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In this paper we report on an experimental investigation of longwave electron oscillations ex
cited by an electron beam in a low-density plasma confined by a strong longitudinal magnetic 
field. The plasma is produced as a result of ionization induced by the beam, the gas pressure 
being approximately 10- 5 mm Hg; the plasma density is comparable with the beam density. 
The oscillations observed in these experiments are not plasma oscillations; the characteristic 
oscillation spectrum consists of a series of harmonics whose wavelengths (A.n) are governed 
by the relation A.n = 2L/n (n is the harmonic number and L is the length of the beam) while 
the frequencies wn are determined by the velocity of the electron beam (v) and the wave
length: wn"' knv where kn = 21T/An· It is shown that the conditions appropriate to the excita
tion of the oscillations, and the spectral characteristics, are in good agreement with the theory 
of longitudinal electron oscillations in a uniform beam-plasma system which is bounded in the 
longitudinal and transverse directions. 

INTRODUCTION 

OF the large variety of oscillations possible in a 
uniform plasma [ 1- 7] perhaps the greatest popular
ity has been received by the longitudinal electron 
oscillations. These oscillations are typically ex
cited by an electron beam whose density n1 is 
small compared with the plasma density n2• [ SJ The 
excitation condition coincides with the criterion 
for Cerenkov radiation of plasma waves w = kv, 
where w is the angular frequency of the oscilla
tions, k = 21T f,\ is the wave number, and v is the 
beam velocity. Depending on the relation between 
the wavelength A. and the transverse dimensions of 
the beam (radius) r 0 the oscillation frequency w 
can either be equal to the electron-plasma fre
quency Wp or considerably lower than wp: [ 3-7] 

for 'A~ro 

In contrast with these oscillations, which are 
characterized by spectra with single frequencies, 
there exist oscillations whose spectra contain a 
series of harmonics. These oscillations (which 
are also longitudinal electron oscillations and are 
also beam-excited) are to be associated with 
wavelengths. 

An= 2L / n, n = 1, 2, 3, ... ( 1) 

(L is the beam length) and frequencies Wn given 
by the relation 
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(2) 

where kn = 21T /A. n while C is a coefficient whose 
meaning will be developed below. 

The present work is devoted to a study of these 
oscillations. The experiments reported herein in
dicate that the excitation of these oscillations re
quires a certain combination of conditions which 
usually hold in an electron beam of finite length 
propagating in vacuum (p ~ 10-4 - 10-6 mm Hg) so 
long as the beam current exceeds some critical 
value which depends on plasma density and the 
beam velocity. It should be noted that the work re
ported here is not the first in this field. Experi
mental investigations of high-frequency oscilla
tions in electron-beams propagating in vacuum 
have been reported earlier by a number of authors 
(cf. for example [S, 10 J). However, the data on the 
oscillation spectrum reported in this earlier work 
were not systematic and thus could not give a de
finitive description of the oscillations. 

The present work has been undertaken in order 
to perform a systematic investigation of the spec
tra of these oscillations, to investigate their char
acteristics, and to study the excitation mechanism. 

1. EXPERIMENTAL ARRANGEMENT 

The investigation of oscillations in an electron
beam has been carried out using the apparatus 
shown schematically in Fig. 1. 

A beam of electrons is emitted by a plane tung
sten cathode which is indirectly heated and which 
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FIG. 1. Experimental arrangement: 1) Cathode, 2) accel
erating electrode (discharge chamber), 3) electron beam, 
4) vacuum chamber, 5) movable anode (beam collector), Ra 
measurement resistance (13 ohms), 6) measurement cable, 
7) probe, 8) grid. 

is 1 em in diameter; these electrons are acceler
ated to an energy of several tens of electron volts 
and propagate along a strong magnetic field in an 
equipotential space along the axis of a cylinder 
with metal walls (30 em in diameter) and then 
finally reach a movable anode. The beam length 
can be varied from 16 to 150 em, the pressure 
(hydrogen) can be varied from 10-4 -10 -B mm Hg 
and the magnetic field can be varied up to 1-5 
x 103 G. In these experiments we measure the os
cillation spectrum of the electron current at the 
anode and on a Langmuir probe 40 mm in diame
ter and 0.8 mm in diameter which is translated 
along a diameter of the beam which can be moved 
along the axis of the beam as well (when the anode 
current is measured the probe is retracted from 
the beam). 

The oscillation measurements are carried out 
as follows: The signal across the measurement 
resistance (for example Ra in Fig. 1) is fed to a 
coaxial cable and a matched load and then to the 
input of a panoramic spectrum analyzer (S 4-8), 
on the screen of which there appears a spectrum 
giving the amplitude as a function of frequency 
(linear scales along both axes). The current oscil
lations at the probe are measured at zero probe 
potential (zero potential is taken to be the poten
tial of the grounded chamber walls); these are 
found to be completely similar to the current os
cillations in the anode circuit. 

In one of the experiments a grounded metal grid 
is placed in front of the anode in order to inhibit 
secondary electron emission; in this case a varia
ble positive potential is applied to the anode. 

2. EXPERIMENTAL DATA 

In Fig. 2 we show typical spectra of the high
frequency oscillations in the electron beam taken 
with different beam parameters. These spectra 
are distinguished by the sharpness, magnitude, and 
number of local peaks corresponding to individual 

FIG. 2. Typical spectra of high frequency oscillations in 
the anode current (b) and the probe current (a, c). The two high 
narrow lines to the left and to the right are frequency markers 

fM, ~ 0 and fM 2 (indicated by arrows). Near the fM, marker 
there are low frequency oscillations (b). a) fM 2 ~ 30 MHz, 
W, ~ 200 eV, I~ 7 rnA, p ~ 7 x 10-6 mm Hg, L ~ 130 em; 
b) fM 2 ~ 30 MHz, W, ~ 500 eV, I~ 51 rnA, p ~ 4 x 10-6 mm Hg, 
L ~ 43 em; c) fM 2 ~ 16 MHz, W1 ~ 140 eV, I ~ 4 rnA, 
p ~ 2.4 x 10-• mm Hg, L ~ 140 em. 

frequencies, and by the relative magnitudes of 
these peaks with respect to the background be
tween them. The "sharp" spectra a and c are 
observed with relatively low currents (I = · -7 rna) 
and low beam energies (W1 = 100-200 eV). As I 
and W 1 are increased the spectrum becomes 
smeared (Fig. 2b). The distance between the indi-
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vidual frequencies increases substantially as W 1 

is increased and as L is reduced (additional spec
tra are shown in Fig. 8). 

However, in spite of the indicated quantitative 
differences the oscillation spectra shown in Fig. 2 
exhibit some well-defined general characteristics 
that may be described as follows: 1) each spec
trum has clearly defined peaks at individual fre
quencies fn (n = 1, 2, 3, ... ); 2) all the gaps be
tween the individual frequencies Mn are found to 
be the same to an accuracy of 10-25%, this differ
ence being equal to the fundamental frequency 

t!fn = fn- fn-1 =ft. (2a) 

In other words, all of the frequencies fn (to the 
accuracy indicated above) are harmonics of the 
frequency f1• The experiments show that the gen
eral features remain unchanged for all beam pa
rameters so long as the current I is smaller than 
some limiting current Imax at which a virtual 
cathode is formed in the beam. In all of the cases 
described here the condition I < Imax is satisfied. 

In a number of experiments we have also inves
tigated the dependence of the oscillation spectrum 
on the beam parameters. These experiments indi
cate that the relation fn = n~f is almost always 
satisfied (to the accuracy indicated above) so that 
it is sufficient to measure ~f in order to obtain 
the characteristics of the frequency spectrum. 
This situation facilitates the measurements appre
ciably since the first harmonic is not always strong 
enough for measurement. 

In Fig. 3 we show the quantity ~f as a function 
of the velocity of the beam electrons for two val
ues of the beam length: L = 80 em (a) and 
L = 150 em (b). It is evident that in both cases the 
quantity ~f is proportional to the velocity v and 
in going from a to b the coefficient of proportionality 
varies as 1/ L. In Fig. 4 we show the dependence 
of ~f on beam length for two values of the pri
mary electron velocity: 

u = 1.04·109 cm/sec(a); v = 0.73·109 em/sec (b) 

It i;;; evident that in both cases ~f is inversely 
proportional to the length of the beam 1/ L and in 
going from a to b the coefficient of proportional
ity varies approximately as v. 

Thus, from Figs. 3 and 4 and Eq. (2a) it follows 
that 

(2b) 

where C1 is a coefficient which, in general, de
pends on the beam density, the plasma density, and 
the velocity spread of the beam. 

It has been found experimentally that ~f is a 

FIG. 3. The dependence of L\f on the velocity of the pri
mary electrons for two values of beam length: curve a for 
L ~ 80 em, curve b for L ~ 150 em. The hydrogen pressure 
p ~ 2 x 10-s mm Hg. 
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FIG. 4. The dependence of 1\f on the reciprocal beam 
length for two values of the energy of the primary electrons: 
a) for W, ~ 300 eV, b) for W1 ~ 150 eV; p ~ 1.8 x 10-s mm Hg. 

relatively weak function of the gas pressure: as 
the hydrogen pressure is increased from 
p = 3 x 10-6 mm Hg to p = 10-4 mm Hg it is found 
that ~f increases monotonically, but in different 
ways, depending on the current and the beam ve
locity, but usually by no more than a factor of two. 

The remaining two parameters, i.e., the beam 
current and the strength of the magnetic field, 
seem to act primarily on the d€tails of the spec
trum, such details being the amplitude distribution 
over the harmonics and the sharpness of the peaks 
in a region of each harmonic; however, in general 
the frequencies of the spectra in the high-frequency 
region examined here are essentially independent 
of these parameters. In all the figures shown here 
H = 3000 G. 

A number of experiments have been carried out 
in order to study the conditions under which the 
oscillations are excited. These conditions can be 
summarized as follows. First, the beam length L 
must exceed some critical value Lc, which is 20-
40 em under the present experimental conditions. 
Starting with L = Lc increasing L increases the 
amplitude of the oscillations (for example up to 
L ~ 75 em); thereafter there is a smooth decay. 
Second, the beam current must exceed the critical 
current 

(3) 
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FIG. 5. The dependence of the amplitude of one of the 
harmonics f ~ 16 MHz in the probe current on beam current for 
two values of the hydrogen pressure: curve a for p ~ 5 
x 10-6 mm Hg; curve b for 3 x 10-5 mm Hg; W 1 = 300 eV, 
L = 135 em. 

This feature is illustrated in Fig. 5 in which we 
show the amplitude of the oscillations of the probe 
current as a function of beam current for a given 
harmonic n = 5 and electron energy W1 = 300 eV 
for two values of the hydrogen pressure: 
a) p = 5 x1o-6 mm Hg b) p = 3 x1o-5 mm Hg. The 
quantity Ic is a relatively weak function of the har
monic number. It is evident that Ic is reduced as 
the gas pressure increases. The critical current 
is a very sensitive function of the velocity of the 
beam electrons. It is evident from Fig. 6 that this 
dependence is given by the relation 

(3a) 

In this sense we can speak of a critical beam ve
locity vc and a critical pressure Pc; if the oscil
lations are to be excited it is necessary that p > Pc• 
v< vc. 

If the excitation conditions are satisfied chang
ing the beam parameters only effects the various 
harmonic amplitudes and the distribution. For ex
ample, when the gas pressure is increased the en
tire spectrum in Fig. 2 is shifted to the right: the 
harmonic number corresponding to the maximum 
amplitude is increased and the magnitude of this 
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FIG. 6. The dependence of critical current on the cube of 
the velocity of the primary electrons for two values of the hy
drogen pressure: a) for p ~ 2.4 x 10-• mm Hg; b) for 
3 x 10-5 mm Hg; c) theoretical dependence; W, is the electron 
energy in the beam, L ~ 150 em. 
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FIG. 7. Dependence of the amplitude of a given harmonic 
in the probe current on distance between the probe and tne 
cathode: a) and b) n ~ 5, f ~ 10 MHz; c) n ~ 8, f = 16 MHz, 
W, = 300 eV, I= 20 rnA, L = 135 em, p = 3.2 x 10-5 mm Hg. 

maximum is increased. The distribution of ampli
tudes over harmonics is also sensitive to beam 
current and electron energy. 

In Fig. 7a we show the amplitude for a given 
harmonic n = 5 taken with the probe located at the 
beam axis as a function of the distance from the 
cathode (the beam length is fixed L = 135 em). It 
is evident that the amplitude of the oscillations ex
hibits a well-defined periodicity along the length of 
the beam. One finds that the spatial period, half 
the wavelength i\.n/2, for n = 5 is 25-28 em, that 
is to say, the relation i\.n/2 = i\jn is satisfied. 

In Figs. 7b and 7c the variation in amplitude 
along the length of the beam is compared for two 
harmonics: n = 5 (b) and n = 8 (c). (This compari
son is made only for the second half of the beam 
(70 em :s L ::s 135 em) ·where the amplitudes of 
both harmonics are large.) It is evident that the 
spatial periods for these harmonics are 25-27 em 
for n = 5 and 15-17 em for n = 8, i.e., in the 
ratio L/5 and L/8. 

Thus the data in Fig. 7 indicate that the wave
lengths for the various harmonics are related to 
the beam length by Eq. (1). 

It has been shown by Fedorchenko et al. uo 1 that 
the secondary electrons ejected from the anode by 
the beam play an important role in the excitation 
of high-frequency oscillations in an electron beam. 

In order to investigate the extent to which this 
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phenomenon is of importance in the present exper
iments we have carried out an experiment similar 
to that reported in UOJ with the single difference 
that it was carried out at different gas pressures 
so that it was possible to control the electron den
sity produced by ionization due to the beam. In this 
experiment a grounded high transmission grid 
(square cells 1 mm on a side made from tungsten 
wire 0.1 mm in diameter) is located in front of the 
anode; at the same time a positive potential 
( (/Ja ~ 50 V) is applied to the anode in order to sup
press secondary electrons. 

In Figs. 8a and 8b we show the oscillation spec
trum obtained at the Langmuir probe (at the cen
ter of the beam) for two values of the anode poten
tial: (/Ja = 0 and (/Ja = 50 V with a rather small 
residual gas pressure p = 3 x 10-6 mm Hg. It is 
evident that under these conditions the inhibition of 
the secondary emission causes a very strong re
duction in the amplitude of the oscillations. 

However, the effect of secondary emission from 
the anode on the oscillation amplitude is important 
only at low gas pressures (p ~ 3-5 x1o-6 mm Hg); 
when the gas pressure is increased the importance 
of this effect is diminished rapidly and starting at 
p ~ 1-1.5 X10- 5 mm Hg its effect becomes negli
gibly small (Figs. 8c, d). This means that the ef
fect of the secondary electron emission from the 
anode on the excitation of oscillations is important 
only when the density of these electrons is large 
compared with the density of electrons produced in 
the gas by the beam, that is to say, when 

FIG. 8. The spectra of current oscillations to 
the Langmuir probe for two values of the anode 
potential and two values of the hydrogen pres
sure: W, = 3SO eV, I =30 rnA, L = 1SO em. The 
arrows below the figure indicate the frequency 

markers fM, = 0 and fM 2 = 30 MHz. a) Cf'a = 0, 
p = 3 x 10-6 mm Hg, b) Cf'a = SO V, P = 3 
x 10-6 mm Hg, c) Cf'a = 0, p = 1 x 10-5 mm Hg, 
d) Cf'a = SO V, p = 1 x 10-5 mm Hg. Strong low
frequency oscillations are visible near the mar
ker fM 1 = 0. 

p ,.$ 3-5 x 10-6 mm Hg; the effect disappears when 
p .G 1-1.5 x1o- 5 mm Hg. 

We note that in addition to the high-frequency 
oscillations described above there are also rela
tively low frequency oscillations at single frequen
cies from fractions of a megahertz up to 
1-1.5 MHz. These oscillations are evident, in par
ticular, in Figs. 2 and 8. The nature of these os
cillations has not been investigated in the present 
work. 

Before discussing the results we present cer
tain data which characterize the energy spectra of 
the electrons in the beam and'the quantity 0! which 
is the ratio of the density of plasma electrons 
formed by the beam to the density of the primary 
beam. In Fig. 9 we show the velocity distribution 
of the beam electrons (as determined by the method 
described in [ 11 J) for an electron energy 
W1 = 150 eV and two values of the current: 
a) I = 5 rna < Ic and b) I = 14 rna > Ic (the current 
I = 14 rna is somewhat less than this maximum 
current Imax at which a virtual cathode is formed 
in the beam). For case b we use the mean -value 
theorem to determine the mean average velocity 
spread of the beam electrons t1vav· The results 
are shown in Fig. 9 by the dashed line c. It is evi
dent that t1vav ~ 0.5vav· On the basis of these re
sults we assume below that when I,.$ Ic the quan
tity D.v ~ 0 and when I > Ic the ratio D.v/vav ~ 0.5. 
As far as the quantity 0! is concerned we note that 
the probe estimates similar to those in [ 12 J show 
that when p ~ 1 x1o- 5 mm Hg the quantity 0! ~ 1 
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FIG. 9. The velocity distribution of the beam electrons as 
a function of1he electron energy W, ~ 150 eV and two values 
of the beam current: curve a for I ~ 5 rnA and curve b for 
I ~ 14 rnA. The dashed line c indicates the method of esti
mating the average velocity spread in the beam. L ~ 50 em, 
p ~ 4 x 10-6 mm Hg. The case denoted by b is distinguished 
from a by a much larger oscillation amplitude and beam cur
rent (in a these oscillations are not observed). 

and when p is increased to 10-4 mm Hg we find 
that a increases monotonically but never exceeds 
a value of 4-5. 

3. DISCUSSION OF RESULTS 

It is well known[ 1-7J that the oscillation proper
ties of a uniform system of charged particles con
sisting of a monoenergetic electron beam and a 
cold plasma can be characterized with respect to 
longitudinal oscillations (neglecting the thermal 
motion of particles) by the dispersion relation 

w+2 I w2 + Wz2 I w2 + W12 I (w- kv) 2 = 1, (4) 

where w is the angular oscillation frequency; 
k = 27T /A is the wave number; v is the beam veloc
ity; w+, w2 and w1 are respectively the frequen
cies of the characteristic ion oscillations, the os
cillations of the plasma electrons, and the beam 
electrons. 

The consequences of Eq. ( 4) are found to be 
very different depending on the ratio between the 
oscillation wavelength A and the transverse dimen
sions (radius) of the system r 0 (it is assumed that 
t~~ transverse dimensions of the primary beam 
and the plasma are the same). This result is 
easily seen from the two limiting cases which have 
been discussed in the introduction: 1) A « r 0; in 
this case the quantities w+, w2 and w1 are the 
Langmuir frequencies (wp) of the ions and the 
electrons: 

W+ = Wp+ = ( 4n (n1 + nz) e 2 I .lVh) 'I,, 

w1 = Wpl = (4nn1e2 I m) ''', wz = Wpz = (4nnze2 I m) '1'; 
(4a) 

2) A » r 0; in this case the quantities w+, w2 and 
w1 are not the Langmuir frequencies but, as indi-

cated in the introduction, depend on the oscillation 
wavelength ([ 3-7J ): 

Wp2 -:-
Wz = - -_- kro l('i; 

l:-l 
Wp! -

w1 =---=- kro yX. 
i2 

(4b) 

The quantity X, for the case of a uniformly dense 
cylindrical beam of radius r 0 propagating in a 
plasma with the same transverse dimension along 
the axis of a metal tube of radius R0 and length L 
(L » R0), is given by an expression of the 
form[ 3• 5• sJ 

{ 
ln (Rolro) for 'AI2n > Ro 

X- (4c) 
ln (J, I 2nro) for 'A I 2n < Ro 

In the first of these cases we find that X RO 3. 4 
for the present geometry. Under the experimental 
conditions described here the oscillation wave
length is of the order of tens of centimeters where
as r 0 = 0. 5 em and R0 = 15 em. Hence we must 
use the dispersion relation that applies to the case 
A » r 0: 

Wp+z I wz + wp22 I w2 + wp 12 I (w- kv)Z = 2 I 2 (kro)2. ( 4d) 

. '1 1 t' h b bt . d. [ 13 ] A s1m1 ar re a ton as een o ame tn ex-
cept that the quantity X is replaced by a tabulated 
function which is equal to it numerically. 

We note that it is assumed everywhere that the 
motion of particles across the beam can be ne
glected; this is equivalent to the assumption that a 
rather strong magnetic field acts along the beam 
(wH = eH/mc » w). 

If the beam is not monoenergetic, the "beam" 
term which appears in the dispersion relation as
sumes the form 

zr j(v) dv 
W!p.) (w-kv)Z' 

-00 

where f(v) is the distribution function giving the 
velocity of the beam electrons. If f(v) is rectangu
lar over some velocity interval (as in Fig. 9) case 
c) then f(v) RO const within this interval and 
f(v) RO 0 outside so that it is evident that the term 
wrp/(w - kv) 2 in the dispersion relation is replaced 
by the term 

w1p 2 / [w- k(v- ~v)] [w- kv]. 

If the density of plasma electrons is not too 
small compared with the ion density the first term 
in the right side of ( 4d) can be neglected as com
pared with the second. Under these conditions we 
find 
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F( ~ J = wzL+ W!p2 = ~--
' k, (w/k) 2 [w/k-(v-~v)][w/k-'J] :t;r02 • 

(5) 

In order to simplify the subsequent analysis we 
shall use the value 3. 4 for :i ; in this case the 
right side of Eq. (5) becomes a constant equal to 
2.5 regardless of the oscillation wavelength. 

When 6.v < v Eq. (5) becomes a fourth-order 
equation in w /k and, depending on the system 
parameters, (for real k) can have either real or 
complex roots; in the latter case· oscillations are 
excited. The function F(w/k) and the line F(w/k) 
= const are shown for the case 6.v < v in Figs. 
10a-c; the case 6.v = v is shown in Fig. 10d. 

In cases a and c the line F(w/k) = const inter
sects branches of the function F(w/k) at four 
points; this means that all four roots of Eq. (5) 
correspond to real w, that is to say, the system is 
stable. In case b, where there are two points of 
intersection, only two of the roots are real and the 
other two (complex conjugates) roots have positive 
imaginary parts corresponding to instability ( exci
tation). 

In the case shown in Fig. 10d, 6.v = v and Eq. 
(5) degenerates into a third order equation which 
only has real roots w. Everywhere below we con
sider the case Li.v < v. 

It is evident that the instability is possible on 
two branches of the dispersion equation: the left 
branch [O < w < k(v- 6.v) and the right branch 
(k(v- 6.v) < w< kv]. 

The instability on the left branch of the function 
F(w/k), the transition a- b in Fig. 10, can be re-

0 u-Jv 1(\1 I I 
I J I 
I I 

I : I 

a 

r(f/) 

I 
c 

r!f!lJ r(IEJ 

0l~ j\ __ \, 
0 U-,w :nu Wjk 0 \' w/k I I I 

I I I 
I I I 

I I 
I I 

b d 

FIG. 10. Dispersion curves: a, b, c) 1\v < v; d) 1\v = v. 
Curve 2 is the left branch of the function F(w/k), 3) the 
right branch of this function, S) the line F(u../k) = const. 
The cases denoted by a, c and d correspond to stability 
and b instability. 

alized by any one of four metho<D: 1) increasing 
the beam current, 2) increasing the plasma den
sity, 3) reducing the velocity of the beam elec
trons v, and 4) increasing the velocity spread 6.v 
(under the condition that 6.v < v). 

In order to provide a qualitative comparison of 
this theory and the experiment in Eq. ( 4d) we write 
6.v = 0 (in this case branch 3 in Fig. 10 disappears 
and the oscillatory properties of the system can be 
described by the relative positions of branches 2 
and 5). Setting the derivative with respect to w/k 
equal to zero for the left side of the equation we 
find the abscissa of the point of tangency of 
branches 2 and 5 of the function F(w/k): 

kv 
w=-----

1+(a+m/M)-1f,' 
(2c) 

where a = ndn1. When a >> m/M the oscillations 
are true electron oscillations. Substituting this 
expression in Eq. ( 5) we find the critical beam 
current for which branch 2 in Fig. 10 breaks away 
from branch 5, that is to say, the point at which 
oscillations are excited: 

mvr02 mi.J3 
lc=-4;-(W!p)cz= 2e2{1+(a+m/Mr;,p (3b) 

where 2 is the quantity given by Eq. ( 4c); for ex
ample, with mv2/2 == W1 = 500 eV the critical beam 
current Ic ""' 30 rna. 

In computing Ic we have taken 6.v = 0. This ap
proximation is justified as follows: when I < Ic 
the velocity spread of the beam is actually very 
small ( cf. curve a in Fig. 9) and when I > Ic it is 
determined by the oscillations that have already 
developed. 

Now let us compare the expressions in (2c) and 
( 3b) for the oscillation frequency spectrum and the 
critical current with the experimental data. It is 
evident from Eq. (2c) that at least close to the 
critical current (I 2 Ic) the oscillation frequency 
is proportional to the product kv. As far as the 
quantity k is concerned it is reasonable to assume 
that in our case, in which the beam is bounded in 
length by the metal electrodes, the longitudinal 
waves of the electric field will be reflected from 
these electrodes so that standing waves will be set 
up in the system. If this is the case those modes 
will be excited for which the wavelength A is equal 
to one of the characteristic values of the system 
An: 

'A = An = 2L In or 1c = 2:rt! A = n:rt I L, 
( la) 

n = 1, 2, 3, ... , 

while modes that do not satisfy this relation will 
be quenched as a consequence of successive re-
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flections from the end plates (a similar assump
tion has been made in the theoretical papers [ 14 • 15 l). 

Under these conditions the oscillation spectrum 
will be given by 

v 1 
W = Wn ~ :rt - n -,-.,-----,-

L 1 + a-'h 
(2d) 

(for a » miM). 
It is evident from Eq. (2d) that wn ~ n, v, 1IL. 

This is precisely the spectrum that has been ob
served in the experiment (cf. Fig. 2-4). For con
stant values of n, v and L the oscillation spec
trum (2d) does not depend on the beam current and 
must increase somewhat with increasing a, that 
is to say, with increasing gas pressure; for exam
ple, when the quantity a is increased from 1 to 10 
we find that wn increases by a factor of 1. 4 in ac
cordance with Eq. (2d). These conclusions are also 
in good agreement with the experimental data given 
above. 

We have already indicated that the oscillations 
characterized by different n are not exact harmon
ics in frequency although the frequency deviation 
from exact harmonics is small, being of the order 
of 10-25%. It is our opinion that this feature is due 
to some geometrical effect and other beam param
eters but that it is evidently not of fundamental im
portance. 

Let us now consider the critical current ( 3b). 
The function Ic(v3) is plotted by the dashed line c 
in Fig. 6 for a = 1. In the same figure we show the 
experimental data for two gas pressures. It is evi
dent that the theoretical function Ic(v3) is very 
close to the experimental function. If it is assumed 
that the quantity a is somewhat less than unity on 
curve a, then on curve b it is somewhat larger 
and we not only obtain qualitative agreement but 
even quantitative agreement between theory and 
experiment (as far as the actual value of a is 
concerned we have already noted that it is not very 
different from unity). 

It should also be noted that Eq. (3b) predicts 
that Ic in our case must be a relatively weak func
tion of A., that is to say, a weak function of the har
monic number in the spectrum. This feature is 
also in good agreement with the experimental re
sults. 

The comparison given above indicates that the 
oscillations observed in these experiments are 
longitudinal electron oscillations and that they are 
described by the dispersion equation (4)-(5) as 
supplemented by the standing wave condition (1). 

It is of interest to consider the case a= 0: the 
electron beam is exactly balanced by the ions and 
there are no plasma electrons. In this case Eq. 

(2c) describes the electron-ion oscillations con
sidered by Buneman. [tel Under these conditions 
it is found that the critical current Ic given by 
Eq. (3b) for a= 0 is essentially the same as the 
limiting current Iz starting with which pure elec
tron oscillations are excited, this being the insta
bility described by Pierce which leads to the 
formation of a virtual cathode. [ 17 lU 

If plasma electrons are introduced into the 
beam (with an equal number of ions), that is to 
say, if the quantity a is increased, the current Ic 
is reduced in accordance with Eq. (3b) and the 
quantities Ic and Iz are no longer the same. Un
der the conditions reported in these experiments 
Ic is several times smaller than Iz. 

Up to this point we have considered the insta
bility of the beam on the left branch of the function 
F(wlk) (curve 2 in Fig. 10). If the plasma density 
becomes large enough this branch will always be 
detached from the line F(w I k) = const and the 
stability of the beam is then determined by the 
right branch of F(w I k) (curve 3 in Fig. 10). In 
this case raising the plasma density with all other 
conditions remaining the same will sooner or later 
cause the system to become stable (the transition 
b-- c in Fig. 10). It is evident from Eq. (5) that 
this situation obtains when 

wz2 nz ( v ) 2 0.6v2 ( 1'1v )z a=--=-;;;:: 2--1 +-- 1--
W!2 n1 , 1'1v ro2w12 2v ' 

(6) 

where n1 and n2 are respectively the beam den
sity and the plasma density (here we assume that 
A./2Tr > R0 and 2 = ln (R0 lr0) = 3.4). When l::!.v = 

= 0.5v the condition in (6) implies 

a> 9 + 0.35 (v / ovo)2, (6a) 

that is to say a ,4 10-25. If the stability of the 
system is determined by the right branch of 
F(wlk) the critical current must increase with 
increasing plasma density. However, as we have 
already noted above, in the present experiments 
this feature is not observed since a is usually of 
the order of unity (rarely 2-3) and the instability 
is determined by the left root of F(w /k). 

In order to make a more detailed comparison of 
the theory and experiment the frequency spectrum 
was computed on an electronic computer. In this 
case, in order to facilitate the calculations the real 

1)As is well known, [' 6], [ 17] these instabilities exhibit an 
important difference: both the electrons and the ions participate 
in the Buneman oscillations whereas the Pierce instability de
velops with the ions at rest; this result is connected with the 
fact that the electric fields of the charges induced in the metal 
walls that surround the beam randomly excite potential fluctua
tions in the beam and when I> l1 the initial fluctuation is am
plified. 
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velocity distribution of the beam electrons (Fig. 9, 
curve b) is replaced by a rectangular distribution 
(Fig. 9, curve c). The validity of this substitution 
is justified by the result: it is found (cf. below) 
that taking account of the strong velocity spread in 
the beam [Av = 0.5-0.8v] only leads to small 
quantitative corrections that cannot really effect a 
comparison of the theory and experiment. 

The determination of the real and imaginary 
parts of the oscillation frequency w = wr + i'Y was 
carried out by A. E. Bazhanova on an electronic 
computer. In this case we have also found the val
ues of the critical current starting with which the 
condition I 'Y I > 0 is satisfied. 

The results of these calculations are shown in 
most complete form in Fig. 11 where the plasma 
density n2 is plotted along the abscissa axis while 
the quantities wr/kvav and 'Y/kvav are plotted 
along the ordinate axis. The curves in Fig. 11 are 
plotted for two values of the electron velocity: 
v = 1.8 x 109 em/sec (a) and v = 1 x 109 em/sec (b) 
and two values of the beam current: I= 100 rnA 
(dashed curves) and I= 20 rnA (solid curves). In 
order to expand the range of the parameters n1o 
n2 and v in which I 'Y I > 0, the quantity Av, which 
characterizes the velocity spread in the beam in 
Fig. 11, is not taken to be constant, but changes 
monotonically going from left to right, varying 
from the value 0.8 v to the value 0.5 v. 

The following conclusions follow from Fig. 11. 

FIG. 11. The quantity wr/kv av and the quantity 
y/kvav as functions of the plasma density n2 : a) for a beam 
velocity v = 1.8 x 109 em/sec; the solid curves hold for 
I = 20 rnA and n, = 5.5 x 108 em-• and the dashed curves for 
I = 100 rnA and n, = 5.5 x 10" em-•; b) for a beam velocity 
v = 1 x 109 em/sec, I= 20 rnA, n1 = 2 x 10" em-•. 

vav = v -/\v/2. 

1. The oscillation frequency is proproportional 
to kvav• the coefficient of proportionality being of 
the order of several tenths; as the plasma density 
increases this coefficient slowly approaches unity. 
The oscillation frequency is a weak function of 
beam density. When k = mr /L (2) the oscillation 
spectrum is given by w n ~ vn/ L (n = 1, 2, 3, ... ). 

2. For fixed density and mean velocity oscilla
tions are only excited ( I'YI > 0) within certain 
ranges of plasma density: from n2 = n2min 
~ e/so)n1 to n2 = n2max ~ (12-25)n1 and as v is 
reduced this range is shifted to the left. The physi
cal meaning of this phenomenon was explained at 
the beginning of the present section and stems 
from the fact that when n2 < n2min the case in 
Fig. lOa is realized and when n2 > n2max the case 
in lOc is realized. 

3. For a fixed plasma density oscillations are 
only excited if the beam current exceeds some 
critical value that increases with increasing beam 
velocity. 

It is evident that these conclusions are in good 
qualitative agreement with the experimental re
sults described above. A quantitative comparison 
of these results with the experimental data is given 
in Figs. 3 and 4. The lines plotted on these figures 
are obtained by multiplying the computed function 
f1(v) and f1(1/L) by constant coefficients that are 
respectively 1. 7 and 1.2. 

Introducing these correction coefficients was 
found to be sufficient for complete quantitative 
agreement between the theoretical predictions and 
the experimental data. In order to facilitate the 
calculations we have made a number of simplifying 
assumptions above such as the uniformity of the 
beam density and the plasma density in the trans
verse and longitudinal directions, the absence of 
transverse particle motion, a rectangular energy 
spectrum for the primary electrons, and the as
sumption that under the conditions shown in Figs. 
3-6 a = 1 and Av /v = 0.5 (only approximately); 
the fact that the theory and experiment agree so 
well is, in our opinion, to be taken as rather good 
experimental verification of the theory. 

One further result shown in Fig. 11 is note
worthy: the oscillation growth rate 'Y is also pro
portional to kvav· In particular, this means that 
when I > Ic the short waves are excited more ef
ficiently than the long waves and one expects that 
the oscillation amplitude will increase with in
creasing harmonic number. On the other hand, 
waves that are too short (A./27r < R0) can only be 
excited with difficulty because in accordance with 
Eqs. (3b) and (4c), when A./27r < R0 the critical 
current increases as the wavelength is reduced. 
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These two factors are evidently responsible for 
the nature of the observed experimental distribu
tion of amplitude over harmonics, that is to say, 
the presence of a maximum amplitude at some 
mean harmonic number n which increases with 
increasing plasma density. 

It is interesting to consider one further fact 
with regard to the oscillation amplitude: when 
L < Lc the coherent oscillations are not observed 
(Lc :::::: 20-40 em). This result evidently follows 
from two circumstances. First of all, the instabil
ity of a beam which traverses a quiescent plasma 
is a convective instability; hence, the amplitude of 
the oscillations increases along the length of the 
beam and in order to reach the required magnitude 
the beam length L must be greater than some 
critical value. [ 8• 181 Secondly, as L increases the 
total number of ions produced in the gas by the 
beam also increases so that the plasma density in
creases. In this latter sense the quantity L has 
the same physical meaning as a critical plasma 
density. 

Let us consider the basic results observed in 
these experiments: 1) the discrete oscillation 
spectrum; 2) the fact that the frequencies are re
lated as harmonics fn......, nv /L and the wavelengths 
as A.n"' L/n; 3) the characteristic dependence of 
frequency on beam density and plasma density; 
4) the fact that the critical current increases ap
proximately as v3 and that it is reduced with in
creasing a etc.; these are all (both qualitatively 
and quantitatively) described by the dispersion 
equation (5) for longitudinal electron oscillations 
supplemented by the standing wave condition (1). 
In other words, the totality of experimental data 
obtained here is in good agreement with the theo
retical predictions for the development of an "or
dinary" beam instability in a system of finite di
mensions. 

As we have already indicated in the introduction, 
the oscillations studied here differ substantially 
from Langmuir oscillations both in spectrum and 
in the fact that they are excited only when the beam 
density n1 is not negligibly small compared with 
the plasma density n2• The frequencies of the ob
served oscillations are of the order of 107 Hz, 
that is to say, orders of magnitude lower than the 
Langmuir frequency fp2 = wpd21f. If the plasma 
density is increased substantially (by increasing 
the gas pressure) then, as we have indicated above, 
the maximum oscillation amplitude is shifted to
ward higher frequencies (shorter wavelengths). 
This evidently is an expression of the tendency 
toward a gradual transition of these oscillations 
into Langmuir oscillations. There is reason to be-

lieve that with a significant increase in ndn1 the 
long wave oscillations will be damped and only 
Langmuir oscillations will be excited, as is the 
case in a rarefied beam passing through a dense 
plasma (cf. [ 81 ). 

The authors wish to thank Ya. B. Fa1nberg for 
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