 = sin J-0 ): 

- Llx 
P.L = {1- exp(- :rtcp2)} --=-

/... ( :rtcp2) ,,, 

1 Ll 2 

X 2 ~ exp (- ---!-s2) ds. (13) 
:, f...2cp2 

The transverse scattering is largely inhibited in 
the case when the roughnesses are mildly sloping 
and the average scattering angle in (11) is small, 
so that the parameter 

8o2 = (sh I 4~1i)2> 1. 

Then we obtain instead of (12) 

P.L ~ {1- exp ( -:rtqJZ)} exp ( -8o2) I iirJ1o. (14) 

It is seen that with increasing ®0 the transverse 
diffusivity in a very thin film decreases exponen-

tially in comparison with the diffusivity (12) of a 
single surface. Expression (14) can hardly be used 
to obtain safe quantitative estimates. It can be as
sumed, however, that it represents the qualitative 
aspect of the phenomenon. The complexity of the 
considered problem lies in the fact that an accu
rate description of the rough surface is not an 
easy problem, and there is therefore as yet no 
safe method of calculating the degree of diffusivity. 

In the present paper it is everywhere assumed 
that the electron scattering from the surface is 
specular. However, the obtained results can be 
generalized to include the case of diffuse reflec
tion, as was kindly pointed out to the author by 
M. Ya. Azbel'. 

The author thanks B. A. Tavger, V. L. Ginz
burg, and V. L. Bonch-Bruevich for discussions 
and a number of valuable remarks. 
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