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The case is considered in which one energy level of a system AB crosses an infinite system 
of parallel levels adjacent to the ground state of the system AB +. A general mathematical 
model is employed which yields the wave function, in the form of a contour integral, for the 
nonstationary problem of the interaction between a system of parallel states and a state that 
intersects this system. The probabilities of ionization and of the formation of highly excited 
states are derived, and the smooth transition from the discrete spectrum (excitation) to the 
continuous spectrum (ionization) is traced. The limits of applicability of the theory are con
sidered. 

1. INTRODUCTION 

LET us consider a reaction of the type 

A+B-A+ B++e. (1) 

Prior to the collision each atom can exist in its 
ground state or an excited state. We shall assume, 
however, that the excitation energy is then below 
the ionization potential, so that the ionization 
mechanism proposed by Penning (see [1], for ex
ample) is not operative in the present case. If we 
neglect the interaction between the initial state of 
the AB system and the states in which one elec
tron is free or nearly free, we may find as a re
sult that when the atoms are closer than some crit
ical distance Ro the energy of this state exceeds 
the ground-state energy of the system A+ B +, 
i.e., a bound electronic state will exist for R < R0 

against the background of the continuous energy 
spectrum of the AB system. We can then expect 
that under certain conditions the ionization cross 
section in even slow collisions will be of consid
erable magnitude and will be comparable with the 
geometric cross section nRij. These considera
tions were applied to the simplest case of collision 
between a negative ion and an atom in [2, 3]. Here 
the bound state can actually disappear by merging 
with the continuous spectrum. If we know the 
shapes of the AB- and AB potential curves at the 
point of merging we can calculate the electron 
energy distribution, the detachment probability 
etc. In this case a weakly bound electron is in the 
field of the two atoms A and B, which falls off 
rapidly at large distances. The ionization problem 
is more complicated by the fact that at large dis-
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tances the ejected electron is in the effective 
Coulomb field of the system AB +. The continuous 
spectrum will then be accompanied by an infinite 
number of bound states with arbitrarily low bind
ing energies. The corresponding energy levels of 
the system AB will lie almost parallel to the AB + 

ground state but will be crowded below the latter 
(Coulomb crowding). In describing the process we 
must obviously take all these levels into account; 
therefore we must consider both ionization and the 
probability that highly excited states of the atom B 
will be formed. According to the von Neumann
Wigner theorem, the initial state cannot intersect 
each state in an infinite set of Coulomb-crowded 
states; therefore after taking account of the inter
action the general appearance of the levels in the 
vicinity of the point R0 will be represented ap
proximately by Fig. 1. 

In our present problem we must therefore con-

n=4~ 
FIG. 1 

--~ 
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sider the interaction of one state with an infinite 
number of parallel states and with a continuous 
spectrum. The mathematical apparatus enabling 
us to describe this interaction has been explained 
in [4], and the simplest examples of its application 
are given in [2•3]. We shall assume that the 
kinetic energy of the atoms is considerably above 
the ionization potential. We can then treat the 
motion of the nuclei classically and solve the 
corresponding nonstationary problem. In a quan
tum description of the nuclear motion, which is 
required when the nuclear energy is near the 
threshold, the given method can be used if the 
system of parallel levels is horizontal or only 
slightly inclined; this problem will not be con
sidered here. 

2. INITIAL APPROXIMATION 

Our problem requires a time-independent op
erator H0 describing the system of parallel levels 
and the continuous spectrum of the AB system. 
The simplest choice for H0 will obviously be the 
energy operator of a particle in the Coulomb field 
of the system AB +. The state corresponding to 
the initial level will be represented by a function 
cp. Assuming that during the entire process R 
varies very little, remaining close to R0, we can 
take cp to be time-independent. If, finally, it is 
assumed that in the absence of an interaction the 
level corresponding to the initial state cp depends 
on time linearly, the wave function of the nonsta
tionary problem can be represented by a contour 
integral: 

E 

l'l'>=N~ (H0 -E)-1 I<p)exp (iA ~(<pi (H0 -E')-1 I<p)dE' 

-iEt) dE, 

and the determination of transition probabilities 
reduces to an investigation of the properties of 

(2) 

( cp I ( H0 - E )- 1 I cp). The residues at the poles 
for E < 0 and the jump ~ of the imaginary part 
at the cut for E > 0 must be determined; the en
ergy of the system AB+ is taken to be zero. The 
Green's function for the motion of a particle in a 
Coulomb field is [S] 

G(r, r', E)= f(i-n) [wn,% (~)M~ '/,(!!___) 
:n(x-y) n ' n 

- W~. '!.( : ) Mn, •;, ( ~) l , 
x = r + r' + I r - r' I , y = r + r' - I r - r' I , 

where the functions M..\ 1 v and WA. 1 v are related 
to confluent hypergeometric functions and are de
fined in [sJ. For the case of a pure Coulomb field 
in H0 the problem thus reduces finally to quadra
tures. However, this solution is not especially in
teresting, because a real field is of the Coulomb 
type only at large distances and the spectrum of 
our system coincides with that of a pure Coulomb 
field only for low energies, i.e., for large n. In 
order to make the accuracy of the solution con
sistent with the accuracy of the initial approxima
tions we use the asymptotic form of the Green's 
function for large n, obtained by using the asymp
totic representations of MA. 1v(x/A.) and WA.1v(x/A.) 

with large first indices.C7] n We thus obtain 

f ( a a ) - -G ~ -- --- (xy)'i•l1 (2l"y)[ctg:nn·lt(2l"x) 
X- y fJX ay 

(4)* 

where J 1 and N1 are Bessel and Neumann func
tions. The term containing N1 is entirely inde
pendent of n, approaches infinity as I r - r' I ap
proaches zero, and is of no interest here. Equa
tion ( 4) shows that the energy and coordinate vari
abies are separated in the remaining, regularized, 
part of the Green's function, so that for large n 
(small E) we have the matrix element 

(<piGicp> ~ -Dctgnn, D > 0, (5) 

and the characteristics of the system are thus re
duced to the single constant D. Equation (4) is 
valid for not too large values of r and r', when 
the points r and r' are located far from the 
boundary of the classically permissible region for 
a given value of E. The equation is inapplicable 
for negative n, since the true Green's function 
has no poles (but only a logarithmic branch cut) 
for negative n. However, the equation does hold 
true in the right-hand half-plane of n (the physi
cal region of E), including the imaginary axis 
(positive E). 

The asymptotic form (4) reflects the physical 
fact [B] that far from the turning point all wave 
functions of highly excited states differing in the 
value of n but identical in l and m are very 
similar, differing only in their normalizing fac
tors. The factor by which cot nn is multiplied is 
proportional to the density matrix for the set of 

l)We note that the formulas in['] which we must use 
here contain errors. 

n = ( --2E) -'!., (3) *ctg =cot. 
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Coulomb functions that are degenerate in l and 
m and have zero energy. [9] 

3. TRANSITION PROBABILITIES 

The wave function that reflects correctly the 
contributions of highly excited states will be 

E 

jljl)= N ~ G I <p) exp (- iB ~ ctg n(-2E')-'h dE'- iEt) dE, 

c (6) 

where the constant B > 0 includes both D and the 
constant A in (2) that characterizes the time rate 
of the level represented by q;. 

The residues of cot nn are 
1 dE 1 

Rn=--=- (7) 
n dn nn3 ' 

and the jump of the imaginary part at the branch 
cut is 

~ = 2 cth nv, v = (2E) -'/,, (8)* 

or simply ~ "" 2 for the small values of E that 
are required to render this approximation valid. 

With the aid of the general formulas in [4] we 
obtain the simplest result for the total probability 
W (E) of transitions of the system to all states 
having energies above E. For E =En= -2/n2 < 0 
we have 

W(En) = Woexp (- 2nB ~ Rk) 
h=n0 

n 

= Wo exp( - 2B ~ k-3) 
k=n0 

(9) 

and for E > 0 (the continuous spectrum), 
oo E 

W(E) = W0 exp(- 2nB ~ Rk- B ~ ~(E')dE') 
k=n0 0 

= W 0 exp [- 2B ( E + ~ k-3) J. 
k=n0 

(10) 

The summations in these formulas begin at the 
value n0 for which our approximation becomes 
valid. W0 is the probability that the system 
reaches the level E0 = E ( n0 ) when the atoms 
come into proximity. This probability depends on 
the detailed behavior of the levels for small n and 
cannot be calculated generally. 

When R0 is sufficiently large, then for small n 
we are in the sub-barrier region, the residues 
Rn are exponentially small and can be neglected, 
and n0 is given by E0 = (2n5)- 1 "" R01• This can 
also be done when the electron detachment energy 

*cth = coth. 

prior to a collision is small (for example, if atom 
A or B is in an excited state). Then the initial 
level does not approach the levels for small n 
and the probability of transitions to the latter is 
small. The order of magnitude of E 0 then depends 
on this detachment energy. Thus, under conditions 
that are favorable for ionization W0 can be at 
least a little smaller than unity and E 0 can be 
small, of the order of one electron volt or less 
( n 0 ~ 4 - 5 ). 

Introducing the function 

1 
E 

F(E)= oo 2J -k-3 
. k>(-2E)-'f, ' 

(11) 

which is plotted in Fig. 2, we combine (9) and (10) 

to give 

W = W 0 exp [-2B(Eo + F(E) )]. (12) 

The figure shows that the definition F (E) = E can 
be extended approximately to small negative values 
of E, where the stepped character of F ( E ) is al
most unobservable. We then obtain 

W(E) = W0 exp {-2B(Eo +E)}, (13) 

which is sufficiently accurate for our approxima
tion in both the discrete and continuous spectra. 

F(E} 

FIG. 2 

We now investigate the constant B in (13), 
making use of the fact that the saddle points in (2) 
and (6) coincide with the instantaneous eigen
values of the energy operator.[4J From (6) we ob-
tain 

B ctg nn + t = 0, 

1 t 1 Ro -R 
n = --ArcctgB = --Arcctg---, (14)* 

n n vB 
where v is the velocity of internuclear approach 
at R0• 

We find that if the variable n is used instead 
of E, all n ( R) curves for highly excited states 

*Arcctg = coC'. 

' 
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n 
N.,.6,.3 t==::::::=-t-1-1------

R 

behave in an identical manner around R0 (Fig. 3). 
When a quantity L having the dimension of a 
length is introduced through the formula vB = L, 
its significance is shown by Fig. 3: 2L is the in
terval of R in the vicinity of R0 within which the 
principal quantum number n of highly excited 
states changes by the amount 0 .5. The constant L 
can also be expressed through the derivative with 
respect to R, at the point R0, of the squared 
modulus of the projection of cp on the subspace of 
the eigenfunctions for zero energy. If this is too 
difficult to calculate, then L remains the only un
determined constant characterizing the relative 
distribution of the probabilities of excited states 
and ionization with different energies of the 
ejected electron. 

We obtain finally, in arbitrary units, 

W(E) = Woexp[-~ (Eo+E)], (15) 

which is valid in the interval - E0 ;::, E ;:;, E0• L is 
associated with the behavior of the system near 
E = 0 and R = R0• The other parameters depend 
on its behavior far from the boundary of the con
tinuous spectrum for R > R0• The total ionization 
probability is obviously 

( 2LEo ) W (0) = Wo exp - --n,;- . (16) 

4. DISCUSSION 

The foregoing results hold true only if the 
values of exp ( -2L/n3v) for the probabilities of 
different transitions are all close to unity. In the 
opposite case, for sufficiently small n and v, we 
must also take into account the retrograde motion 
of the point Ro when the two atoms move apart. 
This factor will be disregarded since it has little 
effect on the filling of levels in the discrete spec
trum. For the continuous spectrum we must de
termine to what degree the wave packet formed at 
R0 can spread in a time T during which the in
teratomic separation is R < R0• This spreading 

destroys the coherence of the different wave
packet components. Proceeding as in [2], we ob
tain the probability of recapture 

w = I ~! exp [- ( ~L + iT) E] dE r = ( 1 + ~; ) -t. 
0 

(17) 
Since vT is comparable with R0 in order of mag
nitude, the condition w « 1 for the applicability 
of the theory reduces to the single requirement 
L « R0, i.e., n should change by one-half within 
an interval of R that is small compared with R0• 

However, the results will evidently be qualitatively 
true also when Ro exceeds L only slightly. 

Equation (15) may appear almost obvious, since 
it agrees with the formulas obtained customarily 
for the probabilities of nonadiabatic transitions. 
However, the simplicity of this formula is based 
largely on the character of the Coulomb field; in 
other cases that appear simpler at first glance, [2•3] 

we obtain more complex formulas. For the colli
sions A- + B and A- + A the distributions of low
energy ejected electrons were proportional to 
E1/ 2 and E3/ 2, respectively. Here the distribution 
function differs from zero at the threshold ( E = 0 ), 
after which it decreases monotonically with in
creasing energy. This results from the fact that 
the Coulomb crowding of energy levels around 
E = 0 increases the number of states in this re
gion and leads to a smooth transition between the 
discrete and continuous spectra (which is reflected 
in the form of the function F in Fig. 2). Similar 
results are well known for other problems in 
which the Coulomb field has an essential role, 
e.g., for the ionization of an atom or ion by elec
tron impact, for the excitation functions of ions 
etc. [to] 

An additional merit of Eq. (15) lies in the fact 
that in the present case the characteristic length 
in the adiabatic criterion is identical for all highly 
excited states ( E < 0) and for the continuous 
spectrum ( E > 0 ), and is related in a very simple 
manner to the behavior of the energy levels in the 
vicinity of R = R0 and E = 0. 

The presence of a Coulomb field, although it 
introduces a formal complication, simplifies the 
problem considerably and leads to the simplest 
formula, Eq. (15). The simplification lies in the 
fact that extremely small modifications of the 
theory are required when the initial state possesses 
higher symmetry (t = 0 etc.). The character of 
the Coulomb crowding of levels does not change, 
and we obtain different expressions only for the 
coordinate part of the Green's function (4), i.e., 
only the method of determining B is modified. 
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The Coulomb field influences the entire system so 
strongly that the consideration of symmetry, lead
ing only to the exclusion of a few values of the 
quantum numbers l and m, has little effect on 
the final result. 

Among all states for different l and m ac
companying a given value of the principal quantum 
number n, the only excited state is the projection 
of the state cp on the subspace of states at the 
given energy level En. All other states can be 
considered orthogonal to cp and are not excited in 
our approximation. 

Any difference between the effective potential 
well for H0 and a Coulomb well at small distances 
will affect mainly the form of the Green's function 
at large I E I (small In I ) . As we know, this ef
fect can be taken into account for large n by in
troducing the so-called quantum defect o ( n) that 
approaches a constant value o as n - oo and that 
characterizes the deviation from integers for the 
principal quantum number n of highly excited 
levels. Then the matrix element for large n will 
be 

<cpiGicp>,...., B ctg n(n -II), (18) 

and all our results remain valid with n differing 
from integers by the amount o. 

The deviation from a Coulomb field and from 
spherical symmetry at short distances removes 
the degeneracy of the energy levels with respect 
to l and m. Our basic equations remain un
changed. The function F will have a larger num
ber of steps for negative E, so that its replace
ment by a linear function will be all the more 
justified in this region. Of course, the size of the 
steps can vary greatly from level to level, leading 
to very different occupation probabilities for the 
different states (some of which can be nearly 
orthogonal to cp ), but an averaged Eq. (15) re
mains valid. 

5. THE SIMPLEST SPHERICALLY SYMMETRIC 
MODEL 

The solution becomes especially simple when 
Ro = 0 and cp is a o function, i.e., when the 
Coulomb field is accompanied by a potential well 
of small radius and variable depth at the coordi
nate origin. Then the regular part of the Green's 
function is easily calculated from (3) for r = r' 
= 0, using expansions of M and W for small 
values of x and y: [7] 

where >¥ is the logarithmic derivative of the r 
function. The residues of Greg in the E plane for 
integer n are exactly Rn = ( 1rn3 ) - 1 and the jump 
~ of the imaginary part is 

.1 = 2 I (1- e-2n"), v = +(2E)-''•. (20) 

The same values can be derived directly from the 
expressions for normalized functions pertaining to 
both the discrete and continuous spectra: 

1 
Rn = I'!Jn,o,o(O) 12, .1 = -I'!JE,o,o(O) 12• 

n 
For large n, >¥ can be represented asymptotic
ally. [tt] We then obtain 

Greg= -ctg nn + 0(1 I n2), (21) 

which is valid everywhere except in a narrow sec
tor cutting out the negative real semi axis. There
fore we obtain (9), as previously, for the discrete 
spectrum, except that now n0 = 1 and the results 
hold for all, even small, n. For the continuous 
spectrum we obtain 

E 

W(E) = exp{- 2B [ ~(3) + ~ ( 1- exp 1'2~~ r1
dE'] }. 

(22) 

where 
00 

~(3) = ~ n-3 ~ 1.202, 
n=l 

in agreement with our previous result at low en
ergies. At high energies ( n « 1 ) we obtain 
~ ~ ( 2rr )- 1 ( 2E )1/ 2, which is the same as for a 
free particle. In other words, the Coulomb crowd
ing of levels ceases to play a part at high energies, 
and the spectrum becomes the same as in the case 
of short-range forces when the single bound state 
disappears, having merged with the continuous 
spectrum . [2] 

The foregoing result is of no practical interest 
because for n ~ 1 a real potential well cannot be 
considered to have a short range and the distribu
tion function will differ in this region. It can be 
stated, however, that the distribution function for 
large n will fall off more rapidly than Eq. (15) in
dicates. 

We note in conclusion that we have not con
sidered the possibility that a quasistationary state 
of the AB system may be formed for R < R0• 

This would greatly reduce the probability of wave 
packet breakdown for R < R0 and would increase 
the probability of wave packet formation. This 
means that the constant L in the formula can be 
very small, so that, although our theory would be 
true, as previously, for small E, there would 

Greg(O,O,E) = n-1 [lnn-'1'(1-n)- (2n)-1] 

= n-1 [ln n- 'l'(n)- n ctg nn- (2n)-1], (19) exist only a very low probability that following 
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the collision the electron would have a low energy 
in the interval - E0 < E < E0 • A larger fraction of 
the electrons would be ejected with high energies 
and their distribution could be determined only by 
investigating the process in greater detail. In this 
case the low-energy electrons could be dominant 
only in very slow collisions. It is evident from the 
same considerations that the theory has little ap
plication to fast collisions. Our treatment is 
quasi adiabatic; it is based on the wave functions 
of the instantaneous energy operator in the non
stationary problem, and is obviously inapplicable 
when the velocity of the nuclei approaches the 
velocity of the electrons in the initial (but not in 
the final) state. 

Our formulas could be improved easily by 
averaging over different impact parameters as 
was done in [3] for the problem of electron de
tachment from a negative ion. However, such 
averaging would affect the result only slightly and 
will not be presented here. 
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