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A technique based on the j -coefficient theory is proposed for analyzing the second-quantized 
Hamiltonian for interelectron interaction in the presence of a group of equivalent electrons 
in the system. The formulas for transitions between electron operators and spin-momentum 
operators, which are lmown for the case S = 1/ 2, are extended to the case of S > 1/ 2 by simul
taneously taking into account the orbital angular momenta, and in particular the total mo
menta J. The technique permits one to clarify the conditions of applicability of the Heisenberg 
model and to obtain new terms in the electrostatic interaction Hamiltonian. The concrete case 
of the Hamiltonian for interaction between j -electrons and conduction electrons in rare-earth 
metals is considered, and a new anisotropic contribution to the indirect exchange interaction 
between the f-shells is computed on this basis. The magnitude of the contribution is propor
tional to (g - 2)2J(J + 1) and is related to a new type of exchange of the f-shell J -momenta via 
the orbital angular momenta of the conduction electrons. 

MoDERN theory of ferro- and antiferromagnet
ism is based on the Heisenberg Hamiltonian, the 
equivalence of which to the exchange part of the 
exact Coulomb Hamiltonian is lmown only for the 
case of one electron per atom, that is, for spin 
S = 1/ 2, and also under the assumption that the or
bital momenta of the exchanging electrons are 
equal to zero, (that is, for s-states). Such a model 
corresponds to the situation prevailing in 3d ele
ments, where the orbital momenta are quenched 
and the coupling between the d-electrons is broken 
by the strong crystalline field, so that the exchange 
is actually effected between individual electrons 
and naturally, S = 1/ 2• The latter circumstance is 
confirmed experimentally, particularly by the fact 
that the temperature dependence of the spontaneous 
magnetization for 3d metals agrees best with the 
theoretical curve calculated for S = 1f2. The situa
tion is entirely different, however, in the case of 
rare-earth elements, where the crystalline field is 
small compared with the Coulomb field, and even 
with the relativistic spin-orbit interaction inside 
the f-shell. In this case, it is necessary to con
sider first of all the electromagnetic and spin
orbit interactions of the f-electrons with one an
other, and only then can one consider the interac
tion of an entire group of equivalent f-electrons 
with the conduction electrons or with some other 
particles or quasiparticles. 

During the decade elapsed since the work of 
Racah, [ 1l new methods were developed in the field 
of atomic and nuclear spectroscopy, and have made 
it possible to simplify greatly the analysis of many
electron systems (see, for example, [ 21 ). These 
methods, however, have so far not been applied to 
the theory of ferromagnetism, in spite of the ob
vious need for going beyond the framework of the 
Heisenberg model when considering real magnets. 
The latter circumstance is apparently connected 
with the fact that in the theory of ferromagnetism 
it is most convenient to represent the Hamiltonian 
in terms of the operators of the momenta, whereas 
in spectroscopy use is made of the energy matrix 
representation. 

Up to now only a few specific results have been 
obtained for ferromagnets with several electrons 
per atom. Liu, [SJ using the method of Young pat
terns and several additional assumptions, con
firmed the form of the exchange Hamiltonian pre
viously used by deGennes in the theory of magnet
ism of rare-earth metals. [ 41 A paper by Kondo,[ 51 

devoted to galvanomagnetic effects in ferromag
nets, contains several interesting formulas, but 
the methods whereby they are derived are not in
dicated. Finally, Kaplan and Lyons[ 61 recently 
calculated the indirect exchange interaction in 
rare-earth metals in a second-order perturbation
theory approximation and obtained new terms in 
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the Hamiltonian which led, in particular, to the ap
pearance of exchange anisotropy. The latter paper 
is the only one employing the formalism of the the
ory of addition of momenta, but in the same form 
as in the theory of spectra. 

We propose in this paper a method which makes 
it convenient to use the Hamiltonian of a system of 
electrons containing a group of equivalent elec
trons in ferromagnetism theory. This method is 
based on the generalization of the known formulas 
for converting from single-electron Fermi second
quantization operators to the operators of the spin 
momenta, to allow for the orbital states and for 
formation of a bound group with arbitrary resultant 
spin, orbital, or total momenta. The corresponding 
coefficients can be obtained in simple fashion on 
the basis of the theory of j -coefficients. The 
method permits ready calculation of the conditions 
of applicability of the Heisenberg approximation. 
We also consider concretely the Coulomb and ex
change Hamiltonians between the conduction elec
trons and the f-shell in rare-earths, new terms in 
which are of interest to the theory of electric and 
magnetic properties of rare-earth metals. 1> 

1. TRANSITION TO THE REPRESENTATION OF 
THE MOMENTUM HAMILTONIAN 

The case S > % is realized in practice if the 
system includes a group of electrons whose inter
action with one another is much stronger than all 
the remaining interactions (crystalline field, exter
nal field, etc.). Such a group behaves like a unit 
and can be characterized with good accuracy by 
the quantum numbers of the entire group, S, L, J, 
etc. As is well known, the Coulomb and spin-orbit 
interactions are diagonalized in the { SLJ} interac
tion, and the remaining interactions can then be 
regarded as perturbations. 

The wave function of the system of n electrons 
can be constructed from the single-wave functions 
in the usual manner in the form of a determinant, 
and will depend on n sets of single-electron quan
tum numbers. The transition from this represen
tation to the representation of general quantum 
numbers is realized with the aid of the coefficients 
for vector addition and the so-called fractional 
parentage coefficients of Racah. [ 21 For example, 
for two equivalent electrons (n = 2) we have in the 
case of a Russel-Saunders coupling 

llsuch Hamiltonians were not obtained by Kaplan and 
Lyons[•], who considered directly the second-order perturba
tion theory approximation and took into account only part of 
the terms of like order. 

'If SL~tM (l2) = ~ Cz::.~zm,C 1%~, '/,cr;¢zm1cr1, lm,cr2 (rish r2s2) · ( 1) 
m11n:JO'JC12 

Here riSi are the spatial and spin coordinates of 
electrons 1 l 1 m, and a are the single-electron or
bital, magnetic and spin quantum numbers, SL!lM 
are the corresponding quantum numbers of the con
figuration l 2' and 1/J is the determinantal two
electron function. In place of the Clebsch-Gordan 

coefficients CJJil J , it is more convenient in 
tilt 21l2 

concrete cases to use the Wigner 3j -symbols 

(/1 /z /)=(-1}J~-M~t(J]-~/,Cjlt,J,~t, [1]=21+1. 
llt !12 -11 (2) 

The wave function of the configuration zn (n > 2) 
can be obtained by successive construction from 
(1) by means of the formula 

n (-1)n-i 
'l'sL~t~r(Zn) = ~-'----==--~ 

i=t in S'L'JA.'M'ma 

(3) 

where G~~L' are fractional parentage coefficients 
which relate the terms S' L' of the initial config
uration l n-t with the term SL of configuration 
zn. The wave functions ( 3) can be set in corre
spondence with the second-quantization operators 
A_[, and Ar (r = {ySL!lM}, y-the remaining quan
tum numbers contained in the complete set r). The 
operators A r and A r are connected with the 
single-electron Fermi operators a~ and aA 
(A = {lma}) in the same fashion as the function "lltr 
is connected with the functions 1/JA, and the prod
ucts A }A r are ''occupation numbers'' pertaining 
to the entire system of n electrons. The symmetry 
properties of A r can be obtained from the indi
cated considerations (see Appendix 1). Simpler 
and more convenient for our purposes is a differ
ent method of defining the operators A r intro
duced by us, consisting in expressing them in 
terms of the momentum operator J. Such a defini
tion is possible, naturally, for a group of states 
with specified order of J, differing only in the 
value of MJ, that is, for example for states be
longing to the given term SL in the {SLilM} repre
sentation, or to the given multiplet SLJ in the 
{SLJMJ} representation (for more details, see 
Appendix 2). 2 > 

The momentum operator 3 (like any other ad-

2)Jn this paper we confine ourselves to the case of J. A 
similar generalization is possible also without this condition; 
by J in (4) and (5) we can mean either the spin, the orbital, or 
the total momentum. 
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ditive operator) can be written in the second
quantization representation in the form 

J= ~ (JMJ!}!JM/)AjMJAJM~• (4) 
MJMJ' 

the matrix elements in ( 4) being expressed in 
terms of the 3j Wigner symbols 

(JMJ !fz I JM/) = {J.MJ, M/ MJ 

= (-ifJ+MJ VJ(J + 1) [J] (:J -~/ ~)' 
(JMJif±!JM;) = IP/" (MJ)fJMJ• M~1±1 

= (-1fJ±MJV2l(J + 1) [JJ (=t= ~J ±~/-2 ~)' 
<pJ±(MJ)= [(J±MJ)(J=t=MJ+1)]'1•. (5) 

Relations (4) and (5) are generalizations, to arbi
trary J, of known relations (for J = 1/ 2) between 
the electron operators and the momentum opera
tors. Indeed, when J = 1/ 2 we obtain (by adding the 
normalization condition) 

jz = 1/2(a•/,+a%- a-•f,+a_•;,), 

]± = a±'!,+a+'f,, a•1,+ay, + a-•:,+a_y, = 1. (6) 

For J > 1/ 2 the system ( 4) does not suffice to 
determine all the possible combinations of the 
operators Ai\1: AM_J. Therefore, in the general 
case, it is necessary to write down expressions 
for JU, J, .... , j 2J in analogy with (4) and solve 
the obtained system relative to the bilinear combi
nations of the operators AMJ· It follows, there
fore, that in the general case the second-quantiza
tion Hamiltonian in the operators AjMJ A 1JMJ can 
be reduced to a reRresentation in terms of the mo
mentum operator j, the components of the latter 
having a degree not higher than 2J. In many con
crete cases, however, this degree can be lower, 
as will be shown later. 

Let us apply the described method to an analy
sis of electrostatic interaction of a system con
sisting of two groups of electrons l p1 and l f2. In 
the second-quantization representation we have 
(without account of the change in the configuration) 

where 

(8) 

Here Pij is the permutation operator and the inte
gral signs denote integration over the spatial co
ordinates and summation over the spin coordinates. 
In (8) we have retained terms corresponding to the 
interaction of electrons from different groups, 
since the electrostatic interaction within each of 
the groups is diagonal and is included in the energy 
of the corresponding terms { ySL}. 

Expression (8) can be readily represented in 
terms of single-electron matrix elements, it be
ing sufficient to separate one arbitrary electron 
(by virtue of the equivalence) from each group. 
Thus, in the case of a Russel-Saunders coupling, 
substituting (3) in (8), we have 

' ll>(f1f2f3f4)=n1n2 ~ fT(G88 AfLk,CLLkl)'!Mk, 1 
- k k k k' kmk 

{r4'Hm~~,Ha~~,l h=! 

X <'lr,•r,•«Sr,•r,• {Q ( l1m1, l2m2, l1ma, l2m4) 6a,a,6a,a, 

-I ( l1m1, l2m2, l2m,., l1ms) 6a,a,6a,a,], (9) 

where Q and I are the ordinary Coulomb and ex
change single-electron matrix elements, and the 
6-symbols have appeared in (9) as a result of the 
orthogonality of the corresponding states. 

In the Coulomb part of (9) we can immediately 
sum over the spin projections, using the equality 

(10) 

that is, the Coulomb terms have nonvanishing 
matrix elements only between states of equal mul
tiplicity. If we confine ourselves to a single state 
also in the exchange part, then it is likewise easy 
to carry out in it the summation over the spin pro
jection. In fact, when S1 = S3 and S2 = 84, using the 
formula for summing 3j coefficients, [ 71 we have 

(11) 
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Alternately, substituting explicit expressions for 
the 6j -symbol [ 61 and using (5), we find that ex
pression (11) is equal to 

1/2b~t,Jtabl1,11•+2d(StS2S{S{)(!lt ISd !la)(!l2IS21 !l4), 
d(StS2S{S{) = [S{]-1 [S21-1bs,s,'±'t,(bs,,s,'±'/,- bs,s,'+'f,). 

(12) 

Considering further only matrix elements which 
are diagonal in L, we have for the allowed terms 
SL of the l n configuration the following relation 
(i=z,±): 

~ (fLt lSi I !la)A~L .. ,M,ASLJ1aM3 = eLM,Ma(L)Si. (13) 
...... 

A formula of the type (13) was already used by 
Kondo[ 51 to separate the spin and orbital opera
tors in the case of a single electron. The functions 
®LM1M2 can be calculated in each concrete case, 
but at present we are interested only in the form 
of the spin part. 

Using (13) and taking (9) -(12) into account, we 
obtain in lieu of (7) 

X eL,M,M,eL,M,M, [Q(ltmt, l2m2,ltma, l2m4) 

- N2 + 2d(StS2St'S2')} (S1S2)/ (l1m1, l2~. l2m4, l1m3)]. 

(14) 
Inasmuch as (14) is valid, in particular, for the 
case of localization of groups on different sites of 
the crystal lattice, we have proved by the same 
token, assuming orthogonality of their wave func
tions, the validity of the Heisenberg approxima
tion for a system of two groups of equivalent elec
trons, in contradiction to the deductions of Izyu
mov[SJ (which are erroneous from our point of 
view), who attempted to consider in the represen
tation of single-electron functions exchange inter
action in the presence of several electrons per 
atom. 

From the foregoing deduction we can clearly 
determine the conditions for the applicability of 
the Heisenberg model: 1) the interaction of elec
trons within the group is much larger than the in
teraction between the groups and other interactions 
of the crystalline-field type; 2) the spin-orbit in
teraction is much smaller than the electrostatic 
interaction between groups (possibility of repre
sentation (13)); 3) the matrix elements of the elec
trostatic interaction between electrons from dif
ferent groups and terms of different multiplicity 
are small and can be discarded, which is essen
tially valid when condition 1) is satisfied. 

Conditions 1) and 3) are equivalent to the 
Russel-Saunders conditions, while condition 2) is 
equivalent to the case of a strong crystalline field. 
We emphasize that in the case under consideration 
there can appear no higher powers of the scalar 
product (S1S2)n (n > 1), so long as we stay within 
the framework of the pair interactions between 
electrons. This is clearly seen from formula (11), 

where IJ.Lt - JL31 and I JL2 - JL 4 1 cannot be larger 
than unity. It is interesting to note that the orbital 
part of formula (14) can be transformed in similar 
fashion to the Hamiltonian of the orbital momenta, 
the latter having the form of scalar products 
(L1L2)n if the single-electron Coulomb and ex
change integrals do not depend on the magnetic 
quantum numbers. 

The application of the Heisenberg Hamiltonian 
( 14) to the case S > 1h is hardly meaningful when 
it comes to 3d-metals, since the Russel-Saunders 
coupling in such metals is broken by the strong 
crystalline field. On the other hand, in the case of 
rare-earth metals, it is necessary to take into ac
count beforehand the spin-orbit interaction inside 
the f-shell and this, as will be shown further, leads 
to essentially new Heisenberg terms. 

2. INDffiECT EXCHANGE WITH CONDUCTION 
ELECTRONS IN RARE-EARTH METALS 

As shown by numerous experimental data, a 
good approximation for rare-earth metals, with the 
exception of Eu and Sm, is the Russel-Saunders 
coupling with the formation of total angular mo
mentum J = L + S. The corresponding wave func
tions characterized by a set of quantum numbers 
{SLJMJ} and the transition from the representa
tion {SLJLM} (see (3)) is by means of the transfor
mation 

(15) 

An analogous relation exists for the operators 

(16) 

For the electrostatic interaction we shall have 
again the Hamiltonian (7), where now ri = SiLiJiM~. 
Since, apparently, the direct exchange between the 
j -electrons and the rare-earth metals is quite in
significant, the greatest interest is attached to 
consideration of exchange with conduction elec
trons. The latter will be characterized by quantum 
numbers k and a, where k is the quasimomentum 
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and a the z-projection of the spinY The Hamil
tonian (7) between the conduction electrons and the 
f-electrons localized at points v in the configura
tion fn is of the form (c is the index of the con
duction electron) 

n 

ic (r. c)= ~ ei (k-k') v (r t ka I' ~ e2 
.r,r,kak'a' i=l I r;- rc I 

( 17) 

Inasmuch as the matrix elements in (17) are 
much smaller than the distances between the SL 
terms and also between the levels of the multiplet 
with different J, we can retain in the sums over 
r 1 and r 2 only the terms with {S1L1J1} = {S 2L2J 2}. 

Then, taking (10), (12) and (15) into account we can 
again transform (17) to one-electron matrix ele
ments Q and I: 

X {•\•11-'llaa' Q (mtkmsk')- (1/slll'-11-' l>aa' 

+ [S'r1 (lls, S'+'f,- t'Js, S'-'f,) [2t3oa' (IllS • I !l') 

+ l>a, •r, t3a·, -''• (Ill s-1 ll') + t3a, _.,, t3a',''· (!lIs+ I ll')l) 

X I(mtkk'm3)}ei(k-k'J" A:MJAvMlaka+ak'a'• (18) 

The indices {SLJ} have been left out of the opera
tor A, being constant. The expression for Q and 
I can be obtained in the form of a function of the 
angular variables of the vectors k and k', using 
the following choice of wave functions: 

'li'n,r,m(r) = Nn,t,Rn,r, (r) Yt,m (il', <p) (l1 = 3), 

00 

'li'k (r) = eikr = y-'1• 2] [l] i1 iz (kr) Pr(cos il'kr), (19) 
1=0 

where Yzm are spherical functions, Pz Le
gendre polynomials, jz spherical Bessel functions, 
Nn0z the normalizing factor of the atomic nol func
tions, and V the volume of the crystal. The de
scribed method makes it possible in principle to 
consider the expansion of (19) in terms of arbi
trary l. We confine ourselves here to terms l = 0 
and l = 1 (see Sec. 3 concerning terms with l = 2), 
for even in this case we obtain new results and in 
the general case this expansion converges quite 
rapidly. We know, however, that when we confine 

3 >No difficulty is entailed in generalization to the case of 
the Bloch electron with the set llkal. 

ourselves only to the term l = 0 we can consider 
neither problems connected with magnetic aniso
tropy[ 61 nor many kinetic effects in ferromag
nets. [ 5• 91 Using the well known expansion 

1 oo r <P _.... 
- = ~ ----:p:tlpP (cos r1r2), 
rl2 p=or > 

(20) 

we obtain (k and k' are unit vectors) 

Q(l1m1. k, l1mt', k') = 4:n::ez [t'Jm,m,' {Foo<0l + 3Fu<0l(kk')} 

+ B1(li)Fu<2>T m,m,•(k, k')J, 

p 

+ ~ ~(l~,p)Gu<P>T:::,m,•(l1,p,k,k') ], (21) 
p,m=-p 

where 

B (l)=(- 1 )z.+1 ~(Z1+1)[ZJ[I(2Z1 -2)1 ]''• 
1 1 5 1 (2l1+3)! 

I l l 2) T m1m1•(k,k') = ~ (-1)m.-!-m 1 1, Tzm(k,k'), (22) 
m -m1 m 1 m 

Tsm(k, k') = ~ (-1)m,( 1 1 
1 

2 )tm,m.' 
m,m,' ms - ms m 

j 6 (3k.kz' - kk') 

= ± 3 y6(kJ/"' + k"' kz'), 
3 y6k"' k'"', 

• 
tm,m2 ' = Ytm,(i!'kQlk) Y1m,,(iJ'k,(jlk,}, 

m=O 
m=±1; 
m=±2 

T::,m,,(Zt.p,k,k')= ~ (-f)m,+m,+m( lt p 1 ,) 
m,m.' - mt m mz 

Gu·(P) = N':..1, ~ r12rs2 dr1 drsRn,t, (r1) it (krs) 

X R,.1, (rs) /dk'rt)• (24) 

Substituting (21) -(24) in (18) and expressing all 
the Clebsch-Gordan coefficients that remain there 
in terms of 3j symbols, we obtain sums of products 
of 3j -symbols, for the summation of which we can 
use a convolution formula which has already been 
used in ( 11), and also the following formula: [ 71 

2j (- 1)~f=t<l;-n;) ( l1 h ls ) ( Zs is la ) 
n,n,n,n,n, nl ml - ns ns ms - ns 
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~ [ad [IZ2) ( -1) 2a,-J!,-!!2+i,-i2+ia+i,+i0+Z5+Z4 

a,.a21J.1J..L2 

X { h j3 a1 } { a1 h a2 } { a2 js h } ( h ja a1 ) 
z,. l2 la . ls ~ l4 l1 l2 ls m2 ma -Ill 

X ( a1 j,. a2) ( a2 js h ) (25) 
Ill m,. 1-t2 - 1!2 ms m1 

Using also relations (4) and (5), we obtain the Ham
iltonian of the momenta in the form of different in
variants made up of the vectors k, k', and J v. 
(The Hamiltonian has been written out for the gen
eral case of the configuration zr. with l1 = 3 in our 
case) 

.1f(l.n[SLJ], c)= :ftcouz + :#e.x, ifex = .1tex(OO) 

+ §'t.)0l(11) + 3t'ex<1l(11), (26) 

~ 4nN e2 ""' (o} (o) (2) "'couz=n-V- LJ {(Foo +3F11 )6kk'+B2 (l1SLJ)F11 
kk'\>a 

X [3 (k, k'J.)- 21 (J + 1)l}ei (k-k') "aka+ak'a, (27) 

where 

(k, k'i.) = (kJ.) (k'J.) + (k'J.) (kJ~). 

§e.x(OO) = -n 4n:e2 ~ (-1)J-S-L-l 

\>kk'aa'S'L' 

X ( [J] [S] )'/• G <Z.J (Gs!' ·)2 [__!__ 6 , { 0 J J} 
[ld 00 s L 2 aa L s s 

_ 2 (<'Is. s'+'t,- <'Is, s•-•;,) [S (S + 1) ]'/• 
[S'] J(J + 1) 

{a2 J 1} h i (k-k') " + 
X S S L scDa,a,e aka ak'a', (32) 

where 

<Da, (k, k', J) =-V J (J + 1) [J] (Jtl cDa,J (k, k', J), 
(33) 

and cl1a1a2 = cl1a1a2(k, k', J) has in accordance with 
the possible values of a 1 and a2 the form 

cDJ-I J = N (!) 1 [x1 + i(2l- 1)x2- 4/2xa 
' 1(21- 1) 

- (21- 1)x4 + ix1], 

(]) - N(1) 1 J, J- -1-(1-+-1)-(- x1 + ix2- x4- ix7), 

cDHI J = N(1) 1 [xl- i(21 + 3)x2 
' (1 + 1) (2/ + 3) 

- 4(/ + 1)2x3 + (21 + 3)x4 + ix1], 

1 
«J)J-!,J-1= a(J-1)a.2(1-1) (X.+X2), 

1 
I.DJ,J-1= a(J)a!2(J-1) (X!-X2), 

- i(J- 1)x7, 

(]) - 1 X X 
J, J+!- a(J) a.2(1) ( 3 + ,.) , 

(34) 

1 
(])HI, HI= a(J+1) a 12 (J) (Xa- X.- 2ix2 + 2(2l+3)x4 

+4i (1+ 1) 2x5), 

x3 = 1[- ix2 + (21 + 3)x,. + 2i(1 + 1) 2 xs], 

X,.=- X1- 2(1 + 1)x3 +(21 + 3) (J + 1)x6 - i(l + 2)x7, 

where 

N(1) = 114(1]-'i•[J(J + 1) ]-'1•, a(J) 
{ 1 J J} h ' J . (k k') + 

X L S S (sJ.) e• - "aka ak'a', (30) = [21(21 + 1) (21 + 2)]'1·, 

.it'ex(o) (1i) = _ n 4nNe2 ~ 1._ (J] (L] [ld ([1 p 1)2 
V •kk'paS'L' 2 0 0 0 

X Gn <Pl ( G~!£·)2 ~ Unl [ad {p L' ju }2 
iua1 L 1 l1 

X { jn at S} 2 Ill (k k' j) i (k-k'l" + J L 1 a, • ' • e aka ak'a, (31) 

t. N • :Je.,}I> (11) =- n ±1t e· ~ (-1)J-S+L 

V \>kk'aa'S'L'p 

18 (<'Is· s •; - <'Is· s •; ) 
X ' -[S'] ' +. (J] (L] [ld -v S(S + 1) [S] 

X (lt p 1)2 Gn<Pl (G~!£·)2 ~ (-1)2a,+l 

0 0 0 iua1a, 

{ p L' j 11}2 {J 1 a1 } {a1 1 a2 } 
X Unl [ad [a2] L 1 :z1 in S L L S j 11 

a1 (J) = [ (2/ + 1) (21 + 2) (2/ + 3) ]'I•, ( 35) 

X1 = {J, (k, k'J)}, X2 = {J: [k, k']J}, X3 = (kk')J, 

X4 = ([k, k'], J], Xs = [k, k'], X6 = k'(kJ) + k(k'J), 

X7 = ( (k, J] (k'J) + (k' J) [k, J] + (k ++ k')), 

{A, :8} = ~:8 + :BA.. (36) 

Formulas (27)-(36) solve the problem of obtaining 
the Hamiltonian and exchange interaction between 
conduction electrons and rare-earth lattice ions 
with account of the next term of the expansion in 
the parameter (kpr0) ~ 0.5 [ 31 for the entire series 
of rare-earth metals, since the numerical value of 
the coefficients can be readily calculated for each 
concrete set { SLJ} with the aid of the existing 
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tables of 6j symbols (for a bibliography see [ 21 ). 

The fractional parentage coefficient can be taken 
from the tables given in the book of Sobel 'man [ 21 

for the configurations f 1-f 7 , and from Racah's 
paper[1l for f 8-f 13• 

Thus, for the case of the Hund terms, substi
tuting the explicit expressions for the 6j symbols 
and using the equality established by us 

~ (G ~L •) ( 6s, s•-'f, - 6s, S'+'l,) = ~ 
LJ s L [S'] n' 
S'L' 

(37) 

where n is the number of electrons in the config
uration zn, we obtain from (30) 

• 4nNe2 G~~> [ 1 2 .. ] 
?ffe:x:(OO)=-n-V- ~ -[l] z-6aa•+ n(g-1) (sJ.) 

vkk'aa' I 

(38) 

which coincides with the deGennes Hamiltonian[ 41 

(g-g factor). The Hamiltonians (31) and (32) have 
been obtained in this general form for the first 
time and are of considerable interest for the analy
sis of magnetic, electric, and other properties of 
rare-earth metals. Terms containing products of 
the vectors k and k', for example, were used re
cently in the calculation of the spontaneous Hall 
effect in ferromagnets. [ 5• 9 1 

After transforming and reducing like terms in 
(31) and (32), the exchange Hamiltonian takes the 
form 

:ieex (zn [SLJ], c) 

= ~ ei (k-k') "aiia ak'a' {A[~ + 2 (g -1) (sJ~)J 
vkak'a' · 

+ (B (k, k'J.) + tC [k, k'] i. + D (kk')) 6aa' 

+ E {(~J.), (k, k' J~)} + iF {(si.), [k, k'] J.} 
+ c (sJ~) (kk') + ill [k, k'J ; 

+ 1 r<sk') (ki.) + (sk) (k' .i.]), 

with all the real coefficients of B = BsLJ(k, k') 
etc. calculated from expressions (30)-(35). 

(39) 

We see from (39) that the highest power q of 
the invariants (JY) is equal to three, which corre
sponds to its non-Heisenberg character, and is 
connected with the fact that we took only terms 
with l ::::: 1 in the expansion (19) for the conduction
electron wave. fu the general case, q = 2(Z + 1/ 2) 

= 2j when j < J, and q = 2J whe_n j > J in accord
ance with the general rule indicated above. The 
most important difference between ( 39) and the 
deGennes case is the direct connection between the 
vectors of the quasimomenta of the electrons and 
the momenta J v of the f-shells, which is manifest 
in the presence of the corresponding invariants in 

( 39). Such a connection makes it possible to con
sider, from the microscopic point of view, the de
pendence of the magnetic properties of the rare
earth metals on the k-space characteristics of the 
system of conduction electrons, and in particular 
on the shape of the Fermi surface, [ 101 wherein 
the corresponding coefficients are known functions 
of {SLJ}, that is, they can be traced in the entire 
group of rare-earth metals. It is also of interest 
to consider the inverse problem: to ascertain the 
dependence of the properties of conduction elec
trons on the character of the ordering of the mag
netic ions, as was done, for example, for Heisen
berg exchange in earlier papers, [ 111 where a split
ting of the energy bands in antiferromagnets was 
obtained as the result of appearance of new Bril
louin zones. 

Another important consequence of the Hamil
tonian (39) is the occurrence of indirect exchange 
of an entirely new type. This exchange differs es
sentially from the deGennes exchange in that it 
takes place without perturbation of the conduction
electron spin. The physical picture consists in the 
fact that the total momenta J v , which include the 
orbital components, can exchange with one another 
via the orbital momenta 1 of the conduction elec
trons, something which is excluded in the deGennes 
model, which corresponds to l = 0. By way of ex
ample we consider in the next section one of the 
terms of the Hamiltonian (39), leading to an ex
change of this type. 

3. CALCULATION OF THE INDffiECT 
EXCHANGE 

After calculating the second approximation of 
perturbation theory with the Hamiltonian (39), we 
obtain the effective exchange Hamiltonian contain
ing not only the usual Heisenberg invariant, but 
also terms of the type (J v1J vl and (J v1J vl 
which, as already noted, corresponds to a degree 
q = 2(Z + 1/ 2) (l = 1) of the Hamiltonian (39). 4) In 

4 )Such terms were left out in the paper of Kaplan and 
Lyons[6 ] as a result of the approximation employed there. 
They considered terms only of the type l = 0, l• = 2 and l = 2, 
l• = 0 which have the same order of magnitude in the parame
ter (kFr) as those with l = 1 and l' = 1 considered by us. The 
terms taken into account in[6 ] can be readily obtained in our 
procedure, but they are not included in the Hamiltonian (39), 
since they are of no interest for kinetic problems (the absence 
of matrix elements with k,k' f 0) and their role in the indirect 
exchange was considered in[6]. 
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this paper we consider by way of an example the 
contribution to the indirect exchange made by only 
one of the new terms, namely the term with coeffi
cient C in (39) in which there is no spin operator of 
the conduction electron. This coefficient was calcu
lated by us for all the main terms of the entire 
series of rare-earth elements, by summing the 
products of 6j symbols, and was found to be simply 
proportional to ~ (g - 2) for all the elements 5 > 

C ' 4:rtNe2 G < k k' 9 2) sLJ(k,k)= V u2l(' )140(g- . ( 40) 

The second-approximation correction to the energy 
as T - 0 takes the form 

E (2l_- "' ex - LJ 
I c SLJ (k, k') 12 

8k'a- Bka 

X ([k, k'] J.J ([k, k'] J.,) ei(k-k')(v,--v,J. ( 41) 

Anisotropic exchange in (41) can occur both be
cause of the non-sphericity of the conduction
electron energy band, and the difference in the 
distances to the various nearest neighbors. The 
first of these causes gives the intrinsic anisotropy 
at lit = ll2 , while the second leads to anisotropy 
only when lit i= ll2• The anisotropy of k-space 
should be taken into account from the very begin
ning, and therefore to estimate the order of mag
nitude of the effect we shall consider only terms 
with lit i= ll2• Integrating over the angles in (41) 
we obtain for ll1 i= ll2 

"' ICsLJ(k, k') 12 , A A 

Eex(2) =- Ll [<pi(k, k, Rv,vJ (Jv)v,) 
cr, "'*v2, k<k<l> Bk•cr- Bkcr 

k'>k<l> 

(42) 

where rv,v, = Rv,v,/Rv,v, and 

<pi(k, k', Rv,v,) = h(a) sin,a' ·+ h(a') sin a- 4h(a)h(a'), 
a a 

sin a' , sin a 
<ra(k, k', Rv,vJ = 6h(a)h(a')- h(a)--,-- h(a )--, 

a a 

h(a) = a-3 (sin a- a cos a), a= kRv,v,, a'= k'Rv,v,. 

Relations (43) have an oscillatory Ruderman
Kittel form, but differ somewhat from the usual 
form because of the specific features of the ex
change mechanism. 

(43) 

5 lin (40) we have retained only the largest term with G~:) 
(p = 2), and the term with p = 4 has been omitted for simpli
city. 

Assuming as a rough estimate Ek'a - Eka ~ E F 
'"" 5 x 10-12 erg and CsLJ(k, k') = const = (g- 2) 
x 10-14 erg, [ 51 we obtain 

Ee/2l~(g-2)2J(J+1)·5·10-17 erg. (44) 

The quantity (g- 2)2 J(J + 1) takes on values from 
10 to 40, and consequently E <i~ reaches an order 
of several dozen degrees on the temperature scale, 
which qualitatively corresponds to the value of the 
anisotropy observed in Dy[ 121 and Ho. [ 131 For a 
more detailed investigation of the anisotropy en
ergy it is necessary to calculate the contributions 
of the remaining terms, including those taken into 
account in [ 61 , which calls for a special analysis. 
We wish only to note the existence of a new aniso
tropic contribution '""(g- 2) 2 J(J + 1), which has a 
direct physical meaning, namely, it is proportional 
to the orbital component of the total angular mo
mentum of the rare-earth ions. We see from (42) 
that there is also an additional contribution to the 
isotropic exchange, of the same order of magni
tude as ( 44), as a result of which the theoretical 
dependence of the Curie point on the element num
ber, proposed by deGennes, is slightly altered. [4] 

The author is grateful to S. V. Vonsovskil, 
E. A. Turov, and K. B. Vlasov for a discussion. 

APPENDIX 1 

INTRODUCTION OF THE ELECTRON GROUP 
OPERATOR Ar 

To illustrate the formulas of the type (7) and 
( 17) of the text, let us consider the simple case of 
a system of three electrons, two of which are 
equivalent, that is, a configuration of the type 
z2 z1• The Coulomb Hamiltonian of such a system, 
in the representation of the single-electron quan
tum numbers in the single-configuration approxi
mation, is of the form 

X 1jJ,_,, (p3) do do' a~ ai, a't, a,_,, a,_,, a,_,,, (I) 

Here Q·· - e2(1- P")/r"· A.= l m a; lJ - lJ lJ• ' ' 
p = r, s, !fJA.1A.2(p1> p2) are the determinantal func-
tions of two equivalent electrons. Expression (I) 
can, of course, be written also in terms of fully 
symmetrized functions of three electrons. The no
tation presented here implies further diagonaliza
tion of the Coulomb interaction between the equiv
alent electrons. 
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In fact, let us denote 

1 + + + --= a,., a,., = b,.,,_, 
l'2 

(II) 

and let us introduce new operators A r = AsL11M 
by means of the formula 

(III) 

By virtue of the orthogonality relations of the 
Clebsch-Gordan coefficients, the inverse relation 
also holds true: 

AsLp.M= (III') 

From the symmetry properties of the operators 
b;>.,1;>.. 2 and of the Clebsch-Gordan coefficients with 
respect to permutation of A.1 and A.2 it follows im
mediately that As4tM * 0 only for even S + L
the well known rule for the two-electron configura
tion. 

Substituting (III) in (I), we obtain 

LM Sp. 

Czm, lm, C'ha" 'f,a, 

L'M' B'IJ.' \ 
X Czm1', lm,,C•f,a1', '!>a,' .) 1jJ,_,,_, (P1P2) 1jJ,_, (pa) 

X Q;j 1jJ,_,,,_,, (P!P2) 'ljl,_,, (pa) do doJ Ar+ a~ a,_,, Ar'· (IV) 

But by definition (see formula (1) in the text) the 
product of the Clebsch-Gordan coefficients in (IV) 
allows us to go over in the wave functions to the 
SLf1M, that is, 

Jf=~ ~ ~ '¥r*(l2)1jJ,.,*(pa)Q;j'¥r,(l2 ) 

(V) 

The transformation of the Hamiltonian from the 
form (I) into (V) is simply a transition from the 
representation of the single-electron quantum num
bers to the {SLf.lM} representation. Since, however, 
the Coulomb interaction between the electrons l 2 
is the angle in this representation, we are left 
after its separation and evaluation of the energy of 
the terms SL in (V) with only the interaction be
tween the electrons in the state l' and SL. Since 
usually the latter are much smaller than the en
ergy distance between the different terms, further 
solution of the problem is greatly simplified. 

In analogy with the foregoing, we can obtain also 
the general formula (7) of the text. The corre
sponding operators Ar for n > 2 can be con
structed successively from the single-electron 
operators a;>.. with the aid of the relation 

Ar+W) = ~ Gff,~,cf:,~,,lmCff-~,,.,,aAr,+(Zn-1 )a,.+. (VI) 
!""-

Formulas (II), (III), (III'), (VI) give the ex
plicit form of the connection between the group 
operators A r and the ordinary Fermi operators. 

APPENDIX 2 

CONNECTION BETWEEN THE MOMENTUM 
OPERA TORS AND THE OPERA TORS Ar 

The derivation of formula (V) as given in Ap
pendix 1 makes the meaning of formula ( 4) of the 
text perfectly obvious. This formula represents 
the momentum operator in terms of the second
quantization operator of the group of electrons that 
produce this momentum, in a representation where 
32 and .Jz are diagonal. Such a representation is 
convenient when J is a good quantum number .s> 
Obviously, the system of n electrons in a state 
with fixed values of J and with arbitrary possible 
values of MJ (all the remaining quantum numbers 
are likewise fixed) can in this case be described 
either with the aid of 2J + 1 occupation numbers 
AjMJAJMJ or in terms of 2J + 1 quantities 

(J z)o, .J z ... (J z)2 J. The nondiagonal combinations 
AjMJ ± mAJMJ are expressed in th~s case in 
terms of the operators of the type (J ~m(1 :::;: m 
:::;: 2J). 

The transition from one description to the other 
is given by formula ( 4) and by the corresponding 
formula for the higher powers of Jz, J±. The co
efficients of the formula (4) can be easily deter
mined from the condition that the matrix elements 
of the right side of formula (4) in the representa
tion of the occupation numbers give the matrix 
elements of the momentum 3. 

Such a definition takes into account all the prop
erties of the operator 3, and in particular it is 
easy to verify the satisfaction of the commutation 
relation. 

Let us consider, for example, the case of a two
electron configuration with specified values of S 
and L. Then, according to ( 4) 

£z = (-1)-L ~ (-1)M)'L(L + i)[L] 
MM' 

6 >In the general case we can introduce in analogy with (4) 
operators that are not diagonal in J, but they will have a dif
ferent meaning, since the momentum itself is no longer con
served in this case. 
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L+ = (-1)-L L] (-1)M12L(L + i)[L] 
MM' 

x( L L 1) + 
+M -M'-2 1 _ AsL!lMASL!lM'· (VII) 

Omitting henceforth the fixed indices SL11, we 
obtain for the commutator 

( L L 1) + 
X +M1 -M/-2 1 [AMAM,',AM+AM'] 

=L(L+1)[L]1Z L] (-i)M+M•(L L, 1) 
MM'M,M,' M -M 0 

X ( L L 1) {A +[A +A ]A +Mi -M/-2 1 M M, , M' M,' 

--AM,+[AM+, AM,,]A"'d. (VIII) 

Since in accordance with (III') 

[AM+, A~I'] = ~ C[:,':{ m,C[:,~,'m,'C~~ a,C~\ <f/ [bt.~o, b,.,,~.,,], 
(IX) 

and the commutator 

where <i>A1A.2A.!A.2 is the operator term containing 
the combinations of the operators of the type 
a{ ax, and consequently makes no contribution to 
expression (VIII), since the groups of six opera-

+ + + tors a A a, a;,_ a, 'a,' a.' obtained there from 
1 "2 3 "3 "2 "1 

it have only zero matrix elements for the two-
electron functions. 

Using the symmetry properties of the Clebsch
Gordan coefficients and the parity of the number 
S + L, and carrying out the summation, we find 
that the non-operator part of the commutator (IX) is 
simply equal to -oM M' and is in fact independent 

' of 11. 
In this case (VIII) takes the form 

{L+,L']=-L(L+1)[L])iz ~ (-i)M+M.(L L,1) 
MM'M,M,' \ M -M 0 

- 6MM 1'AM/AM'} 

or, substituting explicit expressions for 3j sym
bols, we obtain ultimately 

[L+, L'] =- ~M[(L- M1) (L- M1 + 1,)]'/, {6M,MAM+AM,--1 
MM, 

=- ~ [(L-M) (L-M + i)]'I'AM+AM-1 = -L+ 

M (~) 

in accordance with the usual rule. 
Analogous proofs for n electron configurations 

can be obtained with the aid of formula (VI). 
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