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The dependence of the radiation intensity of a gas laser on longitudinal and transverse mag
netic fields is considered on the basis of a simplified model. In the proposed model the area 
of the dips of the amplification curve is proportional to the intensity. It is shown that the radi
ation intensity has a minimum for zero magnetic field, and also when the Zeeman splitting of 
the levels is equal to the resonator detuning. In addition, an intensity minimum may occur in 
a transverse magnetic field when the Zeeman splitting is equal to twice the resonator detuning. 
The intensity minima are interpreted as the result of merging of the dips in the amplification 
curve. When the dips merge, a nonmonotonic dependence of the generation frequency on the 
magnetic field may also occur. 

THE amplification of radiation intensity of a gas 
laser when a weak longitudinal magnetic field is 
included has been examined in a series of experi
ments. [ 1- 31 The present paper proposes a simpli
fied model which permits an intuitive interpreta
tion of this phenomenon by considering the dips in 
the amplification curve. Moreover, this model 
shows that the radiation intensity should have a 
second minimum when the Zeeman splitting Q co
incides with the resonator detuning o. When Q ~ o 
a nonmonotonic dependence of the shift of genera
tion frequency on the magnetic field may manifest 
itself, similar to that which occurs for a weak 
magnetic field. [ 11 The effect of a weak longitudi
nal magnetic field on the shift of generation fre
quency has been considered previously. [ 4- 51 

We shall suppose here that the magnetic field 
is not large enough for it to exert any substantial 
influence of the discharge properties. 

1. Let the upper and lower operating levels 
have total momenta h and j 0 respectively. We 
shall number the magnetic sublevels of the upper 
state by the symbols m and m', and the sublevels 
of the lower state by the symbols J.1 and 11'· We 
must then write three groups of equations for the 
density matrix elements of the system: 

dfmm• ---a;t=- (iQmm+'\'1)/mm' 

i _,.. -+ 

+h L[(i-fdm!<)f~m'-fm~J.(S'dllm')]+V!NIF (v) Omm·, 
11 

dfw . 
--=- (zQw+w)fw 

dt 
i -+ -+ 

+ h L [(~dllm)fmw- f~J.m(~dmw)l+voNJ<'(z•jt'i~w. 
m 

+ ~ [ ~ (id)lm.}/m,m- L f~J.JL 1 (id!l,m)]. (1) 
m, IJ.t 

Here s is the coordinate along the resonator axis, 
w0 is the transition frequency for zero magnetic 
field, 

a a a 
dt = Tt+ vas, Qmm• = (m- m')Q~, 

QllW = ( f.l - ~t') Qo, Q11m = f.lQo- mQh 

n1 and Q0 are the frequency intervals between the 
Zeeman sublevels of the upper and lower states, 
i is the electric field strength in the resonator, 
d is the atomic dipole moment operator, y 1 and 'Yo 
are the natural widths of the upper and lower 
states, and y 10 = (y 1 + y 0)/2. Pumping is assumed 
to be isotropic and homogeneous so that atoms are 
produced on the first and ground levels with a 
Maxwellian velocity distribution. F(v) is the Max
well distribution normalized to unity; N1 has the 
meaning of the population of an individual upper 
state sub-level which would be created by pumping 
if there were no electromagnetic wave field in the 
resonator; N0 is a similar quantity for the lower 
state. 
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The field C£ in the resonator has the form 

1J = [e(t) +e'(t)] sinks, e(t) =Eeiwt, 

k = Wn I C = :nn I L, (2) 

where wn is the natural resonator frequency for 
the mode under consideration, w is the frequency 
at which generation takes place, L is the resona
tor length. 

In order to find the radiation intensity and shift 
of generation frequency relative to wn, it is neces
sary to determine from (1) the quantity f11 m(s, v, t) 
and to calculate the dipole moment (per unit vol
ume) inducing the oscillations of the resonator 
mode under consideration: 

2 L oo 

P =- \ dssin ks \ dvD(s, v, t), L . • 
0 -00 

D(s, V, t) = :3 f~m(s, v, t)dmft· (3) 
m[l. 

The electric field strength in the resonator is then 
found from the equation[ 6l 

d2e Wn de d2P --+--+wn2e= -4:n--. (4) 
dt2 Q dt dt2 

2. To describe the basic effects which arise 
when a laser is placed in a magnetic field, it suf
fices to find the quantity P with an accuracy to 
terms of the third order in electric field strength 
E. In principle there is no difficulty in solving 
Eq. (1) to this degree of approximation [ 5l by fol
lowing Lamb's procedure. [ 6 J However the expres
sions obtained are exceedingly cumbersome, so 
there is reason to consider a simplified model 
which nevertheless validly reflects the basic char
acteristics of the phenomena under consideration 
and enables us to give them a simple physical in
terpretation. This model is based on two assump
tions: 1) the g-factors of the upper and lower lev
els are equal (Q1 = n0 = r2); this assumption is al
most exact when applied to the basic lines of the 
He-Ne laser; 2) the density matrices of the upper 
and lower states may be written in the form fmm' 
= Ommd1, f!l!l I= o!l!l'fo. This supposition may 
have some basis if depolarizing collisions with 
small change of velocity play a significant part. 
Generally speaking, however, the non-diagonal 
elements of fmm' and f1111 , are not small, although 
the contribution from them does not alter the gen
eral pattern of the phenomena under consideration. 

Under these suppositions one may replace the 
system of equations ( 1) with a simpler one: 

dfo i 
dt =-'Yolo- li(2j0 + 1) 

X~ ( -1) q& q [D_q- (D*)-q] +yoN oF, 
q 

(5) 

Here & q and Dq (q = 0~ ± 1) are the circular com
ponents of the vectors (£ and D defined by formu
las (2) and ( 3); the z axis is directed along the 
magnetic field; the quantity d2 is connected with 
the probability W10 of spontaneous transition from 
an upper to a lower level: 

TV1o = 4wo3a'2 I lic3 (2j1 + 1)·. 

Equation (5) can easily be solved with an accu
racy to terms of third order in the field E [ 6 J (the 
condition E2d2 « h 2y 1 'Yo is the criterion for the 
validity of this approximation). Calculation of the 
dipole moment from formula (3) leads to there
sult 

(6) 

where the nonlinear polarizability Xq is given by 
the expression 

X = _!!__ ~ ___ (/__1_-=_ fo) dv_~- (7) 
q li · 8 - qQ + kv - iyw' 

-00 

h-/o=(N!-No)F(v) [1- ~lqr,,(v) J. (8) 
q 

We have introduced here the following symbols: 
o = w- w0 , 

I q = ~~~:ol 2 
[ (2j~~~i)yl +, -(2]~ 1: 1) Yo J 

is the dimensionless radiation intensity with polar
ization q, and 

V102 
rq ( v) = ---------------

( 8- qQ + kv)2 + y 102 

I 'V102 
T ------- ----

(6- qQ- kv)2 + V1o2• 
(9) 

The integral in formula ( 7) can be calculated if 
we assume that y 10 « ku (u is the most probable 
atomic velocity). We then obtain 

Xq = aq- L bqqJq" 
q, 

( 10) 

( 11) 
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Formulas (10)-(12) give the final expression for 
the polarizability for the model we have chosen. 

3. Before using formulas (10)-(12) for further 
calculations we note an important consequence of 
the simplified model adopted here which allows us 
to obtain basic qualitative results without compu
tations. Following Bennet, [ 7J we introduce the 
auxiliary quantity Xq(wc) side by side with the 
nonlinear polarizability Xq· This quantity denotes 
the polarizability for a weak signal of frequency 
We propagating in a medium in which the velocity 
distribution of excited atoms is distorted by a 
strong field of frequency w. It is clear that 

xq(wc)=~f u~-to)dv . , (13) 
fL _00 We - Wo- qQ + kv - l)'10 

where f1 - f0 is determined by formula (8) just as 
in expression (7). Comparison of formulas (7) and 
( 13) shows that 

(14) 

x~>(wc) denotes the polarizability of the medium 
for a weak signal when the polarizability is not 
distorted by a strong field. This quantity is given 
by expression (13), in which (N1 - N0)F(v) must be 
inserted instead of f1 - f0. We set Xq = Xq + iX'q· 
Then with the help of relationships (7), (8), and 
(13), and neglecting terms of order I~, an expres
sion may be obtained for the quantity 

00 

s = 4n ~ [xq<0Y" (We)- Xq" (we)] dwe = 8Jt2V10 ~ xq'' I q. ( 15) 
q 

The quantity S has a simple meaning. The 
presence of a strong wave field leads to the forma
tion of dips in the amplification coefficient for a 
weak signal. [ 7J The widths of the dips are deter
mined by the quantity y 10 , and S is a quantity pro
portional to the total area of these dips. We note 
that this does not depend on q in the model which 
has been adopted, i.e., it is identical for all polar
izations. 

Figure la shows the dependence of the quantity 
47rXq (we), proportional to the amplification coef
ficient, on the frequency of a weak signal we in 
the absence of a magnetic field. There are two 
dips in this case: one at we = w ~ wn (wn is the 
natural resonator frequency), the other symmetri
cal to the first relative to the center of the curve 
w0• The generation condition 

4nxq" = 1 I Q (16) 

4-:n:;('(we) 
a 

1/a 

We 

4-:n:x_"(wc) b 

'Ia 
i W0 =Wn We 
L 

FIG. 1 

demands that the bottom of each dip should touch 
the horizontal line 47r Xq (we) = 1/Q. The quantity 
S represents the area of the shaded regions in 
Fig. la. It follows from formulas ( 15) and ( 16) 
that 

(17) 

Thus the radiation intensity is proportional to 
the total area of the dips in the amplification coef
ficient for a weak signal. This statement is always 
valid for a two-level system generally adopted in 
the analysis of a gas laser in the absence of a mag
netic field. Generally speaking it is incorrect 
when Zeeman splitting in a magnetic field is taken 
into account. However in the model adopted here it 
is valid in this case also, as will be shown below. 
This circumstance serves as the basis of further 
qualitative consideration. In particular, the well
known effect of the lessening of radiation intensity 
upon exact tuning of the resonator to the center of 
the curve[S, BJ follows from formula (17). This 
situation is represented in Fig. lb. On compari
son with Fig. la, it is clear that the area of the 
dips and consequently the radiation intensity also 
has decreased. 

4. We shall consider the influence of a longi
tudinal magnetic field on the radiation intensity of 
a gas laser with no defined direction of polariza
tion. The z axis in this case is directed along the 
laser axis and q = ± 1, which corresponds to left 
or right handed circular polarization of the radia
tion. If both polarizations are present in the radia
tion then the condition 

(18) 

must be fulfilled. 
It is clear from formulas (15) and (18) that in 

this case the total intensity and the area of the dips 
in the amplification coefficient for each polariza
tion are proportional to each other. Figure 2 shows 
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the amplification coefficient for left-hand (upper 
diagram) and right-hand (lower diagram) polariza
tion in the presence of a magnetic field. The max
ima of these curves are now separated by 2Q (we 
recall that Q is the separation between Zeeman 
sublevels which is considered to be the same for 
upper and lower states). 

Let us examine the plot of the quantity 
417" xr (We). There are four dips on this curve alto
gether. The singly shaded dips are associated 
with the distortion of the atom-velocity distribu
tion under the influence of the strong field E1 

("own" dips). The doubly shaded dips are associ
ated with the effect of the strong field E-1 ("for
eign" dips). The strong field E-1 which is left
hand circularly polarized diminishes the population 
difference for atoms whose velocity satisfies the 
condition w0 - Q ± kv = w. These atoms participate 
in the amplification of a weak signal which is 
right-hand circularly polarized with frequency We 

= w0 + Q + kv. Thus "foreign" dips arise in the 
417" xi'( we) curve for we = w0 + o + 2 Q and we 
= w0 - o, which are indicated by double shading in 
Fig. 2. The dips in the 47rx:1(wc) curve come about 
in a similar manner. 

The effect of a field with one polarization on the 
amplification coefficient for another with a differ
ent polarization is clear from formula (10). Gen
erally speaking it occurs when there are no de
polarizing collisions which lead to the equalization 
of the populations in the Zeeman sublevels. [ 51 In 
the model adopted here however the dips caused by 
the field E_1 in the 47rX!'{wc) curve should be ex
actly the same as in the 47rX ~1 (we) curve. It suf
fices in what follows to consider one of the curves 
in Fig. 2, for example 47rX~'(Wc)· As is clear from 
Fig. 2, a merging of dips in pairs 1,2 and 3,4 oc
curs when the magnetic field tends to zero (Q- 0). 
Thus the radiation intensity decreases. Another 
anomaly occurs when the Zeeman splitting Q be
comes equal to the resonator detuning o. "Own" 
dips 2 and 3 merge for Q = 6 and the radiation in
tensity also decreases. 

It is not difficult to calculate the radiation in
tensity for polarizability Xq from Eqs. (18) and 
formulas (10)-(12). E:,..-pressions for intensity turn 
out to be simplest in the two cases indicated below: 

1) b?>Vto, jQ- 61 ~'\'to,' 

lt=2<p(6-Q)[1+ '\'102---J-1
• 

(b- Q)2 + '\'102 ' 
(19a) 

2) II= 0, 

/1 + L1 = 2<p(Q) r 1 + Q2 ~0:102 ri. (19b) 

Here we have introduced the symbol 

cp(x) = 1- (4npQ)- 1 exp (x/ ku)2. (20) 

Of course, formulas (19) can be used only if cp > 0. 
5. The shift of the generation frequency w1 (for 

right-hand circularly polarized oscillations) from 
the natural resonator frequency wn is determined 
by the real part of the polarizability 

2(w1 -- Wn) I Wn = -4nxt'. (21) 

The presence of a dip in the amplification curve 
47rX1' (we) at a certain frequency corresponds to 
nonmonotonic behavior of the dispersion 417" xf(wc) 
close to this frequency (see Fig. 3). The length of 

~4Jrx;rwc) 
4 

I 

FIG. 3 

the section AB in Fig. 3 is proportional to the shift 
of generation frequency. When dips 3 and 4 in 
Fig. 2 merge, the bend 4 of the dispersion curve in 
Fig. 3 "travels" to point B, which leads to a non
monotonic dependence on the magnetic field of the 
shift of generation frequency. Such non-monoton
icity will occur for Q = 0 and for Q = o, i.e., in 
the same places where there are radiation inten
sity minima. We note that in fact this non
monotonicity will appear only for sufficiently large 
pumping. The smaller the ratio y 10 /ku, the lower 
the pumping at which the non-monotonic frequency 
shift will appear. 

We give formulas describing the dependence of 
the beat frequency A = w1 - w_ 1 on the magnetic 
field close to the singularities: 
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IQ- ol ~ V1o; 

~ [ 1 ( 26 ) 1 6 - Q 
ffin = 4:rt~ 2.F ku - 1n --,;:;-

V1o(6-Q) J 
- cp(6 - Q) (6- Q)2 + 2v1o2 ' 

2) 6 = 0; 

:n = 4:rt~ [ F ( ~) - cp ( Q) Q2 ~o~10J . 
Here F(x) denotes the function 

2 X 

F(x)=-=-e-x' ~ et'dt. 
1n ~ 

(22) 

We note that the parameter which enters into 
formulas (10), (19), and (22) may be expressed in 
the form 

where (N1 - N0) 0 is the threshold overpopulation 
in the absence of a magnetic field and for exact 
resonator tuning (Q = 0, o = 0). 

Figure 4 gives a schematic representation of 
the dependence of the radiation intensity (A) and 
the beat frequency (B) on the magnetic field for 
fairly large pumping. The increase of intensity in 
a weak longitudinal magnetic field has been exam
ined in a series of papers. [ 1- 31 Culshaw and 
Kannelaud[!J examined the non-monotonic behavior 
of the beat frequency in a weak magnetic field for 
o = 0. As far as we know they did not examine the 
singularities which occur for Q = o. 

FIG. 4 

No beats occur in a laser with Brewster win
dows, since the radiation polarization must remain 
linear. The dependence of intensity on magnetic 
field will have the same peculiarities as in a plane 
laser. The condition 1/ 2(47TX'1 + 47TX~ 1 ) = 1 /Q must 
be used instead of (18). From this with the help of 
formulas (10)-(12) in which I 1 = I_ 1 = I/2, we ob
tain the following expression for the radiation in
tensity I of a laser with Brewster windows: 

and V. I. PEREL' 

1=4[t~(Q)+1Jl(-Q)]-S cp{6+Q)cxp- -_---· r ( 6 + Q \2] 
\ L ' /, U 

r ( o- Q \"]' -j-(p(o-Q)expl-, --~--) f. 
_ . ku 

where 

[ '6- Q )21 
¢{r2) = exp - ( -----_ -_ -

._ ku ~ 

(23) 

x't- l _~__v!Oz___+-----I~O:- +- -- V!Oz _____ l 
- ' {j2 + Vw~ QZ + V1<>z (6- Q)2 + Vw2 J , 

the function qJ(x) is given by formula (20). 
6. In the presence of a transverse magnetic 

field, we let the y axis lie along the resonator 
axis (the z axis is directed along the magnetic 
field). In this case the intensities Ix and I z are 
determined from the equations 

4nxx'' = 1 I Q, 4nxz'' = 1 I Q, (24) 

where Xx= 1/ 2(x 1 + x_ 1), Xz = x0• Analysis of the 
dips in the XX:(wc) and X~(wc) curves shows that 
in addition to the singularities at Q = 0 and Q = o 
a radiation intensity minimum may occur for 
Q = 2o. This last singularity is associated with the 
merging of "own" and "foreign" dips and will thus 
appear only if light of both polarizations is present 
in the laser radiation. It is not difficult to obtain 
an expression for the intensity in this case using 
formulas (10)-(12) and (24). 

7. The model employed in this paper allows us 
to give an intuitive interpretation to the depend
ence of laser radiation intensity and shift of gen
eration frequency on the magnetic field. Calcula
tions which we have carried out without assuming 
that the density matrices of the upper and lower 
states fmm' and fJ.lJ.l' [SJ are diagonal show that 
the qualitative results which we have obtained here 
are basically valid. However the influence of the 
non-diagonal elements is not small particularly 
for weak magnetic fields when the Hanle effect is 
imposed on the phenomena associated with the 
merging of dips \Vhich we have analyzed here. 

For example in the case of a longitudinal mag
netic field the polarizability is given as before by 
formula ( 10) in which, hm~ever, the coefficients 
bqq1 must be replaced by bqq1, where 

Ou = C1bu, 

- C '- C ") ~ ( V10 V1o \ _.,, 
b1,-1= 2"1.--t+ d•• -2 " ,. . -,.+. Je •', 

u- ••- lVw •• lVto· 

0-q, -q, (Q) = bqq, (- Q)' 

where 

(' V1 Vo \ __ 1 C3 = Azvo 2 .Q + Asv1-~-2 .,. J f , 
V1- l Vo- l><· 
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The quantities A1, A2 and A3 are expressed in 
terms of 6j symbols 

For the case h = 1, j0 = 2 (He-Ne laser) A1 
= 23/450, Az = 1/soo. A3 = 7/soo · 

The deviation of the coefficients C1 and c2 

from unity is caused by the fact that the popula
tions of the various Zeeman sublevels are in fact 
not identical. The appearance of a second. term in 
the expression for b 1 _1 is connected with the fact 
that the density matri~es fmm' and f 1111 , are not 
diagonal. The dependence of C3 on the magnetic 
field reflects the Hanle effect on the upper and 
lower levels. For S1 » y 1, Yo the coherence of the 
states is totally destroyed by the magnetic field 
and C3 - 0. 

The assumption concerning the mixing of Zee
man sublevel populations, employed in this paper, 
leads for example to the E_ 1 field exerting an 
equal influence on polarizabilities x1 and X _1, as 
has been shown above. If such mixing is absent 
then the E_1 field influences the polarizability X 1 

less than the polarizability X _1. Thus for S1 ~ 0 
b1, -1 = b11 always, but b1, _1;b11 = (A 2 + A3)/A1. 
For h = 1, j0 = 2 this ratio equals 11h3. It is in
!eresting to note that for j 1 = j 0 = 1/ 2 we have 
b1, -1 = 0, i.e., the polarizability X 1 is determined 
exclusively by the field E1• This is understand
able since in the case given the transitions u + and 
u_ start and finish on different Zeeman sublevels. 

Formula (19) of the present paper shows that 
for S1 = 0 the radiation intensity has a minimum 

with width y 10 • The most notable effect associated 
with the presence of the non -diagonal elements of 
fmm' and ff.1f.1' is the fact that a second minimum 
may become superimposed (also for S1 = 0) on 
this minimum, the width of the second minimum 
being determined by the lesser of the quantities 
y 1 and y0• 

The simplified model is insufficient for exam
ining questions concerning the stability of different 
types of oscillations. [ 9 J For example, it follows 
from this model that in the absence of a magnetic 
field, plane or circularly polarized states are 
states of neutral equilibrium. However exact cal
culations show that the circularly polarized state 
is unstable in this case. 
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