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Sound absorption in impurity superconductors in which a current is flowing is studied by quan
tum field theory methods developed by Abrikosov and Gor'kov. The dependence of the absorption 
coefficient on the temperature and on the quantity which determines the current in the sample, 
s = PoVs (p0 is the Fermi momentum, Vs is the velocity of the pairs) is found. 

AT the present time, a significant number of re
searches[ l-SJ have been devoted to the study of 
superconductors in the presence of a current in 
them. The interest in this question stems from the 
fact that the current flowing through a specimen 
creates a number of features which are associated 
with the tendency of the current to disrupt the su
perconductivity. By increasing the momentum of 
the pair, and thus changing the current in the su
perconductors, it is possible under corresponding 
conditions (see [ 0 ) to create a situation whereby 
the superconductivity in the specimen vanishes. In 
this sense, the effect of the current on the super
conductors is analogous to the effect of paramag
netic impurities, [ 5J where the exchange interac
tion of the electron spins with the spins of the im
purity atoms leads to the elimination of the energy 
gap in the spectrum of elementary excitations (the 
so-called gapless superconductivity), and also to 
the disruption of the superconductivity. 

In the present work, the effect of the current on 
sound absorption in superconducting alloys is in
vestigated. Here, it is assumed that the frequency 
of the incident sound w0 << liT, where T is the 
relaxation time of the electrons in the normal 
metal. 

1. The interaction of the sound wave with the 
electrons can be expressed in the following fashion: 

Hint = ~ }.a~Ua~ (x) 'IJ+(x) \jJ (x) dr, (1) 

where Aua{3 (x) is the deformation tensor of the 
body, A. a{3 is a tensor whose components are 
equal, in order of magnitude, to the Fermi energy 
and in momentum space are functions of the mo
mentum of the electron, </J (x) is the operator of 
the electron field. 

By using the formula of the thermodynamics of 
irreversible processes, which determines the den
sity of the force which a sound wave exerts on a 
system of electrons, 

(the angle brackets denote averaging over the 
grand canonical ensemble), we obtain the energy 
absorption per unit volume 

W I { 6 (Hint> *) 
= Wo m " UaB 1. 

vUaB ) 

Here w0 is the frequency of sound and 

<Hint>=~ cp(x)G(xx)dr 

(2) 

( 3) 

(4) 

where G(xx') is the temperature Green's function 
of the electrons [G(xx) is its value for r = r', 
T = T'- 0], and cp(x) = l-..0!{3 ua{3(x). 

With account of Eq. (1), we '"Tite down the sys
tem of equations for the functions G(xx') and 
F(xx'): 

( 
f) vz ' ---+-+ ~t) G (xx')-{- ~(x)F+(xx')- cp(x) G(xx') 

\ ih: 2m 

=6(x-x'), 

( f) vz \ -- + --+ f.t IF+ ( xx') + ~ + ( x) G ( xx') 
\ fJT: 2m 1 

- cp(x)F+(xx') = 0. (5) 

We represent the Green's functions G(xx'), F(xx'), 
and F+(xx') in the form 

G(xx') = G<Ol(xx') + G<tl(xx'), 

F(xx') = F<0>(xx') +F<1l(xx'), 

F+(xx') = F<0l+(xx') + F< 1l+(xx'), 

where G<ol(xx') and F<o>(xx') are the Green's 
functions in the absence of the field, while G<1l(xx') 
and F< 1>(xx') are the additions, which are linear in 
the deformation tensor. By linearizing Eq. (5), we 
get 

( f) vz ) ---+ --+ ~t G<1l(xx') + ~<0lF<1l(xx') 
\ fJr 2m 
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= cp (x) G<0l (xx')- ~<1l(x) p(o)+ (xx'), 

(~ +Jl.:_+ 11) F<W(xx')- ~(OJG<1l(xx') 
itt 2m 

= cp (x) F<0J+ (xx') + ~(!)+ (x) G<0l (xx'). (6) 

From these equations, it is possible to express 
a<t>(xx') in terms of the quantities on the right 
hand side of (6). For this purpose, it is convenient 
to write down this expression in operator form, 
and then to find the operator which is inverse to 
the operator of the left side of Eq. (6). By pro
ceeding in such fashion, we obtain the following 
expression for the contribution a< 0 (xx') to the 
Green's function, which is linear in ua{:l(x): 

G<1> ( xx') = ~ cp ( x")[G (x"x') G (xx") + F (X" x') F+ (xx")] d•x" 

+ ~ [~<ll(x")G(x"x')F(xx")- ~<1>+(x")G(x"x') 

X F+ (xx")] d'x". (7) 

Here and below, we omit the symbol (0) in the 
functions G(xx') and F(xx'). The expression (7) 
must be averaged over the locations of randomly 
distributed impurities. If we use the vvell-known 
formulas 

~(x) = lim I g IF (xx'), M(x) = lim lg I F+(xx'), 
r'.,.r r'-+r 

't'-+--r+O 't'~t+O 

then it is easy to see that the second integral in 
(7), after averaging, gives a correction of the next 
order relative to the fundamental term. 

By substituting (7) in Eqs. ( 4) and ( 3), we get 
the following formula for the quantity W: 

W=~ 
(2:rt)3 

X~ Im ~ dp [icp(pq) I 2G(p+)G(p-) + lcp(pq) I2F(p+)F+(p-)]. 

(8) 

-- G(p+)F(p-)A,, ( 10) 

Ai=, (2:)3 ~ IU(p-p')IZIT;(p'qw0)dp' (11) 

(n is the concentration of the impurities, U is the 
interaction potential of the electron with the im
purity). 

We shall not write out the equations for TI2, TI 3, 

and TI 4, inasmuch as only TI 1(pqw0) enters in (8). 
We only remark that the equations are greatly 
simplified if we do not take into account the spatial 
dispersion of the sound wave, that is, if we put 
q- 0 in (10). In this case (see [ 6 J) a set of two 
integral equations is used which has the form 

II1 (pwo) = I cp (p) 12 [ G (p+) G (p-) + F (p+)F+ (p-)] 

+ [G(p+)G(p-) +F(p+)F+(p-)]At- [F+(p+)G(IL) 

+ G(p+)F(p-)]i\z, 

IIz(Pwo) = lcp(p) l 2 [F(p+)G(p-) + G(-P+)F+(p-)] 

+ [F(p+)G(P-)- G(-P+)F+(p-)]i\1 + [G(-P+)G(p-) 

( 12) 

If we introduce the notation 

A;(pwwo) = I cp (p) l2Ai ( wwo), 

then Eqs. (12) can easily be put in algebraic form 
(in the following formulas, the bar denotes averag
ing over the directions of p) 

lcp(p).j 2f., = [lcp(p) l2G(p+)G(p-) 

+ lcp(p) I2F(p+)F(p-)] (1 + Aj) 

- 21 cp (p) I2F (P+) G (P-P•z, 

lcp(p) I2Az = [lcp(p) I2F(p+)G(p-) 

- lcp(p) I2G(--P+)F(p-)] (1 + /_,) 

-- [lcp(p) I2F(p+)F(p-)- lcp(p) I2G(-P+)G(p-)]f.z, 

(13) 
Here the bar denotes averaging over the locations 
of the impurities, where, for example, 

P+. (-) = (p + q I 2, UJ + Wo I 2). 

By introducing the notation 

II1(pqwo) = lcp(pq) l2G(p+)G(p-) + lcp(pq) I2F(p+)F+(p-) 

(9) 

and using the method of summation of ladder dia
grams developed by Abrikosov and Gor'kov, E 6J we 
easily obtain an integral equation for the quantity 
Tit (pqwo): 

II1 (pqwo) = I fP (pq) 12 [ G (P+) G (p_) + F (p+) F+ (P-)] 

+ G (P+) G(p-)At- F(p+) G (p_)i\2- F(p+)F+(p-)i\3 

lcp(p) I2G(p+)G(p-) 

I cp 12 

= n ~ IV (P - p') 121 cp lzG (P+') G (P-') dp' 
(2:rt)3lcpl2 

~2 

1 
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1 1 1 1 nmp0 ~ -=-- IU(8) l 2dQ 
't ( 2Jt) 2 , 

=--
't' 't To 

Here m is the mass of the electron, p0 is the 
limiting Fermi momentum. 

By calculating the other terms of Eq. (13) in 
similar fashion, we get 

1 ( (l)(i)_- ~2) 
A1 = I 1- (1 +A) 

2-ro(TJV + TJ-V-) \ vv_ 1 

+ i(w-L\ + wL\-)/2 
( + Az, 

'toVV- 'l']V T)-V-) 

,
2 

__ i ( w_L\ + (J)L\_) /2 
f\, (1 +At) 

'tVV-(TJV + TJ-V-) 

+ 1 
2To('l']V + T)-V-) 

( 
L_\2- (J)(o)_) " 

1- Ao 
VV- "' 

where 

1 
Tj= 1+-, 

2'IV 

1 
T)- = 1 +--, 

2w-

(14) 

v= (w2 +L\2)'i,, v_=(w_2+~2)'12, w_=w-w0• (15) 

Solving the set (14), we find 

A - 1 ( 1 ww_- ~2) ___ 1 ___ _ 
1 - 2 - vv_ To('l']V + 'l'J-V-)- 1 

Az = i(w-L\ + wL\_)j2 ___ 1 __ _ 
VV- 'to('l'JV+'l'J-V-)-1. 

(16) 

Together with (12), (9), and (8), this gives 

W = woTpom I !p J2 ~ 'to VV-- WCtl- - L_\2 

2Jt 'to('l']V+YJ-V-)-1 VV-

(17) 

We have thus obtained an expression for the 
density of absorbed energy in the temperature 
technique. It is well known that all the physical 
quantities, including the density of absorbed en
ergy, must be expressed in terms of a retarded 
Green's function, which is an analytic function in 
the upper complex half plane w. The latter is ob
tained if we use Eq. (1), and write down the coupling 
of the operator u 0113 in the Heisenberg represen
tation with an operator in the interaction repre-
sentation: · 

UaB{x) = S-1 (t)cra~(x)S(t), ( 18) 

where 
t 

S (t) = T exp { i ~ O'aB (x) UaB (x) d4x}. (19) 
-00 

Now, recalling Eq. ( 17), we can find the quan
tity W by means of analytic continuation. [ 71 Using 
the condition w0T « 1, we get 

Carrying out the integration, we get the follow
ing expression for the absorption coefficient Ols: 

2wo~'mpo -,-----
as= 2 2 ( ) l"-aB(p)nanB'I 2 2n(L\), (21) 

:rt ps n · 

where p is the density of the material, s(n) is the 
sound velocity, n = q/ I q /, n' is the unit vector 
which determines the polarization of the sound 
wave and n(x) is the distribution function of the 
electrons in the metal. 

2. We now consider the superconductor in the 
presence of a current. The presence of a current 
in the superconductor corresponds to a definite 
momentum of the electron pairs. The Green's 
function of the impurity superconductors was found 
by Abrikosov and Gor'kov. [ 61 Later, Maki [21 gen
eralized this function to include the case of a pair 
momentum differing from zero. In this case, they 
have the form 

G (p) = _ (;;- sz + ~ _ , p+ (p) = ~ i/i -
(w -sz)2- ;2- L_\2 (w- sz)2- ~2- L_\2 

(22) 

Here, in the case in which T ~ « 1, the following 
relation holds: 

~=u(1- \; ) 
-~ 1'1-/,/,2 , 

(J) 
u =:::-, 

L\ 
\; = 'tCt , (23) 

~ 

where z is the cosine of the angle between the 
momentum of the electron on the Fermi surface 
and the direction of the pair momentum, while 

2 
01 = 2s /3 and s = PoVs-

In Eqs. (22) and (23) we havt; neglected the ef
fect of the magnetic field of the current. This is 
valid if the pair velocity v s is very large in com
parison with Vj, the Larmor velocity of the pair in 
the magnetic field of the current. This latter is 
easily estimated. We obtain 

where d is the thickness of the film. 
We replace in (8) the functions G(p) and F(p) 

by the Green's function of the superconductor in 
the presence of a current, and carry out the pro
cedure of averaging the entire expression over the 
locations of the impurities. Without making de
tailed calculations, which are completely analogous 
to those set forth above, we note that if we use 
Eqs. (22) and (23), then, after simple calculations, 
we get 

*ch =cosh. 
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00 {!) 1 1 
X \ dffi ch-2 - { Im---==:-

J 2T · -y'1 - u2 -y'1 - uz 
"'o 

u I u } (24) 
-y'1-u2 m -y'1-u2 

The quantity w0 = ~(1- t 2/ 3 ) 3/ 2 in the last for
mula is the gap in the energy spectrum of the super
conductor in the presence of the current. The ex
pression in the curly brackets can easily be com
puted if we use the first formula of (23) and recall 
that the quantities Im (1;..) 1- u2) and 
Im (u/fl=U2) are different from zero for w > w0• 

Expanding (23) in a series in u- Uo we get, after 
integration, 

!!!_ = -~ ( ~ )''• [ 1 _( 'ta )''•1-'" !'_ 
an 3 'ta \ Ll Ll 

X exp{- ~ [ 1-(; rJ} , :a < 1, 

a. ,1 ,1 ( 5 ) ( 2 ) ( T )"' an = 3. 2- • ( 1 - 2- ·) r 3 s 3 T 

- 3. 2-'f, ( 1 - 2-'/,) r ( ~ ) ~( ~ ) ( : r ' -ra 
-=1, 
Ll 

X [ 2+( :aYJ( :r. 'ta 
-s;>1. (25) 

In these formulas the value of ~ remains undeter
mined. The dependence of ~ on the temperature 
and on the quantity s is easily obtained if we use 
the equation 

igiT ~ \ 
Ll- (Zn:) 3 L.J J dpF(p), 

where F(p) is the thermodynamic Green's function 
in the presence of the current. Proceeding in 
standard fashion, we have for temperature 
T «~,[5,2J 

L1 _ n 'ta ( 2 ) '/, ( L1 ) •;, [ ( 'ta )'I• J ln------2 - - 1- -
Lloo 4 Ll 3 'ta Ll 

-ra 
-~1 Ll ~ ' 

Ll 'ta 1 [ 'ta L1 ( ( L1 )z ) ''' In-= - arcch--- -arcsin-- 1 - -
Lloo Ll 2 Ll 'ta \ 'ta 

_!_(nT)2 (!_\2[ 1 _( ~)2]-'", 
6 , Ll 'taJ ' -ra 

'ta -x- > 1, (26) 

where ~ 00 is the gap for T = 0, s = 0. 
For T a = ~. the quantity w0 = 0, that is, the 

gap in the energy spectrum of single-frequency 
excitations disappears. If we take into account 
that here In (~/~00 ) = -n /4, we get s0, the value 
of s for which the gap disappears. For T = 0, we 
have 

(27) 

At this value of s, as is easily seen from the sec
ond formula of (25), the sound absorption coeffi
cient depends in power-law fashion on the temper
ature and is equal to 

a. ( 5 ) ( T )''• , ( 7 ) ( T )''• -=D - - -2-!.D - ~- , 
an 3 Lloo \ 3 Lloo 

(28) 

where 

For s > s 0, we have, from the second equation of 

(26)' 

2'ta 1 [ ( L1 )z ( nT )2 J ln---- - +2-
Lloo - 12 'ta 'ta · 

From this equality, setting ~ equal to zero, we 
get the critical value sco for the quantity s. For 
T = 0, we have 

Sco = ! v 3~oo . (29) 

Equating (29) with (27), we have 

So= 0.96 Sco 

Thus, we see that in the superconducting phase 
there exists a region s0 :::::: s :::::: sco where the gap 
in the energy spectrum is missing. We note that 
there exists a similar analysis of gapless super
conductivity. [Z, 3] The dependence of the value of 
~ on s and T in this region is: 

- ( s )2 [ ( s )2 2 ( Sco \'( nT \2]''' Ll ~ -y'3 Lloo --;--- 1 - -:- - --;- --:-- } -- ) 
Sco ' , Sro , ,) ' s . Lloo./ 

Using the last of the formulas (25), we see that in 
this region the value of as/O!n depends to some 
degree on the temperature: 

as [ s2 2 Sco4 ( nT \ 2] 
-~1-12 1----- -.1 
an Sco2 3 s4 Lloo 

x[1-4I'(3)\;(2) 8co'(!-\2
]. 

s4 tl.oo; 

We consider, finally, the region s < s0• For 
sufficiently low values of s, we have 

and from the first formula of (25), we get 
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~ ~ _ __;__!_ ( Sco) '"exp{ _ Aoo [ 1 _ ~1,(!___) ''']}. (30) 
a, 3 · 2 h ~oo \ s ' T 2 Sco 1 

We note that this formula in the limit s- 0 
does not transform to the formula for the super
conductor in the absence of the current. This is 
connected with the fact that the possibility of the 
expansion of Eq. (24) in powers of u - u0 imposes 
some limitation on the region of application of 
Eq. (30). The latter can be obtained if we estimate 
the next term of such an expansion. This gives 

s ~ (3T /'r:)''•. 

In conclusion, I express my gratitude to A. A. 
Abrikosov for his attention to the research and 
useful comments. 
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