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We investigate relaxation electromagnetic processes in a resonant medium. The distribution 
of the medium molecules is assumed to be random. Account is taken of the nonresonant nature 
of the molecules, i.e., the scatter of the molecular levels of the molecules is introduced. The 
time variation of the photon density distribution over the states with given wave vector is ob­
tained. The relaxation times and distribution widths are determined. The corresponding kine­
tic equations are derived. Allowance for the relaxation process leads to a collision term in a 
form that is integral with respect to time. 

1. INTRODUCTION 

WE investigate in this article electromagnetic 
relaxation processes in a resonant medium. The 
molecules are assumed to be randomly distributed 
in the medium. In the quantum formulation for a 
system of strictly resonant molecules, the relaxa­
tion problem was considered by Galitskil and the 
author in an earlier paper, [ 1l where we dealt with 
the time development of a process for a specified 
initial state, characterized by the presence of a 
photon or a quantum of the medium in the system. 
In this paper we consider the problem with allow­
ance for the scatter of the energy levels of the 
molecules of the medium. This scatter is due to 
such processes as the Doppler effect, the Stark 
effect, etc. The transition frequencies Wj ( j is the 
number of molecules) lie in this case in certain 
intervals 6 about their mean value w0• As will be 
shown below, the presence of a spread 6 of the 
levels greatly influences the evolution of the proc­
ess in time. Under certain conditions (not too 
rarefied a medium and not too large 6) the relaxa­
tion time is determined by the quantity 1/6. Dur­
ing the course of the relaxation, photons are pro­
duced in the system with wave vectors k (wk = c2~) 
that differ from the wave vector of the initial pho­
ton ko (wk i:- wko). The width of the photon distri­
bution with respect to wk changes with time. The 
scatter of the molecular levels greatly influences 
the width of this distribution. 

We formulate also the corresponding kinetic 
equations. It will be shown that they are charac­
terized by a collision term which is integral with 
respect to the time. This form of the collision 

term is caused by the photon-energy uncertainty 
resulting from the relaxation process. 

The medium is assumed to be sufficiently rare­
fied, so that the condition p?C 3 « 1 is satisfied, 
where p is the density of the medium molecules, 
p = N/V, and ;\ = cjw0• Under these conditions we 
can disregard direct transfer of excitation from 
one molecule to the other via the static Coulomb 
field. In other words, the condition p?C3 « 1 denotes 
that excitation transfer takes place in the wave 
zone and consequently only the resonance radiation 
field is of importance for the transfer of the exci­
tation. We can also state that the frequency of the 
collisions that lead to exchange of excitations is of 
the order of p?C3w, as first shown in a paper by 
Fursov and Vlasov[ 21 (w is the natural width of 
the excited level of the molecule). Consequently, 
these collisions are not significant under the con­
ditions in question. 

The influence of the scatter of the levels on the 
photon-density oscillations in the resonant medium 
was considered in a paper by Alekseev and Galit­
skil. [ 31 

2. RELAXATION OF PHOTON DENSITY 

Our task is to find the distribution function 
Kn0(k, t; ko) of the photons with respect to the 
states k and A. at an arbitrary instant of time 
t > 0 under the condition that at the initial instant 
of time t = 0 there was present in the system a 
photon with specified wave vector k 0 and polariza­
tion A.0• The molecules of the medium at the initial 
instant of time are assumed to be unexcited. 

For a specified distribution over the initial 
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states k0 and A-0, the distribution of the photons is 
obtained by summing the functions K with respect 
to koA. o with a suitable weighting factor. 

As in the earlier papers[!, 3• 41 we shall start 
with the Hamiltonian for the quantized electromag­
netic field and a system of N two-level molecules 
contained in a volume V. From the Schrodinger 
equation we obtain an equation for the amplitude of 
the probability fA_(k, t) of observing in the system 
the photon k, A. at an arbitrary instant of time t. 
The derivation of this equation is similar to that 
given in the earlier paper by the author and Galit­
skil. [ 1J In the Fourier representation we have 

k'll.' 
where 

Here 

Qui= (2l1Wj2 / WkV)'i•(dilk~), 

dj is the matrix element of the dipole transition of 
the j -th molecule (located at the point Xj) from the 
lower level to the upper level with simultaneous 
absorption of a photon, 1~ is the photon polariza­
tion vector (A.= 1, 2). We use a system of units in 
which Ji = 1. The distribution of the photons over 
the states with given k, A. is given by the function 
KA.A.o (k, t; k 0): 

K).). 0 (k, t; ko) = (JA(k, t)JA*(k, t)) 

oo+ia' d ' 
_ ~ ~e-i"''tKu,(k, w'; ko), 

-oo+ia' 2n 

where 

oo+ia d 
K).).,(k, w'; ko)= ~ 2w Ku,(k, w, w'; k0) 

-oo+ia n 

oo+ia d 
~ ~<h(k, w)JA+(k, w'- w)). 

. 2n 
-oo+'lO' 

The averaging over the coordinates of the centers 
of gravity of the molecules, denoted by the angle 
brackets, makes it possible to use diagram­
technique methods. [ 51 As applied· to these prob­
lems, this technique was developed by the author 
with Gali tskil earlier. [ 11 Using the developed 
procedure, we can formulate an equation for the 
function KA.A.o· We are not interested in this paper 
in the angular distribution of the photons, and 
therefore we introduce a function K(wk, w, w') such 
that Kdwk has the meaning of the number of pho­
tons in the interval dwk· For the function K we 

have the equation 

K(wk, w, w') = K0 (wk, w, w')6(w"- Wk,) 

_ ~ KO( ') \ dw;x.(-w;- w0) Wk,W,W J ~ 

'8m·2 (w- WJ + iw/2) (w + WJ + iw/2) 

(2) 

where w = w' - w, the function X(wj - w0) charac­
terizes the distribution of the molecules over the 
frequency Wj, w is the natural width of the excited 
level of the molecule, and 1/r has the meaning of 
the product of the Langmuir frequency by the cor­
responding oscillator strength: 

w = ~ Wo3 ldl2, _!_ = Bn woldl 2 p = 2npX3wwo. 
3 c3 -r2 3 

The function :Kl is of the form 

K 0 (wh, w, w') = [wl'e(w) - Wk]-t 

x [wl'e* ( -w) - u>"- w']-1, 

where E:(w) is the dielectric constant of the me­
dium (w ~ wo) 

1 ~ X.(Wj-Wo) e ( w) = 1 - -- dwj _ _.:__--;----;---;~ 
2-r2w0 w- Wj + iw/2 · 

Let us integrate (2) with respect to Wk. We note 
that since p'?i.3 « 1, we have 11- E:(w)l « 1. Fur­
ther, we take into account the fact that the effective 
values are w ,..., w0 and w' « w0• As a result we ob­
tain 

K(wk, w, w') = K9 (wk, w, w')c'l(wn- (•>~<,) 

+ 4ww, [e( w)- e* ( w- w')] K 0 ( w,, w, w') K 0 ( u>~too w, w') 
l't(J) 

w' +·w [e(w)- e* (w- w')]/2 
X w'+iw+w[e(w)-e*(w-w')]/2" (3) 

To integrate with respect to w and w' it is 
necessary to know the concrete form of the dis­
tribution function X(wj- w0). We confine ourselves 
first to the assumption that this distribution has a 
dispersion character: 

II 1 
X.(WJ- wo) = 2n (wi- wo) 2 + f:i/1 · (4) 

Later on we shall generalize the obtained results, 
dispensing with the choice of the concrete form of 
the distribution function. 

Under condition (4) all the integrals in (3) with 
respect to Wj can be evaluated directly, and this 
relation takes the following form: 

K(wk, w, w') = K0 (wh, w, w')6(wk- Wko) 

w w' +is 
+:. 8-r2n (w- wo + is/2) (w- w'- wo- is/2) (w' + iw) 
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X K0 (wk, w, w')KD(wk, w, w') [1 + 4~~w' (w' +is) J (5) 
• (co'+ iw) (w ~ ·wo + iV•2) (w- w'- wo- isl2) + (w' + is)l4,;2 ' 

where ~ = w + 6 and 

[ 1 ( i"" )-1]-1 
K0 (wk, w, w')= w-wk- 4,;2 w-wo+ 2

5 

'[ 1 ( is )-1]-1 X w-w'-wk---2 w-w'-wo-- . 
4,; ·2 ' 

The pole values of the frequency w in ( 6) take 
the simplest form if the inequalities ~ T « 1 and 

(6) 

~ T » 1 are satisfied. Let us consider first the in­
equality ~ T « 1. This case corresponds to not too 
rarefied a medium (wT « 1) and not too large a 
scatter of the energy levels of the molecules 
(6T « 1). The condition WT « 1 signifies that the 
energy width r, due to the resonant scattering of 
the photons by the molecules (see, for example 
[ 6] ' 

) ' 
1 w 

fw=pcrresC= 4,;2 (w-wo)2+w214' (7) 

is large compared with the width of the excited 
level w, rw » w. The condition 6T « 1 signifies 
that the additional broadening connected with the 
scatter of the levels likewise leaves this condition 
unchanged. Then the resultant distribution widths 
(formulas (10) and (11)) are determined by the 
values of w and 6 and finally depend on the initial 
state (the values of wko). 

The case WT » 1 corresponds to a very highly 
rarefied medium, when r w « w. The distribution 
widths are determined in this case by the quantity 
r~ (r~ differs from r w in that the width w is re­
placed by the width 0. When wT« 1, but 6T »1, 
the medium is in effect highly rarefied with re­
spect to the given photon, and the distribution 
width is likewise determined by the value of r~. 

When ~ T « 1 the function ( 6) is of the four -pole 
type, and is conveniently represented in the form 

where r1o r 2 = 1, 2, 

v,.<1) = V ! ( 1 + ~ ) , 

Q = -v ~2+ ;~. 

= [ ( w - Wr, + isr, I 2) (w - w,, + isr, I 2) ] - 1; 

W1,2 = Wo + 1lz~ + 1/zQ, 

s1,2 = 1lz~(1 +~I Q), W1,2 = 1/zw(1 + !l / Q). 

A decomposition similar to (8) holds also for 
the function K. Carrying out these decompositions 
in (5), we obtain a relation for the function Kr1r 2• 

The function K 0(wko, w, w') which enters in this 
relation is likewise conveniently represented in 
the form ( 8). Then the main contribution in the 
expression for the function Kr 1r 2 is mad by that 
component of the function K 0(wko, w, w') wh1~.-~ de­
pends on the same indices r 1 and r 2• This circum­
stance is connected with the fact that the interval 
between the pole values of the frequencies is of 
the order of 1IT, in a broad range of values of 
wko• and the width of the scatter with respect to 
wk, as will be shown, is of the order of 6 (6 « 1/T). 
The physical meaning of the function Kr r was 
discussed earlier. [1l Namely, the functfo~s K11 
and K22 give the distribution of the quanta of the 
first and second types in the medium (with ener­
gies w1 and w2, respectively) for a specified quan­
tum in the medium at the initial instant of time. 

Integrating the obtained relations with respect 
to w, we get 

Ku(Wt,w') = , ~ .6 b(w1-<ilto) 
(J) £ 1 

iwt <il' + is 1 
n w' ( w' +iw+ib1)' ( w' +i~1 ) z -x12 ' (9) 

where 

Xt,z = Wt,z(k)- ·Wt,z(ko) ::::::::: 1/zx(1 +A I Q), 

Wro = Wr(ko), 'X = Wk - WJt,; 

Ku ( Wt, w') = Ku (w,., w') dw,. I dwt. 

Going over to the time domain, we have 

X [ 1 - e-i,t (cos x1t + !: sin x1t) J 
Wt bz 1 

- n w +lit 'Xt2 + wz2 

X [ e-wt-M - e-i,t ( cos 'Xtt- :; sin Xtt)] . ( 10) 

The expression for the function K22 is obtained by 
making the substitutions x1 -- x2, w1 2 -- w2 1> and 
61 2- 6z 1· ' ' 

' ' The distribution for the functions K12 and 
K21 = K1~ has a more complicated character. Un­
like the functions K11 and K22 , these functions tend 
to zero as t- co. In the time domain, in the region 
that is significant with respect to wk (X « 1/T), 
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we have 

K12(wk, t)+ K21(wk, t) = 2 cos Qte-~112b(wk- <ilk,) 

+ 2w (x2 + w2)-1 cos (Qo +' xil) 
~ 2Q 

X te-~t/2 [ (cos ~ t - : sin ; t) 
- _! e-w.t ( cos xil t - !!!_sin xil t) 

2 I 2Q X 2Q I 

1 ( xil w xll )] --e-w,t cos-t+-sin-t 
2 2Q X 2Q 

where Q0 depends on wko (where possible, we 
neglect the difference between wk and wk 0); 

F(t) = :t e-6t/2 ~ 10 [ ~ (t- t') ]lo ( ~) dt', (12) 

Integrating with respect to w and going over to the 
time domain, we get 

1 
Ku(t) = --- (w + b1e-wt-M), 

w+61 

wll 
K!2(t) + K21 (t) = 2 cos Qt e-wt-6!12 ch 2Q t 

t Ll 
+ 2/le-wt \ F ( t - t') e-6t'12 sin Qt' sh !!!_____ t' dt'. 

;; 2Q 

Here the function F is defined by relation (12). 

(16) 

(17) 

The quantities Q, ~, and 61 in (16) and (17) depend 
on the value of Wko· 

We now consider the limiting case ~ T »1, 
which signifies either a very highly rarefied me­
dium or a large scatter of the energy levels. The 
width r~ due to the process of resonant scatter­
ing of photons by the molecules is then small com­
pared with the width w. The Green's function has 
in this case, in fact, a single pole with respect to 
w, and all the pertinent results are obtained from 
(10) and (16) by means of the substitution 

X!--+~:, {J}j--+ Wk, S2, W2--+ £, w, S!, 61--+ fs, Wj-+ r~w I£, 
where 

(7') 

*sh = sinh, ch =cosh. 

I0 and J0 are Bessel functions. In the region 
T « t < 1/6 we have 

F(t) = e-Wqo(t/T.). (13) 

From (10) and (11) it follows that if a photon 
with k = k 0 was present at the initial instant of 
time, then photons with Wk =1- Wko are produced 
during the relaxation process, and the width of the 
distribution with respect to Wk is determined by 
the values of w and 6, that is, by the natural width 
of the level and by the width of the scatter. The 
same quantities determine also the time variation 
of the relaxation. After a time t » 1/6 the distri­
bution becomes stationary and takes the form 

K(wk) = w£ {[(w + 61) (x12 + 612)]-1 
~ 

(14) 

We now consider not the differential but the in­
tegral characteristics. Integrating (5) with respect 
to Wk, we obtain 

We now generalize the obtained results, disregard­
ing the concrete form of the distribution function 
(4). We assume that the function X(wj- w0) char­
acterizes a certain distribution with effective 
width 6 which decreases sufficiently rapidly when 
I wj - w0 I >6. This may be, for example, a Doppler 
distribution. We assume that the effective width of 
the distribution is large compared with the natural 
width of the level, that is, 6 » w. 

We assume first that the distribution is not very 
broad, that is, 6r « 1. In this case for effective 
frequencies w satisfying the inequality I w- w0l 
> 6, the distribution with respect to Wj does not 
affect the results, and the photon distribution is 
described by the formulas (10) and (11) derived 
above, in which we must put 6 = 0. This circum­
stance is connected with the fact that when 6r « 1 
the influence of the distribution over the frequen­
cies can affect only the incoherent part of the in­
teraction, that is, the imaginary part of the corre­
sponding pole values of the frequencies. An addi­
tional contribution to the absorption (compared 
with the contribution due to the natural width of the 
level w) can come only from molecules for which 
Wj f':j w. But if the distribution given by the func­
tions X(wj - w0) decreases much more rapidly than 
(4), and the effective frequencies are I w- w0l > 6, 
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then the corresponding contribution can be ne­
glected. In the resonance region at effective fre­
quencies w - w0 ~ 6, the influence of the distribu­
tion of the frequencies causes the effective width 
w to be replaced by the effective width 6. 

Let us assume now that the effective width of 
the distribution 6 is much larger than 1/ T, namely 
6T » 1. In this case the contribution to the ab­
sorption is made in the resonance region only by 
molecules with wj ;:::; w, that is, the principal role 
is played in the integral contained in E(w) by the 
pole term. The pole value of the frequencies is de­
termined by the condition 

w[1-~x(w-wo) J =wk. 
2w't2 

When 6 T » 1 the second term in the square 
bracket is small (in absolute value) compared with 
unity. In the resonance region we have ~ < 6, 
x(w- w0) = 2C/6, where C is a numerical factor 
of the order of unity, and we have for the pole 
value of the frequency 

w- inC/ 1:26 = w~~.. 

Accordingly, the distribution function is obtained 
from (10) by means of the substitution 

w nC 
Wt-+---. 

~ .2() 

In the region far from resonance, ~ » 6, the 
effect of the distribution with respect to Wj is not 
felt for reasons discussed above, and when 
wT « 1 the distribution is described by formulas 
(10) and (11) (with the condition 6 = 0). When 
WT » 1 the corresponding distribution is obtained 
from (10) by making the substitutions K1-- K, 

W1---+ Wk, 6---+ 0, W2---+ W, and W1---+ rW. 

3. KINETIC EQUATIONS 

The obtained functions Kr1r 2(wk, t) for ~T « 1 
and K(wk, t) for ~T » 1 satisfy definite kinetic 
equations. The derivation of these equations is a 
more general problem than the direct derivation 
of the results (10) and (11), and is of great inter­
est. We confine ourselves here to a derivation of 
the equations for the functions Krr( wk, t) and 
K(wk, t), which give the distribution of the field 
quanta in the medium. We use for this purpose a 
method developed by Galitskil and Yakimets. [71 

Let us formulate the kinetic equation satisfied 
by the function K11 (wi> w'). This equation should 
have the following form: 

(~1- iw') Ku ( Wt, w') = b ( W1 -- Wto) 

+ ~ dw/S(wt- w/, w')Ku(w{, w'), (18) 

with the kernel S(w 1 - wf, w') depending only on 
the frequency difference Kf = w 1 - w ~. The latter 
circumstance is due to the fact that the solution of 
the equation-the function K11 (see (9)) -depends 
only on the frequency difference K1. (In view of 
the narrowness of the distribution, we disregard 
the variation of the quantities Wt and ~ 1 in the in­
tegration.) 

We take the Fourier transform K11(y, w') of 
(18) with respect to the variable w1: 

(~1 -iw')K11 (y,w') = 1/2n+2nS(y,w')Ku(y,w').(19) 

Using (9), we obtain 

7 , 1 ( iWt ( w' + i~) 
K 11 (y.w)= 2:rt w'+i~1 1 + w'(w'+iw+i6!) 

X exp {iiYI (w'+i~t)}). (20) 

Substituting (20) in (19), we get 

1 . , [ iw' (,w' + iw + i6!) 
S (Y, w') = -2 (~1- zw ) 1 - ( , + 't) --

:n: ~m ~ 

X exp {IYI (~!- iw')} r1
• (21) 

Taking the inverse Fourier transform, we ob-
' I tain the kernel S(K 1, w ): 

, , w1 ( w' + i~) 1 
S(;<t,w)= 2:n:(w'+iw) (~t-iw') 2 +xt'2 

x[(~1 -iw'-ixt')F(1,1,2+ ix{. ,; z) 
~~ -zw 

( ix{ )] + (~1 - iw' + ixt')F 1, 1, 2, ~ ~1 _ iw' ; z ; 

iwt(w' + i~) 
Z= ' (w' + i~i) (w' + iw) 

where F is a hypergeometric function. 

(22) 

The kernel (22) is quite complicated. The main 
features of the process can be described also by 
an approximate expression for the kernel S ob­
tained by letting w 1 -- 0 in the arguments of the 
hypergeometric functions. Then 

, , Wt w' + i~ ~~ - iw' 
S(xt,w)= '+' (t . ') 2 + ,2 • :rt (J) ZW ;,! - ZW X! 

(23) 

With such a simplified kernel the kinetic equation 
in the time domain takes the form 

t 

K 11 ( Wt, t) = - ~1K11 ( w1, t) + Wt ~ dw{ ~ dt' Ku ( w{, t- t') 
Jt 0 
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X {e-6,t' cosx{t' + (I [(61 - w)e-wt' 
x/2 + (st- w)2 

+ e-6•1'(xt' sinx{t' -(61 - w)cosx{t')]}. (24) 

When ~ T » 1 the equation for the function K is 
obtained from (18), (22), and (24) by means of the 
substitutions ~ 1 - r ~ (see (7')), w1 - r~w/ ~, and 
w1 - w k· If we forego the concrete form of the 
distribution (4), the generalization for the expres­
sion for the kernel S is carried out in the same 
manner as was done above for the function K. 

The derived equations are characterized by the 
appearance of a collision term which is integral 
with respect to time. This form of the collision 
term is due to the photon-energy uncertainty re­
sulting from the relaxation processes. Because of 
this uncertainty, the 6-function which expresses 
the conservation of energy in each individual scat­
tering act goes over into a function of the form 
y/(wk1 - wkl + y, the width y of which is time 
dependent. When y tends to zero, the equation 
takes on the usual form. If, however, we are in­
terested in the distribution width, then it is essen-

tial to retain the collision operator in a form that 
is integral with respect to time. 
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