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We calculate the polarization vector of a semiconductor in a strong electromagnetic wave, 
using the two-band semiconductor model as a starting point. The description is based on the 
density matrix. Two relaxation times T 1 and T 2 are introduced phenomenologically into the 
density-matrix equation. The first of these times can be related to recombination and the 
second to polarization relaxation of the system. Polarization connected with interband 
transitions only is calculated; intraband transitions are not taken into account in the present 
work. Analytic expressions are obtained for the absorption and dispersion coefficients by 
taking into account the strong electromagnetic field for two models: in one model the elec
tron energies are uniformly distributed over the bands, and in the other the parabolic shape 
of the band is taken into account. Nonuniform energy distribution of the electrons within the 
band results in an asymmetry of the absorption and dispersion curves. The calculation is 
performed in the approximation of the first harmonic with respect to field strength E and in 
the zeroth approximation with respect to D (Dis the population difference of the bands), and 
also by taking into account the second harmonic in D. Allowance for the latter leads to 
deformation of the bands, corresponding to an increase of the width of the forbidden band. 
Only resonance terms are retained in the formulas presented. 

1. INTRODUCTION. INITIAL EQUATIONS 

THE use of electromagnetic radiation from lasers 
makes it possible to investigate the dependence of 
the coefficients of absorption and refraction in 
semiconductors on the strength of the monochrom
atic field. For a theoretical description of these 
phenomena it is necessary to determine the depen
dence of the complex dielectric constant of the 
semiconductors on the magnitude of the field, or, 

We start out with a two-band model of the 
semiconductor. The index 1 denotes quantities 
pertaining to the valence band and index 2 the con
duction band. The state of electrons of the system 
is characterized by four density matrices: 

in other words, to calculate the polarization vector 
with account of saturation. 

The question of allowance for saturation in 
semiconductors was considered by Krokhin [1-3]. 

He calculated the relaxation of the population dif
ference in the bands in the Fermi quasilevel ap
proximation. The present paper is devoted essen
tially to polarization in a strong field. We investi
gated, in particular, the frequency dependence of 
the absorption coefficient and of the dispersion, 
taking the polarization dissipation into account. 
This enables us to describe more accurately the 
frequency dependence near the edge of the absorp
tion band. 

PH (p, p', t); P22 (p, p', t)' 

P12(p, p', t), Pzi(P, p', t). (1.1) 

The first two describe the states in the valence 
and conduction bands, respectively, while the last 
two describe the transitions between bands. 

The polarization vector is determined by the 
expression 

"" \ ba ab d d , b ) P (t) = en LJ J rp', p pp, P' p p ; a, = 1, 2. (1.2 
a,b 

Here rab , are the corresponding matrix elements, p,p 
e the electron charge, and n the average concen
tration. 

Let us formulate the principal limitations. 
A. We consider processes due only to band 

transitions. Under this condition we have 
(11) (22) 

rp, P' = rp, P' = 0. 
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B. We take into account only direct transitions 
between bands. Under this condition, taking into 

From (1.6) and (1.7) we obtain, subject to condi
tions (1.9), the following closed system of equa-

account the momentum conservation law, the matrix tions: 
element of the transitions can be written in the 
form 

(12) (21) P 1 I (1 4) 
rp, P' = rp, P' = C 1PT 6 (p - p ) == rp6 (p - p ) , · 

where C is a constant quantity. This quantity can 
also be complex, and then c< 12 ) = c<21>* and 
r<12l = r< 21l* 
p p 

From (1.2)-(1.4) we obtain the following ex-
pression for the polarization vector: 

\ (12) (21) 
P(t) =en j rp(pp, p + PP. p)dp. (1.5) 

Thus, the polarization vector is determined by the 
functions p~1.~ and p~2,1~, with the momenta p and p 1 

coinciding. Instead of using identical indices p, p 
and a, a, we shall write only one index each, p and 
a (a= 1, 2). 

Under the foregoing limitations, the equations 
for the functions p<t> and p< 12 l are p p 

ie +h-E (t) rp<12> (pp<2l (t)- pp(1l(t)), (1.6) 

app<1>(t) =- _1_fpp<1>(t)- pp<I>O(t)] 
at ,p<1> 

+_if E ( t) (rv(l2)pp<21)- pp(t2lrp<2tl). (1. 7) 

Here p~no is the specified distribution over the 

momenta in the valence band. In the absence of 
external sources, say electron injection, it coin
cides with the equilibrium distribution. & 1, 2(p) is 
the energy of the electrons in band 1 or 2; T ~ > and 
r~ 2 > are respectively the relaxation times for the 

distribution functions in band 1 and for the transi-

aD(p, t) =- ~(D(p, t)- no(P)) 

at ·~ 
(1.10) 

app<12>(t) i , 1 12) ) 1 (12)() -------=---[6t(p)-82(P) pp< (t -~pp t 
at It •2 
+ifrp(12JD(p, t)E(t). (1.11) 

2. EXPRESSIONS FOR THE POPULATION DIF
FERENCE D(p, t) AND FOR THE POLARIZA
TION VECTOR P(t) WITH ALLOWANCE FOR 
SATURATION 

Equations (1.10) and (1.11) coincide in form 
with the corresponding equations for the system 
with two discrete levels [ 4]. The only difference is 
that the quantities in (1.11) depend upon p. This 
dependence, however, enters parametrically, and 
therefore comes into play only when calculating 
characteristics that are averaged over p, for ex
ample, the polarization vector. 

The electric field intensity is specified in the 
form 

E(t) = E cos wt. (2 .1) 

In the stationary case, in the approximation of the 
zeroth harmonic for D and the first harmonic for 
E, we obtain the following expression for the func
tions p~ 2 > (t) and D(p): 

e E eiwt 
pp(12l(t) = _ -rp(12JD(p) '/ , 

2ft (02! - (f) ~ ~ 't2 
(2.2) 

_ 0 (Wzt-W) 2 +'t2-2 

D ( p) ~ D ( P) -( - ) z + ~ -z J_ R 
U)2! ~ (f) •2 1 

(2.3) 

tion between bands. The equations for the functions We put here 
p< 2> and p< 21l follow from (1.6) and (1.7). 

p We sha~l find it convenient to introduce the func-
tion 

D(p, t) = pp<z>(t) - pp<1l(t), (1.8) 

which defines the difference in population of the 
particles with momentum p in the bands. 

C. We assume that 

This means that the relaxation times T~1l, T~2 >, and 

r~ 2 l, which in general are functions of the mo
menta, are replaced by averaged relaxation times 
which no longer depend on p. 

We retain only the resonance ~ms in expressions 
(2.2) and (2.3). 

From (1.5), (2.2), and (2.3) follows an expres
sion for the polarization vector with account of 
saturation 

e2n (' 
Pi(t) =- 2ft .\ ir<12Jji/EjVD(p) 

X J~~- cu) cos wt + ,2- 1 sin wt dp. (2 .4) 
( W2t - (0) 2 + 't2-2 + R 

Here D0(p) = p~2 > 0 - p~>o is the specified difference 

of the distributions over the momenta in the bands. 
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We note that when account is taken of the second 
harmonic of the population difference D, it is 
necessary to replace w21 in all the expressions by 

e2E2r2w 
W2i + ft2 ( 4wz + 't'i-2) . 

Thus, the forbidden band broadens. This nonlinear 
effect is small in magnitude compared with the 
saturation effect. In formulas (2.2)-(2.4) we have 
retained only the resonance terms. In the more 
general case, it is necessary to write, for example, 
in lieu of (2 .4), 

e2n \ 
P;(t) =- 2h J ir<12lldEpo(p) 

X { ( <021 - w) cos wt + 't':.-1 sin wt 
(w21- w) 2 + 't'2-2 + R 

+ i~~±~> c~~mt =-~~n wt } dp 
(wz1+w)2+1:2-2+R · 

3. ABSORPTION COEFFICIENT OF ELECTRO
MAGNETIC RADIATION 

From (2.4) we obtain an expression for the ab
sorption coefficient a (w), which is the imaginary 
part of the complex dielectric constant, due to tran
sition between bands: 

e2n \ 't'z-1 dp 
a.(.w) =- 2t. J (rpe)2D0 (p) . (3.1) 

" (w21- w) 2 + 't'2-2 + R 

Here e is a unit vector along the field E. 
In order to display the main characteristic fea

tures of the frequency dependence of the absorp
tion, let us consider first a rather crude approxi
mation, namely, we assume that the system is 
isotropic, that is, 

I r(12) I iiz = I /a-ll-6;;. 

We assume that p~1l(O) and p~2)(0) are equilibrium 

distributions, that is, there are no external sources 
to cause redistribution of electrons over the bands. 
The distributions of the energies over these bands 
are replaced by a uniform distribution. Then 

Pi(&) = 1/ L\1, Pz(cf) <Pi· 

Here .6.1 is the width of the valence band. We de
note by .6. the width of the forbidden band. Under 
these conditions the expression for the absorption 
coefficient is 

e2nrfl. { L\1 + L\ - hw L\ - hw } 
a ( w) = 6L\1A arctg hA 't'z - arctg hA 1:2 , 

(3.2)* 

*arctg"' tan-•. 

(3.3) 

A plot of a (w) is shown in Fig. 1. 
At frequencies it~.- wn I « .6.1 and .6.1 » n/T2 

we get from (3.2) 

e2n-ll- { n liw - L\ } 
a(w) = M 1A 2 + arctg liA 't'z . (3.4) 

In a weak field A = 1 in (3.2) and (3.4). In a 
strong field when A » 1, expression (3.4) becomes 

ernli { n liw- L\ ( 3't'1 )'''} a(w) = -+ arctg - . 
2L\1Ef3'ti't'2 2 erE \ 't'z 

It follows from (3.2)-(3.4) that in a strong field 
the transition region at the edge of the absorption 
band broadens, and the absorption coefficient de
creases at all frequencies. 

When E = 0 the width of the edge of the band c5 
is of the order 1/T 2, and in the presence of a field 

(3.5) 

The width of the entire absorption band is de
termined by the width of the valence band .6.1. This 
follows from (3.2). It must be noted once more, 
however, that within the framework of the present 
paper we take no account of the interband transi
tions that lead to an additional limitation on the 
width of the absorption line. 

Let us consider now a more accurate expression 
for the absorption coefficient. We start with the 
case of a weak field. 

When E = 0 expression (3.1), after integration 
over the angles, becomes 

A 
e2n"ll- r' Pi ( f8) d[8 

a(w)= 61i'tz ~ [(&+L\)/Ii-w]z+'t'z-z' (3.6) 

where 
3 &''• 4n(2JL)''• V , 

pi(&)=-2 &o'"= (2nli) 3 N [8!., (3 •7) 

& 0 is the maximum energy of electrons at T = 0°, 

0 wt. 
\ I 
I I 
I I 
I ( 
I I 

FIG. 1 
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J.! == m 1 m 2/ (m 1 + m 2) is the reduced effective mass 
of electrons. In (3.6), as above, it is assumed that 
the valence band is completely filled and the con
duction band is empty. 

When 1/T2 - 0 there follows from (3.6) the well
known formula for the absorption coefficient [ 5, 6]: 

It follows from the foregoing that formula (3.8) 
does not take into account the finite nature of the 
relaxation time of the polarization of the medium 
(T 2) and therefore does not describe with sufficient 
accuracy the frequency dependence of the absorp
tion coefficient at the edge of the band. 

Integrating in (3.6) with finite 1/T 2 we obtain the 
following expression for the absorption coefficient 

ne2r2fi f 1 ( l'~ + p/2 
a(w)= 8fto';,rz ll(q-p2/4)'h arctg (q-pz/4)'h 

+arctg l"~-p/Z \ _ _1:_ln L'll+Pl"~d:-_11_) (3.8a) 
(q-p2/4)'/, j p ~~~-p-v~~+ql) 

p = -y'2{[ (liw- L'l)2 + fi2/ r 22) •;,- (liw- L'l) }'h, 

q = [ (liw- L'l)2 + li2 / • 22]'iz. (3.8b) 

Three limiting cases are of importance: 
1. .6.1 » nw, .6., n/T 2-independent band. Under 

these conditions we get from (3.8a) 

1 nne2r 2 li 
a ( w) = ----,----. 

8 ft o h TzP 
(3.9) 

2. I n w - .6.1 » .6.1. From (3. Sa) it follows that 
when n w - 00 but when .6.1 and .6. are finite we get 
a(w)- 0. This means that the absorption band has 
a finite width. 

3. 1/T2 - 0. In this limiting case formula (3.8a) 
coincides with formula (3.8). 

We note once more that formula (3.8) does not 
describe quite accurately the dependence of the ab
sorption coefficient on the frequency even near the 
edge of the band. Indeed, for example, when 
nw == .6., it follows from (3.8) that a(w) == 0, and 
from (3.8a) we get 

1 -,!2 :rtne2r 2 ( 1i )'/• 
a (w) 1 w=.1/t1 = ~8- fto'/, T; (3.10) 

We take account here of the fact that .6.1 » n/T 2• 

It follows from (3.9) that the absorption coeffi
cient differs from zero also when nw < .6.. 

Using formula (3.1) under the same assumptions, 
we can obtain an expression for the absorption co
efficient with saturation taken into account. We 
present here somewhat simplified results. The 
simplification consists in replacing in the denomin-

ator of formula (2.4) the quantity cos2 (P· e) by its 
mean value, that is, by 1/3. 

Under this condition, the coefficient a (w) is de
termined as before by formula (3.8a), provided we 
replace in it 1/T2 by A/T2, everywhere except in the 
coefficient preceding the curly bracket (A is de
fined by (3.3)). 

When nw == .6. we obtain, taking saturation into 
account, the following expression in lieu of (3.10): 

( _ -~ \ _ 1'2 _!!ezrz (_!!____)'''( -r1, 2ezr2£2 \ -'/• 
a r\ w - ft I- 8 [g o'f, 'Cz 1 + 3fi2 ) . 

(3.11) 

From the foregoing formula it follows that the 
character of the frequency dependence of a (w) is 
different for the two analyzed approximations, 
although the general rules do coincide. 

The use of the more approximate model, which 
was considered at the beginning of this section, is 
nonetheless expedient, since the energy distribu
tion inside the band, employed in modern band 
theory, is to a considerable degree a consequence 
of model representations and not a consistent 
theory. 

4. DISPERSION OF THE SYSTEM 

We begin again with the cruder model consid
ered at the beginning of Sec. 3. Within the frame
work of these approximations we obtain from (2.4) 
the following expression for the real part of the 
dielectric constant: 

ne2r2n (L'l! + L'l-liw)2 + fi2/'Czz + e2£2r2T!/3'Cz 
e = 1 +----In ---~ ---. 

~~ (L'l-liw)2 + fi2/Tz2 + e2£2r2Tt/3•z 

(4.1) 
It follows from this that the frequency dependence 
E(w) has a character that is close to the normal 
(see Fig. 1). The dashed curve shows the function 
E(w) when A/T2 - 0, that is, without account of 
polarization dissipation. 

We now consider the dispersion curve with 
allowance for the energy distribution in the valence 
band. As a result of integration under the same 
conditions as in Sec. 3, we obtain: 

e2nnr2 
e=1+~1" B, 

0 0" 

(4.2) 

The quantities p and q are defined by (3.8b). 
Saturation is taken into account here in the same 
approximation as at the end of section 3. 
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FIG. 2 

In the limiting case A/r 2 - 0 the expression for 
B in formula (4.2) simplifies greatly and takes the 
form 

B 2 ~~- ') ,1~-t.- l' 6., 
= V '-'I - ~ l--' - H(J) arctg , 

16.- ftw 
n(!) < 6.; 

- -- Vnw- 6. + 1f6.t 
B = 2}.1t-l'ftw- 6-ln , ftw >A. (4.3) 

IVtt(!) - 6. - V 6.1l 

This expression is valid for all w, except regions 
with width of the order of A/r 2 near the values 
ti w = ~ and ti w = ~ 1 + ~. 

The qualitative variation of the function E(w) is 
shown in Fig. 2. The dashed curve shows the func
tion E(w) when A/r2 - 0. 

From (4.2) we can obtain the value of E (w) at 
the points tiw = ~ and tiw = /i:; + ~, where this 
function reaches a maximum and a minimum. In 
the region of anomalous dispersion, E = 1 when 
tiw "" ~ + 0.55 ~1 ; when tiw - 00 we get E(w)- 1. 

All the singularities of the E(w) curves coincide 
in the approximations outlined above. The only 
difference is that in the second case the value of 
E at the point of the maximum and the minimum is 
not the same. This difference is especially notice
able when A/T 2 - 0, when the maximum is finite 
and is equal to 2-/i:;, and the minimum tends to 
infinity. This asymmetry is due to the fall-off of 
the distribution function at the upper edge of the 
valence band. 

In conclusion we note that the expression (2 .4) 
for the polarization vector is valid also for states 
with a negative temperature, when the population 
in some region of the conduction band is larger 
than the population in the corresponding region of 
the valence band. We do not present the calcula
tions for this case, since they go beyond the scope 
of the present article and deserve a separate 
analysis. The latter pertains also to questions 
connected with account of the intraband transitions. 
Closely related to them is, finally, also the ques
tion of calculating the relaxation time T 1 and T 2• 

When account is taken of the interband transitions, 
one more relaxation time, r 3, appears and deter
mines the time of slowing down of electrons in the 
conduction band. r 3 was calculated by Popov and 
Krokhin [7 ,a]. Apparently no corresponding calcula
tions of the times T 1 and T 2 were made. 

The authors are grateful to L. V. Keldysh for 
critical remarks concerning the first version of 
the present paper. 
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