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A number of upper and lower bounds of the asymptotic values of the total cross section are ob
tained as functions of the asymptotic value of the ratio of the imaginary and real parts of the 
elastic scattering amplitude. It is shown that if the amplitude is asymptotically not purely 
imaginary, the cross section increases according to a power law if the real part is positive 
and decreases according to a power law if the real part is negative. If the elastic-scattering 
amplitude is asymptotically purely imaginary, the cross section may increase or decrease 
only at a slower rate than that at which the energy in any degree may vary. 

KHURI and Kinoshita[ 1l have shown, using Mel
man's theorem, [21 that a close connection exists 
between the asymptotic behaviors (for large E, 
where E is the energy in the laboratory system) 
of the symmetrical amplitudes f(E) = f+(E) + f_(E) 
and the ratio of its imaginary and real parts: 

s(E) = lmj(E) I Rej(E). (1) 

(Here f+(E) and f_(E) are respectively the zero
scattering amplitudes of the particle and antiparti
cle.) In this paper this connection is investigated 
in greater detail. 

Khuri and Kinoshita have shown, in particular, 
that the Greenberg-Low inequality[ 3l i) 

lf(E) I :;;;;; CE2 (ln E) 2 (2) 

(C is a constant), which is based only on the most 
general principles of the theory, can be strength
ened to2> 

lf(E) I :;;;;; CE2-«12(lnE) 2, (2a) 

if 

lsi ;;;:::tgM, O<a:;;;;; 112· (3)* 

We shall show that this result can be greatly im
proved, and that the limitations on the scattering 
amplitude are obtained for certain very natural 

1 )Here and throughout, the equalities and inequalities 
are satisfied if E is sufficiently large or for arbitrary E. 

2 )To simplify the notation, we denote all the constants by 
a single letter C. 

*tg"" tan. 

physical assumptions, not only from above but 
also from below. In particular, it can be stated 
that, subject to the usual assumptions concerning 
the analytic properties of f(E) and satisfaction of 
inequality (3), if we exclude the case of strong de
crease of the cross section, the following double 
inequality holds 

CE2a.-e:;;;;; lf(E) I :;;;;; CE2-2a.+e(ln E)2, (4) 

where C is a constant and E > 0 is arbitrarily 
smallY 

To obtain the left side of inequality ( 4) we as
sume that if the total cross section does decrease 
with increasing energy, it does so more slowly 
than the reciprocal of the first power of the energy 

<1 (E) ;;;;::, C I EH2a.-e, 

where E > 0 and is infinitesimally small. This as
sumption seems to be quite likely in light of the 
available experimental data. Making the assump
tion (3) concerning .;(E) more concrete, we obtain 
more definite limitations on f(E) and by the same 
token on the asymptotic behavior of the total cross 
section: 

a) if Re f(E) has in the asymptotic expression 
a definite sign and the inequality (29) (see below) 
is satisfied, then formulas ( 30) and ( 33) are valid 
respectively for Re f( E) > 0 and Re f(E) < 0. 

445 

3 )As graciously reported to the author by Professor 
Melman, he independently proved the right side of the double 
inequality (4). 
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b) if ~(E) tends to a definite limit (see (34) be
low), then formulas (35a)-(39a) hold. 

Thus, if we exclude the possibility of a strong 
decrease in the cross section (formulas (38) and 
(39)), then in the case of the pure imaginary ampli
tudes, a == 1/ 2, we get 

CEH ~ If (E) I ~ CEH• (In E) 2• (4a) 

In addition, we can prove the inverse theorem (41) 
and (42). 

We derive first one auxiliary relation (see for
mula (9)). Let 

(5) 

f(E) has the usual analytic properties and the 
crossing-symmetry properties (for arbitrary E): 

f(-E- iO) = f(E + iO), j*(E- iO) = f(E + iO). (6) 

Consequently, we also have 

j*(-E + iO) = f(E + iO). 

Generalizing the method of Khuri and Kino
shita [ 11 we construct an auxiliary function 

(7) 

( :rrA) ( in )-'V ro(E) = 1- itgz _E-2+1. lnE - 2 /(E), V > 2. 
(8) 

w(E) is analytic in the upper half-plane (every
where except a semicircle of finite radius, which 
is immaterial). It is obvious that in accordance 
with (5) (since 'Y > 2) we have w(E) - 0, if 
E -±co, Then, however, in accordance with the 
Phragmen-Lindelof theorem[ 21 we have w(E)- 0 
if IE 1- co everywhere in the upper half-plane. In 
the dispersion relations[ 11 we can prove that f(E) 
has no zeroes in the upper half-plane when IE I is 
sufficiently large. Therefore also w(E) * 0 for 
sufficiently large IE 1. It can be readily seen, 
taking (7) into account, that 

w*(-E + iO) = w(E + iO). (9) 

Relation (9) shows that w(E) has the same proper
ties as f(E) when E + iO is replaced by -E + iO. 
This circumstance will be consistently used in 
what follows. 

From (8) and (9) we readily obtain 

I Imro(E) I= I Imro(-E) I 
Re ro(E) Re ro(-E) 

I s(E)- tg(nA/2) I 
= 1 + s(E)tg(=rA/2) · (10) 

The latter expression is written out accurate to 
terms 1/ln E- 0 as E- co (by E and - E are 
meant E + iO and -E + iO). 

We now proceed to prove formula (4), assuming 

relation (3) to be satisfied. We first prove that 

lf(E) I ~ CE2- 2'*"(lnE)2, 

where € > 0 is arbitrarily small. Let 

lf(E) I ~ CE2-I.(In E)2 == CE2-2a+2a-I.(In E)2, (11) 

2a >A;;;:;: a I 2. (12) 

From (10) and (3), taking (12) into account, we 
readily obtain 

I Imro(E) 1-1 s(E)-tg(nA/22_1 >-~na-tg(n~f~ 
Rero(E) I- 1 + s(E)tg(nA/2) ,__,. 1 +tgnatg(nA/2) 

(13) 

We use further Melman's theorem, [ 21 which 
states that if a function c;o(E) which is analytic in 
the upper half-plane, satisfies the conditions 

cp*(-E + iO) = cp(E + iO), Is (E) I ;;;:;: tg nx, 

and if cp(E) -0 when IE 1- co, then 

lcp(E) I ~ CE-1</2 (14) 

(C is a constant). In addition, c;o(E) must have no 
zeroes in the upper half-plane when IE I is suf
ficiently large. 

It is easily seen that w(E) satisfies all the con
ditions of Melman's theorem, then, applying for
mula (14) to w(E) and using (13), we obtain4> 

I (J) (E) I ~ CE--<a-1.12)12. ( 15) 

Consequently, if it is known with respect to f(E) 
that (11) is satisfied, then, using (15), we find that 
the upper bound of the asymptotic expression for 
f(E) drops to 

A1 = 2a- 3/~(2a- t.). (16) 

The upper bound of f(E) can be lowered even 
more by systematically applying the same proce
dure. We construct for this purpose a new func
tion: 

( nA.1 ) ( in )-'V ro1 =/(E) 1-itg-2- E-2+1-, lnE- 2 , v>2, 

(Sa) 
which also satisfies the conditions of the Melman 
theorem. Applying (14) again, we obtain 

4 >As noted in['], it is necessary to impose on cp(E) one 
more limitation: cp(E) does not satisfy the Me!man theorem if 
I cp(E)I as E -> oo can oscillate an infinite number of times 
with amplitude, the ratio of which to the minimum of I cp(E)I 
in the corresponding interval of E becomes arbitrarily large. 
We assume that no such oscillations occur in w(E). 
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lf(E) I ~ CE2-2Cl+('/,)'(2a-'-J(ln E)2. (16a) 

Continuing this process n times, we obtain 

where for sufficiently large n the value of E can 
be taken arbitrarily small. (We cannot put E = 0, 
since terms of order ~1/ln E are not taken into 
account in ( 10).) 

In the particular case when a = 1/ 2, that is, 
I~ 1- oo, we obtain 

Froissart threshold was obtained using much 
stronger assumptions than employed in the pres
ent work, namely, Froissart started from double 
dispersion relations (see Martin's discussion[ 5J). 

We proceed to prove the left side of the double 
inequality ( 4) 

lf(E) I ~ CW"-•. (20) 

We assume that the inverse inequality holds 

lf(E) I ~ CE2a-e, (21) 

lf(E) I ~ CE*{lnE)2. (17a) and prove that it follows from (21) that 

This is the so-called Froissart threshold, [ 4J with 
the only difference that in place of E we have 
E1+E, where E is arbitrarily small. 

We note that it is not clear how to improve the 
threshold (17a). However, if in place of (17a) we 
take a limitation that is apparently equivalent to it 
physically 

lf(E)I ~CE(InE)k, ( 18) 

where k > 0 is arbitrary, then this limitation can 
already be made stronger. Repeating for arbitrary 
k the proofs given in [1J for k = 2, we find, as 
in [ 1J: 

a) I f(E) I ::s CE(ln E) -k' for any k' > 0, if 

ls(E) I ~ (lnE)+a, 0 <a< 1. 

If f(E) has asymptotically the form 

f(E) = C(InE)h(In InE)O(In In In E)'- ... , 

where o and A are arbitrary, then 
b) I f(E) I ::s CE(ln E) 2a/7r, if 

s(E) ,....., a-1 InE, 0 <a~ 1/2nk; 

c) I f(E) I ::s CE(ln E)E, where E is arbitrarily 
small, if 

ls(E) /lnEI- oo. 

We note that if in the latter case we assume that 

f(E) = C (In E) -k (In In E) 0 (In In In E) i •. .• , 

where k > 0 (arbitrary) and o and A are arbi
trary, then, following the method of [ 1J (theorem 
III), we obtain k = E, where E is arbitrarily 
small. In other words, if I ~(E)/In E 1- oo and if 
in addition (18) holds true, then 

CE(lnE)-• ~ lf(E) I~ C(lnE)•E. (19) 

Since E cannot be set equal to zero, we cannot 
state that the obtained limitation is equivalent to 
the Froissart limitation lf(E) I ::s CE(ln E) 2• Physi
cally, the limitation (17a), as noted above, is ap
parently equivalent to (18). As is well known, the 

lf(E) I ~ CE-2c<+e. (22) 

Indeed, let 

lf(E) I ~ CE2"', -2a + e ~ 2a' ~ 2a - e. (23) 

Formula (21) corresponds to 2a' = 2a- E, while 
formula (5) corresponds to A = 2 - 2a'. We can 
again form a function w(E) in accordance with (8) 
(but now assuming that y > 0 and not y > 2, since 
the factor (In E)2 in (23) is missing). Since 
I ~(E) I~ tan 7W, we can now readily prove by taking 
(23) into account that 

s(E)+tgna' I ~ ne 
1+s(E)tgna' ~tgn(a-a')~tg2, 

a'= Ja'J. 
According to (14), it follows from (24) that 

I (J) (E) I ~ CE-•14, 

that is, we obtain in lieu of (23) 

lf(E) I ~ CE2a'-ef4. 

This result (26) is valid for arbitrary a' > -a 

(24) 

(25) 

(26) 

+ E /2 regardless of the value of a'. Since E is a 
definite number (although we can make it as small 
as desired), we obtain the required inequality (22) 
by constructing the functions w(E) a sufficient 
number of times. 

However, if I f(E) I ::s CE-2a /E, then the total 
cross section a(E) decreases rapidly with energy 
like ~cjE1+ 2 a-E. The total cross section is ap
parently in sharp contrast to experiment. Assum
ing that it is not realized, we find that inequality 
(21) is impossible. Consequently, either f(E) oscil
lates, becoming alternately larger and smaller 
than CE2a-E, or else we have at all times lf(E)I 
::s CE2a- E. Now, using the factual information on 
the cross section, we shall show that the first pos
sibility is in practice forbidden. 

Indeed, the experimental data on the cross sec
tion apparently do not admit of a more rapid de
crease of the cross section (faster than 1/E). 
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Consequently, we can assume that 

1/(E) I ~ CE-2a+e. (27) 

Then I f(E) 1-1 :::: C'E2QI- E, with 1/f(E) having the 
same analytic properties and crossing-symmetry 
properties as f(E). Therefore, repeating for 
1/f(E) the reasoning which led to (22) for f(E), we 
obtain 

1/(E) 1-t ~ C'E-2a+e, 1/(E) I ~ CE2a-e. (28) 

Thus, from the limitation imposed by the experi
ment there follows again the left-side inequality 
in ( 4). This completes the proof of ( 4). 

In order to obtain stronger limitations for 
I f(E) I than given in ( 4), it is necessary to make 
more concrete assumptions concerning the behav
ior of ~(E), namely, we must assume in addition 
to the lower bound also the existence of an upper 
bound for I~ (E) 1. We therefore assume that 

tg:n:v ~ ls(E) I~ tg:n:a, 0 <a~ 1/2, 

(29) 

It is necessary here to distinguish between the 
two possible cases Re f(E) > 0 and Re f(E) < 0. 
We cannot strengthen the inequality ( 4) if Re f( E) 
can reverse sign an infinite number of times when 
E -co. 

1. Re f(E) > 0. We can prove here that 

CE2-2v-e ~ 1 j (E) 1 ~ CEHa+e (ln E) z. (30) 

The right-side inequality was already proved (see 
( 4)). As to the left-side inequality, we assume the 
opposite inequality and prove that we should then 
obtain 

!/(E) I ~ CE-Za+e. (31) 

The latter would mean a rapid decrease of the 
cross section, which we have agreed to regard as 
impossible. 

Indeed, by constructing in the usual manner the 
auxiliary function w(E) ( 8) and using (29), we 
readily obtain from (10) for the function f(E) satis
fying the condition I f(E)I :::: CE 2-A, A ~ 2v + E, 

I Im w (E) I e A. B 
Rew(E) ~ tg:n:T, if 2< 1 + a-2. 

Using formula (14) we get 

If (E) I ~ CEH.-e/>. (32) 

This result (32) is valid for arbitrary A, pro
vided 2 + 2QI - E ~ A ~ 2v +E. Inasmuch as E is 
a defined although arbitrarily small number, re
peating for a sufficient number of times the con
struction of the function w(E) (and lowering each 

time the degree of I f(E)I by E/4), we obtain (31) 
as a result. Consequently, the inequality lf(E)I 
:::: CE2- zv- E is also inadmissible, and by exclud
ing the possibility of strong oscillations, as in the 
derivation of (20), we arrive at the required for
mula (30). 

2. Re f(E) < 0. In this case we can greatly 
strengthen the right-side of inequality (4). Namely, 
we prove that 

For the proof we construct w(E) in accordance 
with (8): 

llmw(E)I 11,(E)+tg(:n:A/2) I :n:e 
1 Rew(E) = 1-1,(E)tg(:n:A/2) ~tgz' 

so long as A/2 < 1 - v - E/2 regardless of the 
value of A; E is arbitrarily small and ~(E) =-~(E) 
> 0. Using the customary reasoning, we obtain 
I f(E) I :::: CE2v+E, that is, formula (33). 

Finally, let us consider also a more definite 
form of ~(E). Namely, let ~(E) have the limit 

lim 6(E) = tg na, 
E-TOO 

In particular, if Ql > 0 then we get from ( 30) 
(QI = v) 

cEz-za-e ~ lf(E) I ~ CE2-2'*(ln E)2. 

(34) 

(35) 

On the other hand, if Ql < 0, then from (33) (QI = v) 
it follows that 

CE2a-e ~ 1/(E) I~ CE2a+•(InE) 2. (36) 

Relations (35) and (36) can also be obtained di
rectly from the formulas written out at the end of 
Me'lman' s paper. [ 21 

The case of existence of a definite limit for 
~(E) ( 34) will be analyzed in greater detail also 
from the point of view of relation [ 51 

1/(E)I ~C/E2, (37) 

which supplements the limitation (2). Applying our 
analysis not only to f(E), but also to 1/f(E), taking 
into account only the analytic properties, we ob
tain that the following relations could hold true in 
lieu of (32) and (33): 

CE-2a-e ~ lf(E) I ~ CE-2a+e, a> 0; 

CE-2a~2-e ~ lf(E) I ~ CE-2a-2+e, a< 0. 

( 38) 

(39) 

(In addition, the function f(E) can oscillate in such 
a manner that for certain large energies it satis
fies formulas ( 35) and ( 36), and for other energies 
formulas (38) and (39). We shall assume hence
forth that there are no such oscillations in f(E).) 
Relations (38) and (39) denote such a decrease in 
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the cross section with increasing energy, which 
we refute on the basis of the existing experimental 
data. Were it to turn out, nonetheless, that a rapid 
decrease in the cross section is possible, then ( 38) 
and (39) would impose a limit on the asymptotic 
value of such a cross section. (In more general 
cases, that is, when only (3) is satisfied, or (29) is 
satisfied, we can also obtain several new relations 
that are analogs of formulas (4), (30), and (33). 
For example, if (3) is satisfied, then f(E) 
> c /E2- 20'+€' .) 

Thus, in accordance with (35), (36), (38), and 
(39), if (37) is satisfied and ~(E) -tan rra when 
E- oo, I a I ~ 1/ 2, then for large energies with 
a > 0 we have either 

f(E) = Qlt (E)E2-2a., (35a) 

or 

(38a) 

when a < 0 we have either 

f(E) = Ql3(E)E~2a., (36a) 

or 

f(E) = QJ4(E)E~za.~2 • (39a) 

Here <Pi(E) is a slowly varying function (E > 0 
is arbitrarily small): 

CE~e < rp; (E) < CE". ( 40) 

(We prove in the Appendix that lim [cpi(-E)/cpi(E)] 
1, E- oo.) 
Let us now prove the inverse theorem: if 

lim /(E) = C =1=- 0 
E-+00 EBrp (E) 

( 41) 

exists (where cp(E) satisfies formula (40)) and if 
lim [cp(-E)/cp(E)] = 1, E- oo, then there exists 
also 

lim Im f (E) = _ tg n~ . 
E-+oo Ref(E) 2 

Indeed, according to the Phragmen- Lindelof 
theorem 

. f(-E + iO) l1m --~-- ----------------
E--+oo {- E + iO) B Ql (- E + iO) 

=lim 
f(E + iO) 

E-+oo (E + iO) ~ Ql (E + iO) 

( 42) 

(In the opposite case, f(E) would increase more 
rapidly than exponentially in the upper half-plane 
and we assume, as is customary, that I f(E) I< eE' E, 
E' > 0 is arbitrarily small.) Taking (7) into ac
count and the fact that lim [cp(-E)/cp(E)] = 1 when 
E - oo, we obtain ( 42) by direct calculation. 

It is easy to verify that the formulas (41) and 
(42) correspond to (34), (35a), (38a), (36a), and 
( 39a). 

Thus, a unique relation exists between the en
ergy exponent, which determines the rate of 
growth of f(E) as E- oo (or the exponent which 
gives the rate of decrease when f(E) decreases) 
and the limit lim ~(E) as E- oo. 

In conclusion we note that if (E' > 0 is arbitrar
ily small) 

CEB~e ~ If (E) I ~ CEB+e (In E)Z, 

then, using the Phragmen- Lindelof theorem, we 
obtain the following connection between the ampli
tudes f+ and L: 

-Im/~(E) = lm f+(E) cos nf3 + Re f+(E) sin Jt~, 

Ref~ (E) = Ref+ (E) cos rrf3 - Im f+ (E) sin rrf3. ( 43) 

(By f+(E) and L(E) we mean respectively 
lim f+(E) and lim L(E) as E -oo.) From this it 
follows that 
lm f+ (E) - Im f~ (E) 

=(Ref+(£) -Ref~(£)) ctg (rr~/2), 

~ =1=- 2, 1, 0. 

Thus, if {3 * 2, 1, 0, then from the inequality 
Im L(E) = Im f+ (E) there follows also Re f+ (E) 
= Re f_(E). For these inequalities it is necessary 
to have 

Im f~(E) lmf+(E) n~ 
---= =-tg-. 
Ref~(E) Ref+(E) 2 

If {3 is equal to 2 or to 0, then f(E) is pure real 
and Re f+(E) = Re f_(E). If {3 = 1, then f(E) is 
pure imaginary and Im f_(E) = Im f+(E)-the Pom
eranchuk theorem. [ 61 

In conclusion I am deeply grateful to E. L. 
Feinberg for continuous interest in the work, N. N. 
Melman for a very useful discussion, and to D. S. 
Chernavskil, I. M. Dremin, and I. I. Ro'i'zen for 
valuable discussions. 

APPENDIX 

Let us prove, for example 

lim Qlt (- E) = '1. 
E-+00 Qlt (E) 

We construct 

z;(E) =f(E) /E2~2a.ff!t(E). 

According to the Phragmen-Lindel theorem (see 
the derivation of (42)) we have 
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lim 'Zl(E+iO)= lim. {;;(-E+iO). (I) 
E~oo E~oo 

On the other hand, from (34) we find that 

lim _ f(-E + iO) = lim f(E + iO) 
E--+oo (-E + i0) 2-2a E--+oo (E + i0)2-2a · 

(II) 

The proved statement follows directly from for
mulas (I) and (II). 
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