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A general method is proposed for treating multiple scattering of electromagnetic waves in 
matter, which is based on a solution of MaA.'well 's equations and in which the radiant energy 
transfer equation is not used. The motion of a wave packet in a medium with inhomogeneities 
consisting of black spheres of radius a >> 71. is considered as an illustration of the application 
of the method. The intensity distribution at a depth z is derived as a function of the coordinates 
or the direction of propagation. 

MuLTIPLE scattering of electromagnetic waves 
is usually considered with the aid of the classical 
radiant energy transfer equation. However, the 
solution of the kinetic equation is usually con­
nected with serious mathematical difficulties, and 
various approximate methods are chosen in each 
considered region. Below we propose a more gen­
eral, simpler method of solving the problem of 
propagation of electromagnetic waves in an inhomo­
geneous medium. The proposed method does not 
employ the kinetic equation, is based on a solution 
of Maxwell's equations, and assumes that the solu­
tion of the scattering problem by a single inhomo­
geneity and the average density of inhomogeneities 
in the medium is known. 

The possibility of applying the proposed method 
is connected with the fact that in the cases consid­
ered the process of propagation of the electromag­
netic wave in the medium constitutes a sequence 
of independent scattering acts by individual inho­
mogeneities. Two results follow directly from this 
physical assumption. First, the independence of 
the successive scattering acts indicates that one 
need not consider instances when the wave inter­
acts simultaneously with two inhomogeneities. 
Secondly, the independence of the scattering acts 
indicates that in describing single-center scatter­
ing it is sufficient to know only the asymptotic 
form of the solution, i.e., the scattering amplitude 
and not the exact form of the wave near the center. 
Use of these assumptions makes it possible to 
simplify the solution considerably. 

In the specific treatment we also made use of 
the additional assumption th3t the angular distri­
bution of the scattering by an individual inhomo­
geneity is strongly anisotropic-scattering occurs 

predominantly in the forward direction at small 
angles to the initial direction of the wave. 

1. THE ELECTROMAGNETIC FIELD IN AN 
INHOMOGENEOUS MEDIUM 

As is well known, the electromagnetic field in 
an inhomogeneous medium with a dielectric per­
mittivity E(r, w) satisfies the equation[ 11 

~E(r,col) +e(!)2E(r,(i)) = V(VE(r,(•l)). (1.1) 

We express the dielectric permittivity of an inho­
mogeneous medium in the form of a part E 0 which 
is independent of the coordinates, and an inhomo­
geneous part E 1 (r, w) due to the presence of ran­
domly distributed inhomogeneities: E(r, w) =E 11 (w) 
+ E1(r, w ). Then equation (1.1) takes on the form 

~E(r,(J)) +eow~E(r,(J)) = V(VE(r,(i))) -e1c,J2E(r,(,l). 

(1.2) 

Let us consider the case when the wavelength of 
the radiation is small compared with the charac­
teristic dimensions of the inhomogeneities a. It 
follows from Maxwell's equations that 

uiv E(r, (J)) =-(eo+ ei)-1(E(r, C•l) · Ve1(r, ffi)), 

so that divE~ a-1 E and the term V'('VE) in (1.2) 
is small compared with all the remaining terms, 
since w a » 1. Therefore in the case considered 
below where wa » 1 we can confine ourselves to 
a consideration of the equation 

We shall denote the spatial position of an indi­
vidual inhomogeneity by the radius vector of its 
center R a· The quantity E 1 (r, w) is due to the 
presence of inhomogeneities and depends there-
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fore on R a· The most general form of this de­
pendence is 

e(r,w)=w-2 ~a(r-Ra,w) 
a 

+w-2 ~ ~~(r-Ra,r-Rb,w)+ ... , (1.4) 
a b*a 

where the first term corresponds to the independ­
ent contribution of each inhomogeneity to the di­
electric permittivity, and the second term repre­
sents the difference in the action of two inhomo­
geneities from the action due to each of them sep­
arately. In the case of small wavelengths wa » 1 
the second term should be negligibly small. Allow­
ing for this, ( 1. 3) can be transformed to the form 

(a+ko2)E(r,w)=- ~a.(w,r-Ra)E(r,(l)) (k02 ==eow2). 

a 
(1. 3') 

Equation (1. 3') describes the scattering of the 
electromagnetic field by the inhomogeneities. We 
shall seek the solution of this equation in the form 

E(r, w) = Eo(w) exp [ikor + s(ko, r)]. (1.5) 

The quantity s(k 0, r) describes the change of 
phase of the Fourier component of the field due to 
the scattering by the inhomogeneities and should 
also depend on their coordinates. In view of the 
fact that the wavelength of the radiation is small, 
it can be assumed that at each given instant the 
wave interacts with a single inhomogeneity center, 
i.e., the interaction with each inhomogeneity takes 
place independently. This means that the phase of 
the wave (1.5) is in first approximation simply a 
sum of the phases appearing in the interaction 
with each inhomogeneity center. The most general 
form of s(k 0, r) is 

s(k0, r) = ~ s1 (ko, r- Ra) 
a 

+ ~ ~ s2(ko, r- Ra, r- Rb) + ... (1.6) 
a b*a 

It follows from the above that s1 » s 2 and one can 
confine oneself to the first terms in ( 1. 6). Each 
summation in (1.6) leads to the appearance of one 
power of the density of inhomogeneity centers no 
in the final result. The corresponding dimension­
less parameter n0w-3 « 1, and it is therefore pos­
sible to neglect the double summations. 

Retaining after substitution of (1.6) in (1.5) only 
terms with single summation, one readily obtains 

a 

+ ( V st(ko, r- Ra) )2 + a ( w, r- Ra)} = 0. (1. 7) 

This equation should be valid for arbitrary values 
of Ra and the summation may therefore be omit­
ted. But in this case the equation coincides with 
the problem of the scattering of an electromag­
netic field by one isolated inhomogeneity at the 
point Ra· If such a solution is assumed to be 
known, then s1(k 0, r- Ra) is a known function and 
the problem of determining the electromagnetic 
field in a system of randomly distributed inhomo­
geneous centers can be assumed solved. 

Thus the solution of (1.3) can be written in the 
approximation under consideration in the form 

E(r, t) = E0 exp [ ikor- iwt + ~ si(k0, r- Ra) ], (1.8) 
a 

where s1(ko, r- Ra) is determined from the solu­
tion of the problem of scattering by an isolated 
inhomogeneity. The solution (1.8) corresponds to 
a boundary condition with which the field had until 
its interaction with the inhomogeneities the form 
E(r, t) = E0 exp [ik 0 • r- iwt]. In order to obtain the 
solution of (1.3) with another boundary condition, 
one has to take the corresponding superposition of 
the solutions (1.8). 

2. DISTRIBUTION OF THE ENERGY OF THE 
ELECTROMAGNETIC FIELD 

Let us consider a substance placed in a layer 
between the planes z = 0 and z = L. Let a certain 
electromagnetic field E(r, t) be incident on the 
surface of the material z = 0. We shall be inter­
ested in the distribution of the energy flow of this 
field in the inhomogeneous substance. During the 
time of observation the energy which will pass 
through the plane z = z0 will be given by 

( 4n) - 1 ~ dt d2r_dE (r, t) H* (r, t) lrr = '(2n2) ~ dw d2k.L dku dkrr' 

X exp [i (krr- kr()zo] [E(k.L + krr, w)H* (k.L + kr(, w)]11 , 

(2.1)* 
where 

E(r,t)= ~ dwd3kE(k,w)exp(ikr-iwt). 

It follows from (2.1) that the energy passing 
through the plane z = z0 in the frequency interval 
dw and in the interval of transverse momenta d2k1 
is of the form 

where 

J (z0, k.L, w) = ~ d2r.L d2r J.' exp [ik.L (r.L- r.L')] 

X <[E (r, w) H* (r', w) l>rr (8:t2) - 1 + c. c. 

*[E (r, t) H* (r, t)] = E (r, t) x H* (r, t). 

(2.2) 
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In the case of a medium with randomly distributed 
inhomogeneities it is sensible to consider only 
quantities averaged over the positions of the in­
homogeneities, a fact denoted in (2.2) by the sym­
bol ( ... ) . 

Let us consider initially the simplest case, as­
suming that a plane wave is incident in the positive 
z direction on the surface of the medium z == 0. 
The solution of Maxwell's equations in an inhomo­
geneous medium for wa » 1 is of the form (1.8), 

so that 

E(r,w)=E0 exp[ik0r+ ~ si(k0,r-Ra) ]o(w-cuo), 
a 

H(r, w) = -iw-1[VE(r, w) ]. (2.3) 

Substitution of (2.3) in (2.2) leads to the circum­
stance that J(z, k1 , w) turns out to be proportional 
to the total time of observation T and contains 
6(w - w0), so that the energy passing per unit time 
through the plane z == z0 with a frequency w == w0 

and a value k1 in the interval k 1• k1 + dk 1• has 
the form 

w z k = de(z, k1.) 
( ' 1.)- dT d"k1. 

= (16n3w)-1 ~ d2rJ. clZr1.' exp[i(r- r')kJ.] 

([ Eo [ ( ko + i ~ V S1 (ko, r- Ra) ) , Eo]] 
a II 

Xexp,S {si(ko,r-Rb)+st(k0,r'-Rb)}) +c. c. 
I 

(2.4) 
b 

Averaging of (2.4) over the positions of the in­
homogeneities is readily carried out if the coordi­
nates of different inhomogeneities are assumed in­
dependent. In this case one can assume that 

N 

< exp ~ Qa) = <exp Qa)N 
a=! 

-{· 1< \IN - 1+ N 2: (expQa-1) /J 
a 

In the limit N - oo we obtain the equation 

< exp ,S Qa) = exp( ~·(exp Qa -1)). (2.5) 
a a 

It can also be readily shown that for N - oo 

N N l < S Rb exp ( ,S Qa)) = < ,S Rb exp Qb) 
b=i a=i b 

X exp < ,S (exp Qa- 1)). 
'a 

(2.5') 

Using the obtained equations, one can transform 
(2.4) to the form 

x( [Eo[k0E0]] +i(Eo)z(-+~ J { a a · 
\ . 81· iJr' 

(, ( a a \\'1. "\1 - iEo E0 -+c--) IJ~.' exp [s1 (ko, r- Ra) ' ' or or' / " 

or 

w (z, k1.) = ( 16n3w) - 1 ~ d2r1.d2r1.' exp [i (r- r') k_1_] 

X { [E0[k0E0]] exp F (r, r') + i [Eo [ ( !r + 8~,) 

X expF(r,r')Eo]]}. (2.6) 

The calculation of the energy flow reduces thus to 
a calculation of the expression 

F(r, r') = < :3. {oxp(s1 (k0 , r- Ra) 
a 

(2.7) 

To carry out the averaging one must separate in 
s 1(k 0, r- Ra) the dependence on Ra. 

Under the assumptions made above it is suffi­
cient to use the asymptotic form of s1(k 0, r- Ra) 
at large distances from the corresponding inhomo­
geneity, and the accurate form of s 1(k 0, r- Ra) for 
r - R a is not essential. The asymptotic form of 
s 1(k 0, r- Ra) can be found if it is takeninto ac­
count that the quantity 

Eo exp (ik0r) + E0 exp (ikor) (exp s1(ko, t'- Ra) - 1) 

is a solution of the problem of the scattering of an 
electromagnetic plane wave by one inhomogeneity 
at the point Ra, so that at large distances 

exp(ik0 r)[exp s1 (k0, r- Ra)- 1] 

= -f(ku---~kolexp[ikolr-Rall, 
r / lr-Ral 

(2.8) 

where f(q) is the scattering amplitude as a func­
tion of the transferred momentum. Using a known 
transformation, one can obtain from (2. 8) l ZJ 

exp si(ko, l'- Ra) -1 =,___!_ (' d3qf(q) (q2 - 2k0q-io)-1 
2n2 -' 

X exp[iq(r -Ra)]. (2.8') 

Averaging over the coordinates of the inhomogenei­
ties now reduces to averaging of expressions of the 
type 

< Sexp(iQRa)) = no(2:n:) 26<2l(ql.) ~ dRzexp(iQzRz), 
a 0 

(2.9) 
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where the average density of the medium is con­
stant and equal to 11o for 0 ::::: z ::::: L. Using this, 
one readily obtains 

, . i r d3qd3q' f ( q) !* ( q') 6<2) ( qJ. - qJ.') 
F(r r) = n0rr--2 J ' --------

' • ( q2- 2koq- i{)) ( q'2- 2koq' + i6) 

L 

X~ d£exp[i£(qll-qii')J+ ~0 ~dqll[f(qfl)(qfl2 
0 

L 

- 2koqll- i{)) ~ d£ exp [- iqu (6- z)] +c. c.J. (2.10) 
0 

We now integrate over q 11 and q'11 . Expressing 
F(r, r') in the form 

F(r,r') = ~ S cl2qJ.exp[iqJ.(rJ.- r.1.')] :rt2 (2.11) 

+ 2 r dt rd { f(qll)exp[iqfl(z-6)] + } 
no J .., .l qll 2 + 2 k .... c. c. ' o _: 00 qll qll o - ~u 

we can readily carry out the integration: 

F(r,r')=::n0 ~ d2qJ.exp[iqJ.(rJ. -rJ.')l{z lf~:~~:fa~1}J: 

+no(2:rt)ko-1z[if(O)+c. c.]}, (2.12) 

where 

q1 = qJ.2 / 2ko. 

When z > L, F(r, r') coincides with its value at 
z = L. 

3. PROPAGATION OF A PLANE WAVE IN A 
MEDIUM CONTAINING BLACK SPHERES 

Let us illustrate the application of the theory 
developed above by an example in which the inho­
mogeneities are absolutely black spheres of radius 
a, large compared with the wavelength of the field, 
and wa » 1. In this limiting case the scattering 
amplitude by one sphere is[ 31 

(3.1) 

where J 1(x) is the Bessel function, and ql is the 
momentum transferred in the transverse direction. 
The assumptions used in the derivation of (2.12) 
are valid, so that it follows from (2.12) and (3.1) 
that 

F(rJ., rJ.') =noz S d2qJ.k-21f(qJ.) 12exp [- iqJ. (rJ. -rJ.')] 

4:rt 
- n0zk lm/(0). 

The last term is transformed with the aid of the 

optical theorem to the form -noz(as + aa) and 
taking into account that the elastic scattering 
cross section as is of the form 

a.= :rtaz = a2 S qJ. -2d2qJ.Ji2( aqJ.)' 

the quantity F(r, r') will be written in the form 
(aa -inelastic scattering cross section) 

F (r, r') = - noZaa + n0za2 ~ d2qJ.qJ. - 2N·(aqJ.) 

X [exp iqJ. (rJ.- r.1.')- 1]. (3.2) 

We recall that here and below we must replace z 
by L for z?: L. 

Let us now find the distribution of electromag­
netic waves over the directions, assuming the de­
viations from the initial direction to be small. In 
this case the total angle of deflection is accumu­
lated from small deflections on each scatterer and 
the momentum q transferred to one scatterer is 
considerably less than the total momentum trans­
ferred. This allows one to consider the quantity 
ql (r 1- rj_) in F(r, r') small, so that 

2 00 

F(r,r') =- n0zaa- nQZa (2:rt) (rJ.- r.1.') 2 ~ l(qJ.a)qJ.dqJ. 
4 0 

(3.3) 

(the linear term of the expansion of the exponent is 
cancelled in the integration over the angles). Be­
fore we substitute (3. 3) in (2. 6), we note that the 
ratio of the terms k 0 exp F(r, r') and (a /8r + a jar') 
x exp F(r, r') in (2.6) is of the order of k 0q-1 » 1, 
and the terms with the derivatives can be omitted. 
In this case 

w(z,kJ.) = (16n3ro)-1 S d2r.1.d2r.1.' exp {ikJ.(rJ.- r.1.')} 

X [E0[k0E0]] exp {- noaaz- noza2 ; (r- r') 2 

"" X.\ l 1(qJ.a)qJ.dqJ. }. 
0 

Hence, one can obtain by integration 

w(z, kJ.) = w0 exp (- noaaz) exp [- 4ko2<~~2noZa2 ] 
(2n)-3 

X (3.4) 2k02a2<. 802) n0z ' 

where ( e ~> is the average angle of diffraction by 
one sphere: 

(8o2) "" ( k2a2) -1. 

The average width of the beam is, as one should 
have expected, determined by the relation 

(3.5) 
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4. PROPAGATION OF A WAVE PACKET IN AN 
INHOMOGE:SEOUS MEDIUM 

To describe the passage of a light pulse in an 
inhomogeneous medium, one must solve the prob­
lem of the propagation of a wave packet in such a 
medium. In the case considered wa » 1 the polar­
ization of the wave practically does not change and 
one can assume that E(r, w) ~ E0 ~;(r, w), where 1/! 
is a scalar function satisfying the equation 

(~+k02)\jl(r,w)=- ~a(w,r-Ra)\jl(r,w), (4.1) 
a 

the intensity distribution of the field over the coor­
dinates being given by E5 hv(r, w) 12• We introduce 
also the quantity lf;(r, t) by means of the relation 
E(r, t) = E0(r, t) and the quantity 

J(r, p, t) = (2:n;)-3E02 ~ d3r' exp(-ipr') < \jl( r +~, t) 

X\jl*(r--~,t)), (4.2) 

which we shall call the intensity distribution func­
tion. We note that Eq. (4.1) coincides with the 
Schrodinger equation for a particle in a potential 
field 

U(r)=- 2~ ~a(w, r-Ra). 
a 

The quantity (4.2) coincides within a factor E~ with 
the quantum mechanical distribution function in the 
mixed representation. [ 4, SJ 

The wave properties of the electromagnetic 
field lead to the circumstance that the quantity 
J(r, p, t) is not a directly observable quantity. In 
fact, the precise measurement of the field intensity 
at a given point with a given wave vector p is im­
possible. However, with the aid of (4.2) one can 
calculate the intensity distribution, for example, 
along the longitudinal coordinate and transverse 
wave vector: 

In analogy with the inequality which the quantum 
mechanical distribution must obey, the quantity 
J(r, p, t) should satisfy the inequality 

E0-2 ~ d3rd3pJ (r, p, t) J (r, p, t) ~ 1. ( 4. 3) 

The experimentally determined intensity is there­
sult of averaging of J(r, p, t) over the sensitivity 
intervals of the measuring device, i.e., over a 
large (~r. ~p » 1) phase volume of the detector. 

Let us now consider the propagation of a wave 
packet in a medium, the inhomogeneities of which 
are black spheres. Let the initial state of the wave 

packet before entering the medium have a certain 
frequency spread described by a function 7Jt(w-wo). 
and a certain spread of the transverse component 
of the wave vector characterized by the function 
7Jz(k_i). This corresponds to a signal limited in 
time also in the transverse direction. The solu­
tion of Eq. (4.1) in the medium will be described 
by a superposition of plane waves. 

\jl(r, t) = ~ dwr}1(w-w0) J d2k.LTJ 2 (k.L)exp [ikr-iwt 

+ ~ St(k,r-Ra)]. (4.4) 
a 

Substituting this expression in (3.2) and averaging 
over the distribution of the atoms with the aid of 
(2. 5), one can obtain the intensity distribution func­
tion for the problem under consideration in the 
form 

J (R, p, t) = E 02(2:rt) -3 ~ d3rdw dw' d2k.Ld2k.L' exp (- irp) 

X T]1 ( w - wo) T]1• ( w' - wo) T]2 (k.L) T]2 * (k.L') 

Xexp[Lt+L2+L3]. (4.5) 

The transformation of the expressions for Lto 
L2, and L3, is carried out in the same way as in 
the preceding section and yields (ut = ua + us) 

L1 = - 1/2noat(k)z+, z+ =min (L, R,+ 1i2r,); 

L2 = - 1/2noat (k') L, L = min (L, Rz- 1/2rz); 

La= no(kk') ~~ ~ d2q.L exp (iq.Lr.L)f(q.L, k) j* ( q.L, k') 

X ~· d~ exp [ iqll ( R. + ~ - £ ) - iqu' ( R, - r; - ~) J , 
0 

z =min (z+, L). (4.6) 

Substitution of ( 3.1) for the scattering amplitude 
leads to the formulas 

L1 = - no:rta2z+, L2 = - no:rta2z_, 

La= noa2 ~ q.L-2d2q.LN(aq.L)exp(iq.Lr.L) 

X ~ d~ exp [ iq11( R, + r; -£) - iqu'( R,- r,2 - ~) J . 
0 

(4.7) 

Formulas ( 4. 5) -( 4. 7) provide a general expression 
for the intensity distribution function (4.2). 

The intensity distribution function J(r, p, t) al­
lows one to investigate the effect of multiple scat­
tering of light in an inhomogeneous medium on the 
motion of a wave packet in space. For this purpose 
we will consider an expression J 0(r, t) defined by 
the relation 
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! 0 (r, t) = ~ !(r, q, t)d3q. (4.8) initial spread of the transverse wave vector is 

Utilizing expressions (4. 5) -(4. 7) and integrating 
over q, we find that 

Jo(r, t) = Io ~ dw dw'd2kj_d2kj_'lJ 1 (w- w0)lJ1* (w'-w0) 

XlJ2 (kj_)lJ2*(kj_') exp[- i(w- w')t + i(k- k')r 

+ L1 + Lz + L3], (4.9) 

where 

L1 + Lz =- no(aa + Os)L, L =min (L, z), 

i: 

L3 = noa2 ~ qj_ - 2d2hl12 ( aqj_) ~ exp [i ( qll - ql() (z- ~)] d~, 
0 

f qj_2 f ( kj_ kj_') 
qll- qll = ----- (kll- kll )- h --~ . 

2ko2 k11 k11 

For not too large z (no us (e 5) z « 1) expression 
( 4. 9) can be simplified considerably: 

lo(r, t) = 10 ~ dw dw' d2kj_d2kj_'lj1 ( w- wo) lj1• ( w'- wo) 

X lJz(kj_)'fJz*(kj_')exp{- i(w- w')t 

+ i(ku- k1() (z + x)- n0aaL - a(kj_- kj_') 2 

+a (kj_2 - kj_'2) ( k11 -/q() / ko}, ( 4.10) 

where 
~ 

(8o2) f z 
a= n0a8 -- .1 (z- £) d~, 

4 0 
<soz> r 

x = noa8 - 2-J (z- £)d~. 
0 

In order to determine the characteristics of the 
motion of a wave packet in space, one must know 
the initial form of the intensity distribution. How­
ever, using the rather general assumptions that 
r71(w-w0) differs appreciably from zero only in a 
small frequency interval near w0 and that 1) 2(k 1) 
is a gaussian function with a half-width r 0, one 
can readily obtain from ( 4.10) the equation of mo­
tion of the center of gravity of the wave packet: 

- ( ~~) w=w, t + (z + x) 

+ ____ r j_2a(z + x) = O. 
8ro2ko2 [a+ ro2/2 + z2/8ro2ko2)2 

(4.11) 

It is apparent from ( 4.11) that the presence of 
optical inhomogeneities leads to a decrease in the 
group velocity of the packet. The quantity K deter­
mines the velocity decrease on the axis of the ray, 
whereas the slowing down of the packet for r 1 * 0 
is more intense and proportional to the last term 
in ( 4.11). 

5. SPATIAL DISTRIBUTION OF THE INTENSITY 
IN THE PROPAGATION OF THE SIGNAL 

Let us assume that the relative frequency 
spread in the wave packet is small and that the 

gaussian 

(5.1) 

where r 0 is the mean transverse dimension of the 
packet at the initial instant, i.e., before it enters 
into the substance. The spatial intensity distribu­
tion 

I (z, rj_) = ~ d3p! (p, r, t) dt 

relates the transverse spread of the packet with 
the distance z traversed in the substance. For the 
chosen initial wave-packet characteristics the 
spatial intensity distribution will take on the form 

X exp {- ( r ~ r [ a + r;z + 8k:2:0z r1 
} ' 

where 
z 

a= noa.(802) ~ (z- ~)2 d~; 
0 

(5.2) 

for z 2:: L the upper limit of integration must here 
and below be replaced by L, and (e~) is given by 
relation (3.5). 

From ( 5. 2) one can obtain the law of attenuation 
of the intensity on the axis of the ray: 

( 5.3) 

It follows from here directly that in the presence 
of inhomogeneities the attenuation of the intensity 
on the axis of the ray is proportional to z-3• 

Expressions (5.2) and (5.3) make it possible to 
carry out a comparison with the results of other 
authors obtained by solving the kinetic transfer 
equation. l 6- 8J It follows from (5.2) that the trans­
verse dimensions of t}> ' beam increase with in­
creasing z like 

[ 
z3 roz z2 Jlf, 

no<Js(8o2) 3 + 2 + 8ko2ro2 ' 

i.e., for large z like z312; this is the so-called 
"three-halves law." [ 6• 8 J The expression for the 
attenuation of the intensity on the axis of the beam 
(5.3) coincides with the results of the mentioned 
papers [ 6- 8J if we ignore the term quadratic in z. 
The absence of this term in the indicated papers is 
due to an incorrect choice of the initial conditions 
which violates inequality (4.3), i.e., it is due to an 
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incomplete account of the wave properties of the 
ray. 

For very large z (5.3) becomes inapplicable. 
In the region z » ar0k 0 one can obtain for the in­
tensity of the beam the following expression 

I (z, 0) = 10 \ d2kJ...d2kJ...'ro4:rt-2 exp{ -- kJ...2 (.ro2 + i --~ l 
· ' 2ko 1 

- kJ...'2 (ro2 - i _!_ J} exp{- no<JtZ + nocrsro[ ~~2\J'i, )_J, 
2~ (~, 

or, integrating over k1 and kj_, 

I (z, 0) = Io [1 + (z/2koro2 ) 2]-1 exp {- noOaZ 

- noOs [z- yii:ro (802 )-1]}. (5.4) 

Thus for z » ar0k 0 the attenuation of the intensity 
on the axis of the beam becomes exponential due to 
the diffusion of the electromagnetic radiation. [ 71 

The pre-exponential coefficient gives an additional 
z - 2 dependence connected with the presence of a 
beam width r 0 at the initial instant. The above ex­
pressions are confined to a region of z satisfying 
the inequalities 

z < ko2 /no, 

in which the initial electromagnetic field equations 
were obtained. It should be noted that to obtain the 
above results by solving the kinetic equation of ra­
diation transfer one must seek special ways of ap­
proximately solving the kinetic equation in each 
considered region. The use of the method proposed 
above makes it possible not merely to obtain the 
results but also to refine them. The proposed 
method admits readily the application of numerical 
methods of solution in those regions where it is 
difficult to obtain an analytical solution. To carry 
out the same in the method employing the kinetic 
equation seems much more difficult. 

6. ANGULAR DISTRIBUTION OF THE 
RADIATION ON THE AXIS OF THE RAY 

With the aid of the intensity distribution func­
tion J(r, p) one can obtain the experimentally ob­
servable intensity on the beam axis at various an­
gles, the so-called function of the "brightness 
solid:'' 

cc. 

F(z, 0, PJ...)= ~ dp11 ~d2rJ...!(z, rJ...; PJ..., Pu), (6.1) 
8 

Substituting (4.5) in (6.1) and (6.2), one readily ob­
tains general formulas for the "brightness solid": 

F ( z, 0, p J...) = const ~ d2x J... [ 4ro2 ( 4AB - C2)]-1 exp (- nocraz) 
8 

Xexp{-xJ...z B -pJ...z A 
. 4AB - cz 4AB - cz 

(6.3) 

where 

roz z2 (8o2) A=-+---+ no<J8 --z3 
2 8ko2ro2 12 ' 
1 (8o2) 

B = Sro2 + nocrs - 4- ko2z, 

z (8o2) 
C = ---· + nocrs -- koz2 

4koro2 4 ' 

and for a mean-square angle of spread of the ray 

(6.4) 

where Ro is the radius of the detector. 
It is interesting to analyze for the wave packet 

considered in the previous section the limiting 
cases of a ''wide'' (R0 - oo) and ''narrow'' aper­
ture (small Ro). In the first case it follows from 
(6.3) that 

F ( z, 0, p J...) = const ( n0a.k02 (Oo2> z + _i_ r1 

Ro-+oo 4 Sro~ ' 

( 6.5) 

where for z ~ L one must substitute L for z. In 
this case we find from relation (6.4) 

\82)Ro-+ oo = nocrs(8o2)z + (2ro2k02)-1• (6.6) 

Formulas (6.5) and (6.6) coincide with those ob­
tained in [ 6• 81 by solving the transport equation if 
we discard the last terms containing r 0• As was 
pointed out above, this is due to the incorrect ac­
count in [ 6• 81 of the initial conditions. 

For the case of a narrow aperture (small Ro) 
one readily obtains 

F(z, 0, PJ...) = const·exp(-nocruz) [4r02 (4AB- C2)]-1 

X exp [ -pj_2A / (4AB- cz)·] (6. 7) 

where integration over r .L is carried out over the and 
aperture of the detector S. The mean square of the 
angle of divergence of the radiation is then of the 
form 

(6.2) 

(82)= ko-z [. 4AB- cz + _!!-_Roz] 
A 8A 2 . 

(6.8) 

Comparison of (6.6) and (6.8) shows that depend­
ing on the properties of the aperture, the mean 
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square of the angle changes by a factor of four (for 
sufficiently large z), the dependence on zn0us(e~) 
being entirely analogous. If we plot the z depend­
ence of (e 2), then depending on the area of the 
aperture the (e 2) == <l>s(z) curves will fall between 
the straight line (6.6) and the curve (6.8). 

7. LIMITS OF APPLICABILITY OF THE 
RESULTS 

The region of applicability of the obtained re­
sults is bounded, first, by the condition of applica­
bility of the initial equations (1.3) and (1.3'), i.e., 
by the inequality wa » 1. This inequality gives 
rise to the anisotropy of the scattering by an indi­
vidual inhomogeneity. 

Secondly, the region of applicability of the re­
sults is bounded by the applicability condition of 
Eq. (1. 7), i.e., by the condition that the wave is 
scattered independently by each inhomogeneity. 
For this it is necessary that the scattering ampli­
tude of the wave at zero angle be small compared 
with the distance between the inhomogeneities. 

Finally, in obtaining the distribution function 
( 4. 5) -( 4.10) use was made of the assumption that 
the mean-square of the scattering angle in the con­
sidered layer of the substance is small compared 
with unity. This limits the lengths considered by 
the condition 

z< [nocrs<8o2)]-1, 

from which it follows in particular that in the scat­
tering by an individual inhomogeneity the incident 
wave differs little from a plane wave. The same 
conditions are usually introduced in solving the 
transfer equation. For example, from the trans­
port equation 

81 ~~· z) =-ad(~. z) + ~ a(x)J(~- x. z)dQx (7 .1) 

one can obtain with the aid of the Fokker-Planck 
method a gaussian approximation for the distribu­
tion function in the substance. [BJ For this it is suf­
ficient to expand the integrand in the angle X up to 
second-order terms. The fact that this expansion 
is possible is connected with the anisotropy of the 
angular distribution of single-center scattering. 
The solution of the obtained diffusion-type equa-
tion 

8/(~.z)- 1 2) { ()2J(~.z) 1 ol(~ .• z)} 
az - 4 <x ' attz + ~ ott ' (7.2) 

where 

"" 
<x2 \ = 2n ~ X3 dxa (x), 

is of the form 

(7 .3) 

Comparing the derivation of (7.3) with the deriva­
tion of ( 4. 5), one can readily verify that identical 
assumptions are made, in particular that there is 
a complete analogy in the expansion in deriving 
(7.3) with the expansion in the derivation of (4.5). 

It is seen from the above considerations that 
the proposed method yields results [for example, 
(5.2), (5.3), (6.5), and (6.6)] which coincide with 
the results obtained from the kinetic equation. 
Moreover, the proposed method allows one to find 
the intensity distribution function which depends on 
three angles and three coordinates, a problem 
which is much more difficult with the kinetic equa­
tion. 

In conclusion the authors would like to take the 
opportunity to thank L. S. Dolin for an interesting 
discussion of the problems touched upon in this 
article. 
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