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All the solutions of Einstein's equations which in a suitably chosen coordinate system also 
satisfy the equations of Newtonian theory are found. The general solution of the problem con­
sists of two series of particular solutions. Every solution of the first series represents the 
gravitational field of an isolated particle falling freely in an external, variable, homogeneous 
gravitational field. Such a solution may be interpreted either as the limiting case of the two­
body problem, if the mass of one of the two points is infinite and located at infinity, or as a 
Schwarzschild field of only one mass point considered from an accelerated reference system. 
The solutions of the other series coincide essentially with Kasner's solution. The Schwarz­
schild solution can be derived directly from the corresponding solution of the Newtonian the­
ory because the Schwarzschild field can be described by a solution of the simultaneous system 
of Einstein's and Newton's equations. The problem of the physical interpretation of the coordi­
nate system and the related problem of the uniqueness of the relativistic corrections to the 
formulas of Newtonian theory, in particular the uniqueness of the Kustaanheimo-Lehti effect, 
are considered in the case of central symmetry as applications of the obtained solution. It is 
shown that Petrov's classification of gravitational fields has no analog in Newtonian theory. 

1. INTRODUCTION 

IT is well known that the Schwarzschild solution 
can be derived by elementary methods, on the 
basis of the equivalence principle and Newtonian 
gravitational theory, without solving Einstein's 
equations. [1-TJ There are many more or less sat­
isfactory explanations of this fact. We shall show 
that the Schwarzschild field can equally well be 
considered as the solution of Einstein's equations, 
or as the solution of Newton's equations; in the 
light of this the above property of the Schwarz­
schild solution turns out to be trivial. 

pared with a given nonrelativistic reference sys­
tem. As a result of this there appears in the cal­
culation of relativistic corrections a peculiar arbi­
trariness to which Rao[ 8 • 9 J drew attention. He 
showed that the relativistic corrections depend on 
the choice of the coordinate conditions. This ambi­
guity is generally removed by the introduction of 
some general Principle for choosing the coordinate 
conditio~S' .. For example, Fock[ 10 J requires the in­
troduction of the property of harmonicity of the 
relativistic reference system. However such a 
solution of the problem is not the only possible 
solution. We shall show that in certain particular 
cases it is advantageous to proceed differently. 

As another particular problem we shall consider 
the Petrov classification of gravitational fields 
from the point of view of Newtonian theory. 

2. MATHEMATICAL FORMULATION OF THE 
PROBLEM 

The solution of this problem makes it possible 
to cast light on many similar problems. We shall 
consider in more detail the problem of the unique­
ness of the relativistic corrections to the formulas 
of Newtonian gravitational theory. These correc­
tions are obtained by comparing the Newtonian 
formulas with the corresponding relativistic ones. 
However, the form of the formulas depends, on the 
one hand, on the nature of the gravitational field, We will start with a coordinate system for 

which the metric form is1> and, on the other, on the reference system in which 
the gravitational field is considered. Since many 
relativistic reference systems may coincide in the 

(2.1) 

Newtonian limit, it remains in general uncertain l)Latin indices take on the values 1, 2, and 3, Greek indi-
which relativi,i3tic reference system should be com- ces-the values 0, 1, 2, and 3. 
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where for c-oo the coefficients 'Yik have finite 
limiting values. In this coordinate system Ein­
stein's equations for a vacuum can be written in 
the form 

(2.2) 

where Pik is the three-dimensional Ricci tensor 
set up for Yik· and Qik is a certain quantity, an 
exact expression for which has been given in [ 111 . 

In the limit c-oo and with the additional condi­
tion Roijk -o Eqs. (2.2) go over into Newton's 
equations of the gravitational field: [ 11J 

Roo= 0, Roijk = 0, Pa, = 0. (2.3) 

Our problem is the solution of the simultaneous 
system of (2.2) and (2.3). 

By virtue of the last equation of the system 
(2. 3) the three-dimensional space of coordinates 
~ i is Euclidean at each instant of time. One can, 
therefore, introduce a Cartesian rectangular coor­
dinate system xi in such a manner that the rela­
tive velocity vi(xk, t) of the space of points ~i 
= const relative to the space of points xi = const 
will satisfy the condition of being irrotational [ 11 J Z> 

Then vi is the gradient of the scalar potential 
cp(xi, t): 

(2.4) 

The Newtonian potential <I> is expressed in terms 
of <p according to the formula: [ 12 J 

<D = Cjl,o + 1/z(jl,s(jl,s. (2.5) 

In the system of coordinates xi, t the metric form 
(2.1) takes on the form: 

ds2 = (c2 - Cjl,sCJl,s)dt2 + 2cp, 8dx8dt- dx8dx•, (2.6) 

and the system (2. 2) and (2. 3) reduces to the fol­
lowing system: 

Cjl,ssO + Cjl,r(jl,ssr + Cjl,rs(jl,rs = 0, (2. 7) 

Cjl,ikO + CJl,sCJl,sih + Cjl,ss(jl,ill = 0. (2.8) 

Our problem consists thus of finding the function 
<p(xi, t) from the system of equations (2.7) and 
(2. 8). 

3. ONE PARTICULAR SOLUTION 

The system (2. 7) and (2. 8) has a particular so­
lution: 

cp(xi,t) = -2YJ(2GMr)'f,, r2 = x•x•, r: = +1, (3.1) 

2)A comma btfore a subscript indicates ordinary differen­
tiation, a point and a comma covariant differentiation. 

to which there corresponds accordin~ to (2.5) the 
Newtonian potential 

(3.2) 

i.e., the potential of the gravitational field of the 
point mass M, and according to formula (2. 6) the 
metric form 
ds2 = c2 ( 1 -- r0r-1) dt2 - 2rJcr0'f,r-'hdrdt 

(3.3) 

(we have written it in the polar coordinates r, (), J), 
where 

ro = 2GMc-2• 

The transformation 
ct = CT + 2f) (rro) '/, 

+ ro lnl (r'h- wo'h) (r''' + wo'f•)-11 

(3.4) 

(3.5) 

transforms the linear element (3. 3) into the linear 
element of Schwarzschild. We see that the function 
<p being a solution of the simultaneous system of 
Einstein's and Newton's equations characterizes 
the gravitational field of a point mass both in the 
relativistic and in the nonrelativistic theory. 

The factor TJ in Eq. ( 3. 3) is of no appreciable 
importance. Finkelstein [ 13 J expressed the opinion 
that for TJ = + 1 the metric form (3.3) describes 
the gravitational field of the usual material parti­
cle, whereas TJ = -1 describes the field of the 
''antiparticle.'' Actually the transition in formula 
( 3. 3) from TJ = + 1 to TJ = -1 indicates a transition 
to a new time coordinate t' 
ct =· ct' + 4 (rro) 'h 

(3.6) 

i.e., a change in the allowance for simultaneity in 
the space. The fact that the Newtonian potential is 
independent of TJ is also evidence that the function 
describes the same gravitational field for both val­
ues of TJ· 

The scalar <p is specified in a strictly Euclid­
ean three-dimensional space in a system of polar 
coordinates r, (), and J. In this space one can 
consider the relativistic laws of mechanics and 
electrodynamics with the space-time metric (3. 3) 
which characterizes the field <p in its relativistic 
aspect, and the corresponding nonrelativistic laws 
with the gravitational potential ( 3. 2) which charac­
terizes the field <p from the point of view of New­
ton's gravitational theory. The situation can be in­
terpreted as if we had introduced into the frame­
work of the relativistic theory of gravitation without 
distortion a Newtonian gravitational field, and pro­
duced thereby the conditions for a direct compari­
son of nonrelativistic and relativistic formulas. 
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The polar coordinates r, e, and J in ( 3. 3) are the 
same as those used in Newtonian mechanics. Con­
sequently, the relativistic corrections to the New­
tonian formulas which contain only the variables r, 
e, and J are obtained uniquely. Such corrections 
are the secular shift of the perihelion of Mercury 
and the bending of a light ray (as an effect of the 
anisotropy of motion of the light signal). 

Rao[ 9 J gave an expression for the secular shift 
of the perihelion of Mercury as a function of coor­
dinate conditions and concluded from it that in the 
general theory of relativity one can obtain for the 
magnitude of the shift of the perihelion of Mercury 
an arbitrary theoretical value, and that for this 
reason the general theory of relativity does not 
"explain" this effect and merely permits the se­
lection of certain privileged reference systems 
from the point of view of the terrestrial observer. 
However, as we have seen, in the case considered 
the space part of the reference system will be 
naturally fixed independently of the phenomenon 
under consideration, so that the effect of the shift 
of the perihelion of Mercury will be calculated as 
a unique theoretical prediction, and in agreement 
with the observations. 

If the central mass M is not at the origin 
xi = 0, but at some point xi = ~, x2 = 0, and x3 = 0 
on the positive xi axis, then all the cited formulas 
remain valid if r is determined by the formula 

The Newtonian gravitational force acting on a unit 
weight at the fixed point xi is 

F; =<I>.;= -GMr-2[(x1 - £)r-1, x2r-1, x3r-1]. 

Let the center of attraction move along the pos­
itive xi axis to infinity with the mass M increas­
ing in such a way that the ratio M/~ 2 remains fi­

nite and tends to a definite limit m. Then r /~ - 1 
and in the limit the force Fi will be of constant 
magnitude F = Gm directed along the positive xi 
axis. With the aid of the considered passage to the 
limit one obtains from a centrally-symmetric 
gravitational field a homogeneous gravitational 
field produced by a material point of infinite mass 
located at infinity. This homogeneous field can be 
derived from the Newtonian potential 

<D = Gmx + 1/ 2G2m2t2 

(we have written x instead of x1), which is in turn 
derived according to formula (2. 5) from the scalar 

<p = Gmtx, ( 3. 7) 

which satisfies the system (2. 7) and (2.8). Thus 
the homogeneous field (3.7) is both Newtonian and 

relativistic, and according to (2.6) it can be de­
scribed with the aid of the metric form 

ds2 = c2 ( 1 - G2m2t2c-2) dt2 + 2Gmtdxdt 

- dx2 - dy2 - dz2. (3.8) 

Thus the form ( 3. 8) derived from the Schwarz­
schild equation by a passage to the limit describes 
the gravitational field of a point infinite mass lo­
cated at infinity. However the form (3.8) can also 
be obtained from the linear element of Minkowski 

ds2 = c2dt2 - dx2 - dy2 - dz2 

by means of the transformation 

x = x - 1/zGMt2, 

( 3.9) 

(3.10) 

i.e., by means of a transition from an inertial ref­
erence system to an accelerated system. Now the 
form ( 3. 8) describes the inertial field of the spe­
cial theory of relativity considered from an accel­
erated reference system. The form (3.8) admits 
therefore two equally justified physical interpreta­
tions. This is an expression of the equivalence 
principle of the general theory of relativity. In 
particular, it follows from the possibility of trans­
forming the form ( 3. 8) to the form ( 3. 9) that the 
homogeneous gravitational field of an infinite point 
mass located at infinity can be described with the 
aid of the metric form of Minkowski (3.9). 

4. THE KUSTAANHEIMO-LEHTI EFFECT 

The scalar <p given by formula ( 3.1) does not 
depend on the time. Unlike in the case of a spatial 
coordinate system, insertion of the Newtonian field 
into the framework of relativity theory determines 
the relativistic time coordinate t ambiguously, 
accurate to the transformation ( 3. 6). Consequently 
the relativistic corrections to the Newtonian for­
mulas containing the time are determined in gen­
eral ambiguously. There are however exceptions. 
As an example let us consider the Kustaanheimo­
Lehti effect, [i 4J viz., the lengthening of the side­
real period of motion of a planet. In our coordi­
nate system this effect can be calculated as 
follows. 

For the metric (3. 3) the differential equation 
which determines the orbit of the particle moving 
in the plane e = 1/2 7r is of the form3) 

( 4.1) 

where u = 1/r, p- constant, a = 1 in the case of 
a material point and a = 0 in the case of a photon. 

3 ) A prime denotes differentiation with respect to {}, and a 
dot over a letter- differentiation with respect to t. 
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The general solution of Eq. ( 4.1) calculated accu­
rate to first-order terms in r 0 is 

u = (a+ e cos -fr)p-1{1 + 1!2rop-1 ["/2a- e cos{} 

+ (1/2a2 + 2e2 + 3ae-& sin{}') (a+ e cos tt)-1]}. (4.2) 

It has been assumed here that at the perihelion 
J. = 0; e is the constant of integration. In addition 
the integral of 

(4.3) 

exists. Eliminating ds from (3.3) and (4.3) and 
taking into accoqnt the relation ti = u'J, we obtain 
an equation for J. : 

~2 - GMpu~ + 1/ 2pr0u2 [ ( 1 + u'2u-2 ) .fr2 

- 211 (2GMu) 'hu'ft + 2GMu3) = 0, (4.4) 

from which it follows, assuming a = 1 and using 
formula ( 4. 2), that 

dt = d-frp'i>(GM)-'1•(1 + e cos -fr)·-2{1 + 1/2r0p-1 

X[-7/ 2 + 1/ 2e2 + 4ecos'fr -(1 +4e2 +6el'}sin-fr) 

X (1 + e cos -&)-1 + 'YJl'2e sin -&(1 + e cos-&)'"]}. (4.5) 

Assume that we have for J. = 0 the initial values: 
r = q and J. = IJ.. Substituting these values in ( 4.2) 
and (4. 5), we obtain two equations for e and p 
from which we find 

1) for r 0 = 0 (nonrelativistic motion) 

q(1 +eo) = po; 

2) for r 0 -:f. 0 (relativistic motion) 

P = Po[1 + 1f2roq-1 (3 +eo)], 

e = e0 {1 + 1 /~,r0q-1 [6 + 2eo + 5(1 + eo)-1]}. (4.6) 

If we substitute (4.6) in (4.5), we obtain 

dt = d{}p0'" ( GM) -'I• ( 1 + e0 cos {}) - 2 

X{1 + r0q-1 [-1 + {2e0 cos'fr- 4) 

X (1 + eo)-1 + (5- e0) (1 +eo cos -&)-1 

- 3eo'fr sin{} (1 + e0)-1 (1 + e0 cos -&)-1 

initial conditions. The difference between the two 
periods is in general negligible, and in the case 
e0 = 0 there is altogether no difference. However, 
when e0 is close to unity, then in the right-hand 
part of Eq. (4.8) the term containing 1- e0 in the 
denominator will be large compared with the re­
maining terms and we obtain the approximate ex­
pression 

P = Po[1 + 3roq-1 {1 -- e0)-1] 

= Po(1 + 6GMa0c-2q-2). (4.10) 

This formula expresses the effect of the lengthen­
ing of the sidereal period of a comet with an orbit 
having a large eccentricity. The effect is calcu­
lated uniquely. Formula (4.10) coincides with for­
mula ( 33) of Kustaanheimo- Lehti if one assumes 
in the latter that y = 0. For y = 1 the Kustaan­
heimo-Lehti formula yields a somewhat larger 
value for the effect. 

5. THE GENERAL SOLUTION 

Let us return to the system (2. 7) and (2.8) which 
we rewrite in the form 

<D,ik = ljl,siljl,sh + ljl,ssljl,iR., <D,ss = 0. (5.1) 

From these equations one can readily derive the 
relation 

<D,ik = 

the cofactor of the element <p,ih in det (<p,;R.), (5.2) 

whence, if we set det (cp ik) =A, it follows that , 
ljl,si<D,sh = Ab;n. ( 5. 3) 

If we differentiate the first Eq. (5.1) with re­
spect to t, substitute in place of the third deriva­
tives of the type cp ,ikO their expressions from Eqs. 
(2. 7) and (2. 8), and then take into account Eq. (5.1) 
and the relation 

IJl,rsljl,rs - ljl,ss2 = 0, (5.4) 

which follows from it, we obtain the equation 

+ T]Co sin 'fr( 1 + e0 cos-&) '/,2-'/, ( 1 + e0)-1]}. (4. 7) <D,iM + ljl,s<D,sih + 2<p,ss<D,ih = 0. (5,5) 

Integration from 0 to 271" yields the sidereal period 
of the planet 

Differentiating with respect to xj and then inter­
changing j and k, we obtain with account of ( 5. 3) 

P = Po{1 + 3/2roq-1( -1- eo+ 2(1- eo)-1 

- (1- eo)'"(1 + eo)-''•]}, 

A,R.bij- A,ilih + 2(<p,ssj<D,ik- ljl,ssh<D,;j) = 0. (5,6) 

( 4. 8) Summation over i and j yields 

where 

Po= 2na0'h(GM)-'I•, 

P0 is the period of the planet moving for the given 
initial conditions according to the laws of New­
tonian mechanics, P is the corresponding relati­
vistic period of motion of the planet with the same 

A,h + ljl,ssr<D,rh = 0. (5.7) 

Now one must differentiate two cases: Cf,ssi -:f. 0 
and Cf,ssi=O. 

1. cp ssi -:f. 0. In this case we have also A i -:f. 0 
if we d~ not consider the case of a homogen~ous 
gravitational field which we have already consid-
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ered above. Actually, if A i = 0, then it follows 
' 

x,,.A,; - x,;A,,. = 0. (5.17) 
from (5.6) that 

By virtue of this the equality ( 5.15) takes on the 
<D,ih = k;C{!,ssh, (5.8) form 

and hence ki'P,ssk = kk'P,ssi = 0, from which it 
follows that ki = kcp,ssi. so that we have the rela­
tion ci> ik = kcp ssi'P ssk• or on the basis of (5.1) 

' ' ' k'P,ssp'P,rrp = 0. Since, according to the assump-
tion cp ,ssi * 0, k = 0, and consequently according 
to (5.8) <I>,ik = 0, i.e., the gravitational field is 
homogeneous. 

Multiplying ( 5. 6) by cp ,ssi and summing over i, 
we find with account of (5. 7) that 

A,hC{!,ssj ·- A,;C{!,ssk = 0, 

whence it follows that 

C{!,ssi = f..A,i. (5.9) 

If we substitute in (5..6) instead of 'P,ssi expres­
sion (5.9), we obtain an equation from which it 
follows that 

6;,. - 2/..<D,;~< = xA,;A,,., 

xA .• A .• = 3. 

(5.10) 

(5.11) 

In order to determine the coefficient A. , we set up 
a determinant, taking into account (5.10): 

8A.3 det (<D,ik) = det (b;h-xA,;A,,.). 

By virtue of (5.2) we have det (<I> ik) = A2• Conse-
' 

A,~<(b;; + 3/2xAA,;;) - A,i(tS;~< + 3/2xAA,;,.) = 0, 

and from this it follows that 

where J.l is some scalar. 

(5.18) 

The condition for the integrability of (5.18) is 

(J.t + 3/2x) (A,,b;; - A,;6;,.) + 3/2A (x,kb;; - x,;6;A) 

(5.19) 

Multiplying by A,i and summing over i, we find 
with account of (5.17) and ( 5.11) that 

[.L,;A,h- J.t.~<A,; = 0, 

as a result of which (5.19) is brought to the form 

(5.20) 

On the other hand, multiplying (5.18) by A,i, 
summing over i and taking into account (5.16) and 
( 5.11), we obtain 

{J.t- 1/ax)A,h + 3/;AX,k = 0. (5. 21) 

Comparison of (5.20) and (5.21) shows that 

(5.22) 

quently, bearing in mind ( 5.11), we obtain the equa- and 
tion 4A3A2 + 1 = 0, from which it follows that 

'A= - (2A)-'''· (5.12) 

We multiply now (5.10) and (5. 7) by 'P,kj, sum 
over k, and then eliminate from the obtained two 
equations A,s'P,sj. As a consequence of (5.3), 
( 5. 9), and (5.12), we obtain the relation 

Cf!,;; = -2-''•A'I•(2b;;- xA,;A,;), (5.13) 

from which it follows that 

C{J,ss = -3 · 2-'laA 'Ia. (5.14) 

In order to obtain an equation for the determin­
ation of A, we eliminate cp from (5.13) by differ­
entiation and interchange: 

A,,.b;;- A,;tS;,. = 3/~[x(A,;~<A,;- A,;;A,11 ) 

+ A,;(x,11A,;- x,;A,,.) ]. (5.15) 

Multiplying by A,i and summing over i with al­
lowance for the fact that on the basis of ( 5.11) we 
have 

(5.16) 

we see that 

x,;x-1 = -22A,;(9A)-1 

or 

X= k(t)_4--"lo, (5.23) 

With the aid of the obtained values of K and J.l Eq. 
( 5.18) can be expressed in the form 

21 / 8k(A-'f,),ik = 6;k, 

whence it follows with the additional condition 
(5.11) that 

27 f4kA -•f, = r2, r2 = (x' - a•) (x• - a•), 

ai = ai(t). (5.24) 
Knowing A, we obtain from (5.13) an equation for 
cp: 
Cf!,ill = -TJ (2GM) ''•r'" 

X[6;11- 3/2(x'- ai) (x"- a~<),.-2]. 

where we have used the notation 

GM = 2-'"(27/,.k)'1•, TJ = ±1, 

G is the gravitational constant. 
The general solution of Eq. (5.25) is of the 

form 

(5. 25) 

Cf! = -2rJ(2GMr)'l• + b.(t)x• + b(t). (5.26) 
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But this expression satisfies the system (2. 7) and 
( 2. 8) if and only if 

.M = o, b; = ai. 
Consequently, the general solution of the system 
(2. 7) and (2. 8) is 

cp = -21] (2GMr) 'i• + ti•x• + b (t), (5.27) 

where M is a constant, and b(t) and ai(t) are ar­
bitrary functions of t. 

The field (5.27) has the Newtonian potential 

(5.28) 

and the metric form which describes this field is 

ds2 = (c2- 2GMr1 + 2TJ (2GM) 'l•r'hti• (x•- a•) - a•ti•]dt2 

-2(TJ (2GM) 'l•r-'h(x•- a•) - a•]dx•dt- dx•dx•. (5.29) 

From the expression (5.28) for the Newtonian po­
tential it is seen that the scalar cp describes the 
gravitational field of a point mass M together with 
the external variable homogeneous field in which 
the mass M falls freely. If a i = const, i.e., the 
homogeneous field is constant, then it can be con­
sidered as the gravitational field of an infinite 
point mass located at infinity. With such an inter­
pretation of the solution (5.27) it represents a lim­
iting case of the solution of the two-body problem. 
However, the form (5.29) can be derived from the 
form ( 3. 3) by the transformation xi - xi - a i. 
Therefore the field (5.27) can also be interpreted 
as the Schwarzschild field of one point mass con­
sidered from an accelerated reference system. 
We note that the possibility of transforming the 
form (5.29) into the form (3.3) indicates that the 
Schwarzschild solution is consistent with a distri­
bution of infinite masses at infinity. 

2. cp,ssi = 0. If cp,ss = 0 then by virtue of (5.4) 
cp ,ik = 0 too, since cp and consequent_ly also <fl are 
linear functions of the coordinates x1, and cp de­
scribes thus a homogeneous gravitational field. 
Setting this already considered case aside, one 
can assume that cp ,ss =F 0. Then one obtains from 
(2. 7) and (5.4) 

cp, •• = t-1. (5.30) 

Differentiation of ( 5. 4) yields 

cp,,scp,rsi = 0. 

Differentiating again with respect to xi and 
summing over i, we obtain the equality 

To this we add Eq. (2.8) which can be written in 
the form 

(tcp),ikO = 0. (5.32) 

From Eqs. (5.31) and (5.32) it follows that 

cp = 1f2t-tarsxrx• + bs(t)x• + b(t), (5.33) 

where bi(t) and b(t) are arbitrary functions and 
aik are constants which satisfy as a result of re­
lations (5.30) and (5.4) the following conditions: 

(5. 34) 

The function (5. 33) is the general solution of the 
system (2. 7) and (2.8) with the condition cp ,ssi = 0. 

The Newtonian potential of the field (5.33) is of 
the form 
$ = 1{2t-2A,.3xrx• + (6 .• + t-1apsbp)x• 

+ 6 + 1/2bsbs, (5. 35) 

where Aik is the cofactor of the element aik in 
the det (auJ. The metric form describing the field 
( 5. 33) is: 

ds2 = ( c2 - t-2aprUp8xrx• - 2t-1apsbpX8 - bsbs) dt2 

+ 2 (t-1ap8xP + b8 } dx•dt- dx•dx•. (5.36) 

One possible choice of the constants aik is: 

with 

(5.37) 

Koppel showed that in this case and for bi = b 
= 0 the transformation 

reduces the metric form (5.36) to the form 

ds2 = c2dt2 - t2P•dy12 - t2P•dy22- t2P•dy32. (5. 38) 

This is Kasner's[ 151 solution which is of such im­
portance in the cosmological investigations of E. 
Lifshitz and Khalatnikov. [ 161 The nature of the 
singularity of the solution ( 5. 38) for t = 0 is seen 
from the expression for the Newtonian potential of 
the field (5.38): 

$ = 1M-2 [P2Pa(x1) 2 + PsPt(X2)2 + PtPz(x3) 2]. (5.39) 

The general case (5.35) does not differ consid­
erably from the special case (5.39). In the identity 

a= det (a;k) 

we have by virtue of (5.34) Ass= 0 and ass= 1, 
so that there remains the equality 

2a = -ArsArs· whence it follows that cp ,ikj = O, or 

(tcp),ikj = 0. (5. 31) If follows hence that a :5' 0. If a = 0, then Aik = 0 
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too, and the field (5.35) is homogeneous. One can 
therefore assume that a< 0. 

The real symmetric matrix (aik) has three 
mutually orthogonal unit eigenvectors y i = {y f} 
which belong to the roots Pi of the characteristic 
equation 

det ( a;k - p{);k) = 0 

or 

p3 _ pz _a= 0.. 

It is seen from the latter equation that the num­
bers p· satisfy condition (5.37). In the coordinate 

l . 
system yi related to the coordinate system x1 by 
the orthogonal transformation 

the scalar cp is of the form 

cp = 1/zt-1 [PI (y1 )2 + Pz (y2)2 + P3 (y3)2] + b, 

and the potential <I> is expressed by the formula 

<D = 1M-2 [pzp3(Y1) 2 + p3pi(y~) 2 + P1Pz(Y3) 2] +b. (5.40) 

6. A. z. PETROV'S CLASSIFICATION 

In order to carry out a Petrov classification of 
gravitational fields one can use the theory of quad­
ratic forms in complex three-dimensional plane 
space R3. [ 17 ] We propose the following practical 
method based on the isomorphism of the Lorentz 
group and the group of orthogonal transformations 
in the complex space R3• 

Let ell ={ell} be mutually orthogonal unit vec­
tors, such that we have 

Y]ik = -{jik· ( 6.1) 

Transition to another orthogonal frame of refer­
ence fll is accomplished by means of the Lorentz 
transformation 

(6.2) 

Bki = bo0 bkj - bk0boi - ie.irsborbk8 

= 1/zekpqBjrsbprbq 8 + iekrsbr0bsi, 

det (B/) = 1. 

Here we have used the notation 

(6.5) 

(6.6) 

where Eijk is antisymmetric with respect to each 
pair of indices and E 123 = 1. 

Let R<llVKA.> be the components of the curvature 
tensor in the frame of reference ell. We shall use 
the notation 

R(OiOil) = M;h, 

R(ijOk) = BijsKsk, 

R(oijk) = N;sejks, 

R(ijhk) = BijrBhksLrs· 

By virtue of the symmetry properties and in the 
case when the curvature tensor satisfies Ein­
stein's equations Rllv = 0 or YlpuR<pllvu> = 0 the 
following relations hold 

M;~t + L"; = 0, Mss = Nss = 0. 

By virtue of these relations we have the equality 

R(paJJ.v)ePeaeile" = -Re(T), 

T = TrsE"E8 , Tik = Mik + iNik· (6.7) 

According to ( 6. 7) the problem of bringing the cur­
vature tensor into canonical form with the aid of 
the Lorentz transformation reduces to the problem 
of bringing the complex quadratic form T to ca­
nonical form with the aid of an orthogonal trans­
formation. The matrix 

( MN)='M N) 
K L, ( N -M 

(6.8) 

f P ' . l f [17] then takes on one o etrov s canomca orms. 
In order to bring the form T to canonical form 

with the aid of an orthogonal transformation, one 
must solve the characteristic equation 

det (T;11.- Mil,) = 0 

YJrabJJ.rbva = Y]pabp 11 ha" = YJJJ.v, det (b'"") = 1, and determine the eigenvectors Bk = { B~J from 

boo> 0. (6.3) the system 

Then the complex quadratic forms 

are transformed into the forms 

Fi = e.irstr/8 + i (f0fi -fifO) 

with the aid of the complex orthogonal transforma­
tion 

(6.4) 

(Ts; ·~ i./5sj)lJ' = 0. 

By virtue of the relation Tss = 0 the roots of the 
characteristic equation satisfy the condition 

(6.9) 

Case I. There exist three mutually orthogonal 
unit eigenvectors Bk- The form T is transformed 
with the aid of the orthogonal transformation 

(6.10) 
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into the canonical form 

(6.11) 

Hence we determine the canonical values of the 
elements of the matrices M and N. The Lorentz 
transformation corresponding to the transforma­
tion (6.10) can be found by solving the equations 
(6.5) and (6.3) for b~: 

bok = 1/z'A-'I'ekpqflsP'Asq, bk0 = 1/z'A -'hehpqAp8 flq 8 , (6.12) 

where A = det (;>,f), A f is the cofactor of the ele­
ment ;>,k in det (;>,k) and 

Bki = 'Aki + i!J-ki· 

Case II. One of the roots Ai, for instance 
!,2 ( = r,3) is a multiple root and there exist two 
eigenvectors B1 and B2 which satisfy the condi­
tions 

The third vector 133 can be determined from the 
system 

(Tsj- 'Az0sj)Bs8 = -2ilJzi, 

After appropriate normalization it satisfies the 
conditions 

Now the quantities 

B1k = B/<, Bz" = - (il1s" + lJzk),, 

are elements of an orthogonal matrix and the 
transformation (6.10) brings the form T into the 
canonical form 

T = 'A1F1FI + ('A2 + 1)PF2 

(6.13) 

Case III. ;>,1 = ;>,2 = ;,3 = 0 and there exists only 
one eigenvector 133 which satisfies the condition 

The vectors B1 and B2 will be determined from 
the system 

normalizing them in such a way that 

The quantities 

Bl' = -(l11" + iBs"), Bz" = Bz", Ba" = Bs" + il11" 

are elements of an orthogonal matrix and the 

transformation (6.10) brings the form T into the 
canonical form 

T = F1F2 + F2F1 - i (PF3 + FSP). (6.14) 

In the case of the metric (2.6) there exists in 
each world point an orthonormalized frame of ref­
erence 

e0 = {c, 0, 0, 0}, 

with respect to which the curvature tensor has the 
components 

R(Oijk) = 0. 

Consequently, according to (5.1), 

Ni.~ = 0, 

so that 

(6.15) 

Since the gravitational field t:p can be consid­
ered as a Newtonian field, it can be seen from 
(6.15) that from the point of view of the Newtonian 
theory of gravitation the Petrov classification of 
gravitational fields is on par with the classifica­
tion of gravitational fields according to the canon­
ical forms of the matrix ( <P ik ). This result can 
be considered to be general: since the curvature 
tensor corresponds in Newtonian theory to the 
orthogonal tensor <P ik· [ 11 J However, the real 

' symmetric matrix (<P,ik) has always three mu-
tually orthogonal unit eigenvectors, so that cases 
II and III actually drop out, and there is in New­
tonian theory no real classification of gravitational 
fields according to the canonical forms of the ma­
trix (<P,ik)· Petrov's classification of gravitational 
fields has a purely relativisti~ significance. It 
does not, however, follow from the above state­
ments that for c-oo the relativistic gravitational 
fields of the type of cases II and III cannot have a 
Newtonian limit. Example 2 in [ i1J proves the op­
posite. 

The gravitational fields (5.29) and (5.36) refer 
thus to case I. For example, taking into account 
for the metric (5.29) formulas (5.28), (5.14), and 
(5.24), we obtain the characteristic equation 

'A3- 3 ( GM) 2r-6c-"'A - 2 ( GM) 3r 9c-6 = 0, 

whence we find 

There exist three eigenvectors: 

Bai = rp-1[ois- (xi- a') (x3- as),.--z], 

p2 = (x1 _ a1)2 + (x2 _ a2)2, 
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and the form T has the canonical form: 

T = GMr3c-2 (2F1Ft - F2F2 - papa). 

Since the Bk are real, i.e., J.l ~= 0, and conse­
i i 

quently Ak = Bk and A.= 1, it follows from (6.12) 
that 

bo0 = 1, bo" = b~t0 = 0, b~ti = Bhi· 

The curvature tensor is brought into canonical 
form with the aid of the real three-dimensional 
orthogonal transformation 
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