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Mutual scattering of high-energy scalar particles of mass m is studied by the functional inte-
gration method. The process is treated on basis of the scalar particle model with a Langrangian
L = g $%x) ¢(x): where the field (x) has a mass m and ¢(x) has zero mass. The contribution
of virtual quanta of field ¢(x) with k* =0, which leads to infrared divergence of the elastic
process amplitude, is taken into account exactly. A procedure for compensating infrared diver-
gences is carried out outside the framework of perturbation theory, by taking into account in the
cross section processes that involve the emission of an infinite number of real quanta from field
¢@(x), and whose total energy does not exceed a certain value A.

1. INTRODUCTION

THE construction of amplitudes of processes by
the method of functional integration entails two
fundamental difficulties: first, finding the closed
solutions for the Green’s functions of particles
with arbitrary external fields, and, second, carry-
ing out the functional averaging of these solutions
over the external field with corresponding weight.
In addition to the foregoing fundamental difficulties,
there is also a purely technical difficulty connected
with the fact that the amplitude of the processes is
expressed in terms of the corresponding Green’s
functions multiplied by coefficients proportional to
the reciprocals of the propagation functions of the
free fields, which vanish on the mass shell. There-
fore, we should separate from the Green’s func-
tions the pole terms which cancel the indicated
zeroes on the mass shell. In perturbation theory,
this compensation is obvious, since the expression
for the amplitude is made up of free propagation
functions, but if the Green’s function is sought by
means of methods other than perturbation theory,
the separation of the pole terms entails certain
difficulties. ’

In the interesting paper by Milekhin and Frad-
kin,[“ devoted to the calculation of the scattering
of Fermi particles with the aid of the method of
functional integration, the problem described above
was solved by breaking down the virtual photons
into soft and hard photons, and using first-order
perturbation theory with respect to the hard
photons.

The present paper is an attempt to develop and
improve the cited paper.[” The proposed method
is from the very outset more consistent, since it
is based on an exact formula for the amplitude in
terms of functional integrals. The approximations
arise only when the functional quadratures are
taken. The starting point is a method, proposed by
one of the authors,'?! for formally solving equa-
tions for Green’s functions in an external field with
the aid of a functional integral. The Green’s func-
tion of the Klein-Gordon-Dirac equations, obtained
by this method, makes it possible to readily carry
out the functional averaging over the external field,
without carrying out initial quadratures, and to
find in this manner the quantum Green’s functions.
Because of this, only one of the two mentioned fun-
damental difficulties remains: the determination of
the functional quadratures arising during the solu-
tion of equations in the external field. The method
proposed in (21 for approximately calculating the
functional integrals is a good approximation to the
true values in the infrared region of virtual quanta.

Using as a simple example the interaction of
two scalar fields with Lagrangian

Liny= g : 9*(2) 9(2):,

where one field ¢(x) has zero mass, we have cal-
culated the cross section for the interaction of the
quanta of the field ¥(x). We neglect here the ef-
fects of polarization of the vacuum of the field
¥(x), which are insignificant in the infrared region.
These calculations can be readily extended to in-
clude the case of quantum electrodynamics.
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In Sec. 2 we present a method for determining ( o
the scattering amplitude in terms of the functional X9 \ T BT 2 Sw(n) dﬂ) 0 (4‘2 — 2 S Vz(Tl)dTI>
integral, and obtain with its aid the cross section s ’ . ’
for the scattering.of the f_ield P(x). ‘We use a pro- % exp{ig gd’é(p< 2 — 2S w(n)dn>
cedure for canceling the infrared divergences by ;
summing processes with emission of an infinite s2 5
number of soft quanta of the field ¢(x). Section 3 is + igS d§¢( Zy— 2S va (1) dn )}
devoted to the transition to the mass shell of the 0 3
momenta connected with external ends, and to an s @
approximate calculation of the functional integrals. X exp{-{— igZS dg S dgD (1‘1 —z— ZS vi(n)dn
The final results pertaining to the asymptotic o 0 &
values of the cross section are close to the results & st s
obtained earlier,t!» 3 4J +2 S v2(n )dﬂ)} exp {+ i [ S QdZD( §vi(nya \)
t :

2 82

2. TWO-PARTICLE GREEN’S FUNCTION AND % 8
DIFFERENTIAL SCATTERING CROSS + § §aacp (25 Vz(md*lﬂ} (4)
SECTION IN THE MODE Lijpt = g $%(x)@(x): 00 g

We go over to momentum space:
The Green’s function of two particles of the

field y(x) is connected with the single-particle G('qd | pa)
function in an external field by the functional in-
tegral = S d"*‘Z'i d'l*l'z dl*x;g d‘*x4 eiprxrtiqrx—ipXs—iqx(F (1‘1.’52 i 131«'4) .

; (5)
G (212 ’%x‘*) = g o exp{— '2£S ‘P(E)Dwi(ggl)‘l’(gl)dgdgl} Making a change of integration variables y; = xg,
Yy = X3 — Xy, Y3 =X1— X3, Y4 = Xy — X4, and also a
X (G (2125| ) G (z22:| @) + G (7174 | @) G (2275 | 9)150(9),  change of functional variables vy(n) = wy(n) + p’,
(1) vy(m) = wy(m) +q’, and carrying out integration with
where Sy(¢) is the average of the S matrix over respect to y3 and y,;, with account of the 6-func-
the vacuum of the field y(x). We shall henceforth tions in (4), we get
disregard the contributions of the vacuum loops
and put Sy(¢) = 1. This approximation is justified
in the study of infrared singularities of the ampli- o
tudes (see, for example, [#1). The Green’s func- XS S dsy ds, ei(Pe—mae i@
tion of a particle of field ¥(x) in a classical field 0
@(x) satisfies the equation

[20,2 — me® 4 g (2) ]G (2, ylo) = —6(z —y). (2)

The solution of this equation in the form of a func-
tional integral was obtained earliert?! and is

G(p'd’ |pq) =S dy, dy, 4P’ +a—p—ytila—a)

X S S dioy diop exp{—— i SSlﬁ)iz(E)dE — iS ‘Dzz(g)d‘é}
0 [

x exp{ ie| a2 o(yit2e+2 o (md
0 0

sz 13
+ig§ dECP( yo—ys+ 20’8+ 2§ mz(n)dn)}
) _

0

G(z,y|p)= iicdse—fs”mz c g Sty exp{ — i§ dE[VuZ(%)

—so(z=2§vman )] Jot (s = 2§ sman )@

We substitute (3) in (1) and integrate over o,
which can readily be done since Gaussian integrals ¥
arise. We break up the field ¢ into two parts: ex- g
ternal, which leaves the dependence of the quantum 0

X exp{-{—t__ s S dgdCD(2p (§—§)+2S mdn)d’q)
0 4

°</a~

gD (246 — D) +2 sz<n>dn)
4

1 Sz 3
Green’s function, and the field over which the inte- * ‘ op o 28 7
gration is carried out. As a result we obtain t+2 § dg ) atD <y2 +2P'8 —2¢'C+ 2 ) w1(n)dn
0
" 4
G (242 | X2z} = dsy dso e—tMe'(sits2) -
(1| T324) SOS sy dsy _28 mz(n)dn)]}- (6)
Sy 82 0
X S S dvy divs exp»{— i S vi2(E)dE — iS vf(&)d‘é} Using this expression for the two-particle
0 0 Green’s function, we can obtain the scattering ma-
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trix element by means of the well-known formula
2n)o (@ +9 —p—a)f(p'd|P9)
=1/, lim (p2—

19, ¢, 7, ¢ lom’

X (¢ —m*)G

m?) (p* — m?) (¢ — %)

(0’9’ |pg)So. (7)

However, the amplitude f(p’q’|pq) will contain in-
frared divergences, since the field ¢(x) has zero
mass. As is well known, in the cross section for
the scattering process this difficulty is circum-
vented by taking into account the emission of a
large number of soft quanta of the field ¢(x) the
total energy of which does not exceed the quantity
A, equal to the resolving power of the measuring
instrument.

The amplitude of the process of scattering with
emission of n quanta of the field ¢(x) can be ob-
tained from the obtained Green’s function in the
external field (6), by applying to it the operator

ﬁ 1
V20 o9 (ki)
and using formula (7). To take into account the
identity of the emitted particles, it is necessary
to introduce the factor 1/vn!. As a result we ar-
rive at the formula

In(p'd' |Pa)="/s , hm (p’2 — m2) (p* — m?)

L e e

— m?) S dyeita—a)y s S dsy dsy

0

X (¢?—m?) (¢

X exp {i(p 2 mOZ) s+ i(qu —_ moz)sz} s S dtord sy

x exp{ —iS‘lmF(E)dE—iS 022 (2) e }
0 0

:

31 8y

Xexp{—i—z—[ | dgdw(zp €—2+2§ wi(n)dn)

<
S2

sz 3
+§ Jazaen (20— )+ 2§ oa(mydn
00 9

81 82

+2{ d:§ D (2 + 208 — 20t + 2§ ou(m)n
0 0

o —m

n

_2C\m2( )dn)]}_/'irn ig

(27) Y20

0 }n!i=
8

X { Sd& explzlk [p &+ %wi(n)dn]}

Sz ki

+ Sod;,- exp{Ziki[ql( &i—

48 4

£)+ Somz(n)dn }}} (8)

With the aid of (8) we can construct the cross sec-
tion of the process of interest to us:

=]

1 n
do=—-— 9<A— u)~> &ley ks . .. Al
(270)2(Poqopd'90') =, Z; EAN.
. o\ &’ d3q’
Xlinl2o (o + 0 —p—a— D )LL)

=1

where J is the flux of the incident particles.
Summing over n, in a manner similar to that
used in “], we obtain
do do
[ lim  (p2—m?) (pt— m?) (¢ — m?)
2, 9% ¢, ¢7>m

2 I °S° eidT —_ 4

(2 —m?) | — —~ dt \ dy dy’ eilty—y")
X (4 m)] g " amin ‘S yay e

g
)

X g dl‘-’J)i d%l)g dl‘(t)il d’*())z,

dSi dSz dSil dSzl ei(p/’—’mo:)(s;—s,f) ei(q”ﬂm?)(s-‘—s:')

83

X exp{ —ifaz(0r@E)—or2(5) — i { dg (02 — 0?) }
0 0

y/) — 20 (31, Sa, Sil, Sr_v/. '[,') } .
(10)

X exp{F (s1, S2, y) -+ " (51, 82,

Here I = q — ¢’ is the momentum transfer, and
doy, /dQ is the cross section for scattering in first
order perturbation theory, while the functions F
and & are of the form

ig? S dik
2(2n)4 Y k2 +-ie

F(sy,s2,y)= —

81 81

&
<{ dgdcexp{zik[p'<§—;>+Xcmlm)dn]}

+§OS dg dg exp {2ik[q'(§—c)+§ wz(")d"]}

+2 Ss‘dg S‘zd; exp{ iky + 2ik[p’§ —
0 0
4

=Y ox(man},

£
q’§+_§ w1(n)dn
0

w1(n)dn — § oy (n)dn ]}

0

EN 82’

-
+§ az §aep {20t [ pE— 0+ 5+ os(m)dn
0 0 0
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82 8!

t
__S w2’ () dn ]} + g dg’ dQexp{.?ai/f[(I'(g—Q)

4 £ st 82

+ ‘ o2’ (n)dn +S 0)2(7])‘171]} + g dg \ dg
g

Xexp{Zik[q’Q —y/2—pE _S w1’ (n) dn

0

4
+S wz(n)dn]}}-

The integrals with respect to k in F(sy,s,,y)
diverge, as will be shown later. To regularize
them, it is necessary to renormalize the mass,
that is, to separate from F(sy,s,,y) the terms
(sy—s{)0ym and (sy—s$)6ym, after which we go over
in formula (10) to the observed masses my = m,
+ 6m and to the renormalized function Fr(sy,S,,y)
which has the property

lim  Fr(sy, 8, y) << o0.
81, S:—>00
The value of ém will be calculated at the end of
the paper.

After performing the foregoing operations we

are able to use for (10) the relation

lim i g ds exp{— is(p? — m?) + ﬁ’,.(.s)} = lim eF (),

it plom? M2 — pE

(11)
which is valid for any finite function Fp(s).'!! As
a result we obtain

lim
? F-m’

dO'_ dGo[
g

2 l!k
e (02— ) (@ —m?) | =

S

AT
X S dr f—~—~—1§ dy dy’ elly—v) K dwydws dwy'dwy’
2mit ¢

o0

x exp{ = i { a0 (2) + 0:2(5) — or2(5) — er(B)]}

n

Xexp {F (00, 00,y)+ F,* (00, 00,y’) — 2D (00, 1) }. (12)

After mass renormalization, some infrared di-
vergences are left in F, and Fyf. The function
—2& cancels these divergences in the real part of
Fy and F*. The remaining infrared divergences
in the imaginary part of these functions cancel one
another, something which can be written in explicit
form by adding to iImFy, and subtracting from
ilmFj¥ the imaginary quantity iA = —iImF;(w,w,O).
We shall henceforth put

Fo=F +iA, F=F"—IA.
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3. TRANSITION TO THE MASS SHELL AND
APPROXIMATE CALCULATIONS OF THE
FUNCTIONAL INTEGRALS

The transition to the mass shell p?, g* — m?

calls for separating from formula (12) the pole
terms (p?— m? ™! and (q? - m?) !, which cancel
the factors (p*> — m? and (q® — m%. To this end

we first carry out a transformation of formula (12),
equivalent to eliminating from the amplitude the
zeroth order of perturbation theory, which makes
no contribution to the cross section; this is done
by means of the following integral representation:

1
efr P = (F,, — @) \‘ dae® Fro=®) ,

0

(13)

where Fp, and &, are those parts of the functions
F, and & which depend on the variables y and y’,

Fr=Fp(y) +Fn, @ = a1, y, §') + O1(1).
Using this, we arrive at the formula

do dOo 14 eidt — 4
——~__ i 2 m2)2(g% — m2)2 d
1600 ;Izl—lm“‘(p m?)2(q m?) (27'6)8_5,0 T

2mit
X S dydy’ eity—v) g Aoy 0adr o dr '

Xexp {‘ i K dn o (n) + mzz(n)—wi’z(n)—wz’z(n)]}
0
dii’ =
_ pihy—ik'y’ 147 1
— ethy—ik’y SOS dE'dg
¥ 4 \
XeXP{ - 2ik’{ pE — gt + \ o (m)dn— \ wz’(n)dn] f
0

o J

d“k
Vg

= 13
x § (azdzexp{ — 20 e — a2+ Joutmyan
0 0

4 11
— §as(n)dn ]} { { dadp exp {aFe(v) — a®a(r,y,v)

00

+ BIF2" (y')— D27, ¥, 5) 1} exp {2 Re Fy — 2Dy (v) }.
(14)
In the expression presented here we have left out
terms which are of no importance in the transition
to the mass shell.

We integrate with respect to the variables y, y’
and k, k/, expanding the exponential in a series in
the coupling constant and using the integral repre-
sentation

&
diz e—21kx,

2 —id

1=_L_§

k2 —FLB— n2 . (15)

Returning after the described operation again to



442 B. M. BARBASHOV

the exponential, we obtain

do

aQ

dog I
0 Jim - (p? —m?)?(¢* — mz)zn—k—goo dv

-pq-—»m

eidt — 1

2mit

e—2il(x—x)

g drodiwadiey d4ws’

dizdia’
x | dads (22 — i) (2> + i0) -

X exp {— i ‘ dn [@2(n) + 02 — 02— 0)2,2]}
0

x§ Smﬁ { e g ay av exp{ 2%(q — q')
0

9 14

+\ o2 (mydn—gt' = § mz'dn}}

0 0

X [q’c

gl

X exp{Zi(p —p')[p'E + § oidn — p't’ — \ wi'(ﬂ)d‘f\] }
[} 0

11
x § § dadpexp {a[Fr'(2) — @2 (1))

X exp {B[Fre" (2) — @2/ (v)]} exp {2 [Re £y — D (1) ]},
(16)
where
F,__iig~d4k SmS dgdg[ex {izk[ (E—1)
T T e Y B e, PUELP
19

+ :\ wr(n)dn] } + exp{i2k [g'(g -0+ E mz(n)dn]}]
+ i8ym2sy - idam2sy,

FY (z) = _&k_ Smg dg’ dy/
(1]

. g
hl(2n)"S R+ ie

x exp{ize| —z+ v (¥ —5)— '@~
i Vo _:g ortn ]},

Wm:‘ﬁ%i

&k Lo
{ aPel SOS de” i

x [ exe{ 2k p' (@ —8) — '@ — )+ § widn
3
of dn [} +exp{i2k [ & —0— 0@ —¥)

r

w2 dn — g w2’ dn ]}] s

)
[ 2 e § arar

0

+

Tty g oy

gZ

=" 2wy

F12”(!/1) =

and M. K. VOLKOV
-
x[ exe{ 2 [ (& =8 — '@~ 1)+ fordn
§

.
C,(oz'd’fl]}‘l‘eXP{"Zk[ P —E)+ ()
g t”

— mi'dn+§w2dn]}] .

e

Making in (16) a transformation of the func-
tional variables (I’ = p’ — p)

w1(n) = M(n) —VU6(§ —m), w2(n) = Aa(n) + 16(C —m),

o (n) = As(n) — VB —m), @' (n)= Ai(n)+ 18(5'—n),
(17)
we arrive at integrals of the type

S dgexp {i(p®—p'2E+¥(8)},

0

(18)

for which formula (11) is applicable when p? — p’?,
since Y(£) is a finite function. This procedure
separates the remaining pole terms containing the
factors (p?— m%? and (q® — m??% We ultimately
obtain the cross section in the form

do .
aQ

eidt — | e—12Uyy—Y,)

(g2 — ie) (Y22 + ie)

doy U §°

a0 A drS dyy dys

2mit
X § d*h d*Ag d*Ag d*My exp {— i S dn[h? 4 A2 — A — }»42]}
0

X\ \dadpexp {2(Re Fpy" — D)}

D T
Oy

X exp {o(Fr” !/i)_(DZ//)'i‘ﬁ( " (y2) — @2")}, (19)
where (A,s;,s9 — )
N ik ¢
Py = 52(231)45 . S_j dg dg

x [ exp{26( 100®) +20 (—8) 100 +p0(—D) L

A .
+§ meman)} +exo{i2e(100 @)+ w0 (012
C+A
" E+A
—[g0(5)+ a0 (=0T + )}
(0@ + (=015 + § raan) } ]

+ i(§1m281 + iészSZ,

o
L

2
8
(2n)t - Ertie v

xexp{ i2k( — PO (8) +p0 (—)
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§+A t+A
— [0+ 00 (—01t+ § miman—§ wman)},
A A
/4 gZ dsk —iT@ N 5 2. 1 7 =
O () == s STe Y—OS dgdb[exp{z%Up 0(g)
E+A +A

+pO(—5)18— [P'0(D) + PO (—D1T+ § wdn+ § 2san |}

4 A

+ exp{ 2% (98 (8)+ 90 (—£)18 — [1'8(2) + 90 (—D)]

E+A t+A
+ i Aodn + & Aidn )}]
@," (1) Z_Z% S d:)k e—ite Sws dg dg [exp {iZk ([p’B 3]

—00

E+A t+4a

+p0(—8)E—1g'0(0)+00 (—01t+ § Adn +§ ran )}

A A

+ exp{ i2k (08 (8) + 90 (—E) & — P'0(0) + PO(— D)1

t+a t+a .
+ §h2dn+ §x3dn )}]

The next step is the calculation of the functional
integrals with respect to A4(n), Ay(n), As(n) and
Ay(n), but an exact calculation is impossible, so
that we obtain an approximate expression. In [2)
there was developed a method for approximately
calculating similar integrals. It is based on the
formula

8
CS Otv exp{— i S vz(n)dn}eF(s’ V) = eF(S)CS Otv
0

><exp{—i§ wan) 5 LD (20)
0 =0

where
F(s)= CS O4v exp{—— i § vZ(n)dn }F(s, v).

Confining ourselves to the first term in the ex-
pression (20), we get

eidt — 1

2wt

e—12l(ys—Y,)

(y22 —i0) (y2* + i0)

a9 dQ

—o0

do doy l‘§° S S dyq dys

11

X Q S da dp exp{a[ﬁz(yi) — @] + B [F" (¥2) — @2

00

+2(Re Fy — @y)}, (21)

443

where

2 a‘k
3y )

Fi=—i
: "2@n)t ) B

X{[ k2—|—21kp—|-ie - k2+2§cp’—|—ie ]Z

+ [ K2+ 2]1(] Fie k4 2th' + is—}z} '
vk 1

= . &
F. e
2(Y) =155 j R ie K2 — 2kp 1 ie

e—-izkyi[

n 1 ][ 1 N 1 ]
Rt 2kp +iel L2+ 2kq+ic K2—2kq Fiel’

_ g? &k 1 1 )2
Q —_ . —itw —_
«(%) 2(4:;)38 o ¢ {( ko' Tp
+< 1 1 )‘}
kg kg S
— ¢ cdk 1 Ay, 1 1
(I) =7 3 ¥1tm( o )( o ) ’
== o )

Here we have already separated from Fi in
explicit fashion the terms responsible for the
mass renormalization. They are equal to

2 %
2(2m)¢ Y k24 ie LE2+ 2kp +ie
1 1 1
Y et Tz i TR 2y e J
Y < dk 1 1
Oom? =1 — g - [ - - by
212n)4 Y k24 ie L k2 + 2kq + ie k2 — 2kq + ie
1 1
+ k2 +2kq’ :’r-78+ k2 —2kq + ic ] (22)

The next approximation, which is permissible
in the investigation of the asymptotic behavior of
the cross section for high energies of the scatter-
ing particles, consists in neglecting the dependence
of F on the variable y. In this approximation,
after integrating with respect to k and 7, the cross
section takes the form

do doy Si

1
_ —— d
Q alQHSd“‘6

. 5P (0 + B)[A:In(m/A) + As] + A, In(m/A) + A}

Tl —(a+ )4 — 4] '
(23)
where

1 VP4 ™2+ ypg — m?
my2

A1 = gz [ 1
(2n)2 L Y (pg)? — mt

1 qu+m2+1/pq~m2}
n )

——— | s
Y(pg)? — m* my2
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, g2 1 1
‘41 = [— S Br—e————
@02l ome Y(pp)E—ma

Vop' + m2 + Ypp' — m?
XIn - —— L ,

my2
2 ’ p
A2 = & { ’_‘*{____ []n 2(pg" + m?)
(4m)2 Y V(pg')2 — mt m2

X1p Y4+ ™+ Vo — m2
my2

tr, (pgd—m /]

+@ (_2[1 ( pq’—i—mz) !

\ /

i[1+( pq’ — m? )’/D'\ _~;j,_1_ﬁ*

\ pg’ + me

2 LT o=
—m2) Vog F k4 Voo —me
% [l,, 2(pg—m?) | Vpg+m*+ Ypg —m?
m2 my2
1 pq + m? '/2].
+®(?[1 ( pq—ﬁﬁ) ’
1 pq+m? ”’] 1
?[1+<pq——m2,\} ”I’
g* 1 2(pp’ +m?)
A =~ — [ln —
(4n)* V(pp')? — m* m?

o Yop +me+ Yppr —m?
my2

o (1252

L) D

dt
T

X

Dz, )= | Zn|e—1].

The final expression for the cross section (23)
differs little from the result of Milekhin and Frad-
kin.[1] Indeed, we apply the mean-value theorem
to the integral with respect to o and B, which

leads to a good approximation, since the integrand
varies slowly in the integration region (A; and A,
are small when p? > m?%. We can readily see with
its aid that these two results practically coincide.

CONCLUSION

The method proposed in this paper makes it
possible to find the exact differential cross section
of processes in which particles with zero mass
participate. The cross section is free of infrared
divergences and is expressed in the form of func-
tional integrals. In the calculation of the latter we
used approximations that differ from the usual
perturbation theory, making it possible to obtain,
even during the first stage, the correct asymptotic
behavior of the cross sections at large energies of
the scattering particles. The corrections of higher
orders, as shown earlier,”l make no essential
contributions to the asymptotic behavior.

For further progress in the region of interest
to us, it is essential to develop a method for ap-
proximately calculating functional integrals with
allowance for the vacuum polarization. The
method, which we have demonstrated with a sim-
ple model of scalar particles, can be readily ex-
tended to the real case of electrodynamics.

In conclusion, the authors are grateful to G. V.
Efimov for fruitful discussions.
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