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Scattering by nuclear systems with a low-lying resonance level is considered. It is found 
that if the nuclei form a regular one-dimensional chain or a two-dimensional lattice, the 
elastic width r1 and the position of the resonance level change significantly. It is demon
strated that the change in the width is related to the lifetime of the collective excited state 
of the nuclear system. The lifetime of such a state and the width may respectively be 
larger or smaller than the lifetime (width) of an isolated excited nucleus. It is shown that 
in the case of a three-dimensional crystal the elastic width vanishes in general and the en
ergy dependence of the resonance interaction is defined exclusively by the inelastic width 
r 2 . In the presence of spin in the ground state of the nucleus, and if the scattering that is 
inelastic with respect to the phonons plays a noticeable role, the width assumes a value in
termediate between r2 and the total width. 

1. INTRODUCTION 

THE amplitude of resonance scattering by an in
dividual nucleus is determined, when A >> d (A 

=wavelength of the incident particles, d = dimen
sion of the nucleus), by the energy E0 of the reso
nance level and by the elastic and inelastic widths 
r 1 and r 2 . At first glance it might appear that on 
going over to a system of nuclei, at least when A 
is smaller than the characteristic distance between 
the particles, the energy dependence of the elastic 
and inelastic scattering amplitudes should remain 
practically unchanged and should be determined 
by the same parameters. However, as will be 
made clear in this paper, in the case of scattering 
by regular systems of identical nuclei, the reso
nance parameters can experience appreciable al
terations. Physically this is connected with the 
fact that in the case when it is impossible to point 
out the individual nucleus responsible for the 
scattering, the excitation of the resonance level or 
the formation of a compound nucleus will have a 
collective character. On the other hand, the decay 
of such a collective state can differ noticeably 
from the case of an isolated nucleus [tJ, and this is 
what causes the change in the resonance parame
ters. 

We confine ourselves to an examination of 
scattering by extremely low-lying resonance 
levels and by sufficiently heavy nuclei, and we 
neglect the influence of the oscillations. In addi-

tion, we assume for simplicity that the ground 
state of the nucleus has zero spin. The question 
of the influence of the spin incoherence and oscil
lations of the nuclei in the crystal (in other words, 
the phonon spectrum and the temperature) will be 
considered in a special paper. 

2. ONE-DIMENSIONAL CHAIN 

We consider the scattering of particles by a 
one-dimensional chain of identical nuclei with 
period equal to a, under the condition that d <<-A; 
by the same token only s-scattering by an individ
ual nucleus is significant. Assuming the nuclei to 
be identical, we write the wave function of the 
particles in the form 

'ljl(r)=eikr+L;Amexp(ik!r-rm!)' (2.1) 
m lr-rml 

and we seek the coefficients Am from the condition 
that the logarithmic derivative of the function 
X = I r - rm 11/J ( r ), as I r - rm I - 0 and for ar
bitrary m, be equal to 

Yo = ik~_±_!_ = 1 + ikf 
s -1 f , (2.2) 

where S is the usual scattering matrix and f the 
amplitude of scattering by an individual nucleus 
(see, for example, the paper by Brueckner [2J, 
where a method similar to ours is used to analyze 
the scattering by two centers). As a result we 
arrive at the following system of algebraic equa
tions 
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~' gptr.Am = - eikrP, 
m 

exp(ik lrp- rml) 
g pm = ( m =I= p) , 

lrp- rml 
gmm = ik- 'YO· 

(2.3) 

For a sufficiently long chain, when the end effects 
can be neglected, the solution of the system (2.3) 
is written in the form (the z axis is directed along 
the chain) 

Zm =am. (2 .4) 

In the case of pure resonance scattering 

1 .ft 
I = - 2k' E -Eo + if /2 

Then, substituting (2 .4) in (2 .3), we obtain 

1 ft 
A= -2k E-Eo+~f/2+R' 

R =I_:~ g eik,<•p-•ml. (2 .5) 2k LJ mP 
m#p 

The series in (2 .5) can be summed (see [3] ), and 
as a result we arrive at the following expressions 
for the change in the elastic width of the level D-r 
and for the level shift D-E: 

df = 2 ImR = n~~ ( 1-{ a(k ~ k,) }-{a(\~ k,) H· 
Mo= -ReR 

r1 1 [ 2 1 . (a(k+k,)). (a(k-k,) \11 = - n sm sm 1 1 • 
ak 2 2 , I.J 

(2.6) 

Here {x} is the fractional part of x. 
We call attention first to the fact that when ak 

« 1 the elastic part of the width increases rapidly, 
roughly in proportion to the number of nuclei in a 
segment equal to the wavelength. When ak ~ 1, 
the quantity D-r reverses sign and then begins to 
execute discontinuous oscillations about its zero 
value, both when ak increases and the angle of 
inclination of the incident beam to the chain axis 
is fixed, and when ak is fixed and the angle in
creases. This can be clearly seen in Figs. 1 and 
2, where for purposes of illustration we present a 
plot of D-r/r 1 against ak with kz = 0 (Fig. 1) and 
against akz with ka = const. 

Thus, the elastic part of the width q = r 1 + D-r 
can be either larger or smaller than the value r 1 

corresponding to the isolated nucleus. This is the 
consequence of the fact that the excited state 
which is not localized along the chain decays with 
a probability that can either exceed or be smaller 
than W0 = f 1/n (see Sec. 3). 

Appreciable changes take place also in the 
position of the resonance level. As seen from 
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(2 .6), when ak « 1 the shift of level (towards 
lower energies) can be very large. With increas
ing ak, the shift decreases, and when ak 2: 1 it 
can even reverse sign. It is interesting that at 
large values of ak the level will shift rapidly 
towards lower energies whenever the parameters 
are such that 

(k + k,)a ~ 2np. (2.7) 

Formally, when (2.7) is exactly satisfied, the 
shift even becomes infinite. Really, however, any 
disturbances of the periodicity will limit the value 
of the shift (and will smooth the curves near the 
discontinuities of D-r-see Figs. 1 and 2). 

It is easy to conclude from (2.1), (2.4), and 
(2.5) that the energy dependence of the scattering 
intensity is determined entirely by the value of 
I A 12• It follows therefore from our results that 
in scattering by such a system the resonance 
parameters pertaining to each individual nucleus, 
and with them also the energy dependence of the 
scattering intensity as a whole, can really experi
ence noticeable changes compared with the case 
of scattering by an isolated nucleus. 

It is interesting that in this case the relation 
between the intensities of the inelastic and elastic 
channels changes, a change in either direction 
being possible. These results can be readily 
traced by considering a finite chain and obtaining 
the corresponding expressions for the cross sec
tions. 

At large distances from such a chain, expres
sion (2.1) takes the form 

'ljl(r)~ eikr+A (~ exp[i(k,-k/)zml) e~r, 
m 
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where k~ is the component of the wave vector of 
the scattered particles along the chain. For the 
differential scattering cross section per nucleus 
we have here, taking (2 .5) into account, 

d - 1 
(J1 - 4k2 

r 12 1 I . ' 12 
X (E _ Eo') 2 + f'2/4 N ~exp [t(kz- kz )zm] I df:h, 

m 

Eo'= Eo+ 11Ho, r' = r2 + r1 + 11r (2.8) 

( N is the total number of particles in the system). 
We shall use the fact that dQk' = 2nk- 1 dk~, and 

integrate (2.8) in explicit form. Recognizing that 
the contribution to the integral is made only by 
narrow intervals with respect to k~ near the 
points 

k/ = kz + 2rtp I a (2.9) 

(including p = 0, k~ so k), we obtain after suitable 
analysis 

n r1r/ 
cr1 = Jii' (E- Eo') 2 + (r' /2) 2• (2.10) 

The cross section of the inelastic process will 
be determined by the formula (2.10) with replace
ment of rj by r 2• Thus, 

(2.11) 

and this ratio can actually be either larger or 
smaller than the corresponding value for the indi
vidual nucleus. 

We note that for large wavelengths of the in
cident particles the periodicity is practically in
significant. However, when ka > 1 all the singu
larities of the behavior of ~r and ~E are due 
entirely to translational symmetry, and this is 
most clearly manifest in the occurrence of the 
condition (2.7). 

3. TWO-DIMENSIONAL LATTICE 

In analyzing the scattering by a two-dimen
sional lattice, we have for the wave function of the 
particles the same general expression (2 .1), but 
now only the index m numbers the points of the 
two-dimensional lattice. Taking the symmetry of 
the problem into account, we can represent Am in 
the form 

Am =A exp (ikiiPm), (3.1) 

where Pm is the radius vector of the point, de
fined in the lattice plane, and k 11 is the projection 
of k on this plane. We could determine A by the 
same procedure as in the preceding section, but 
then the resultant two-dimensional series would 

be too complicated to analyze. We therefore use 
here a different method. 

Let us consider the value of the wave function 
(2.1) on a plane coinciding with the crystal plane. 
Taking (3.1) into account, we have 

'ljJ (fJ) = eik il P + Aeikll P ~ eik il (Pm-Pl exp (ik I p- fim \) 

m I p--Pml 

=- eik liP+ Aeik II P<D (p ). (3.2) 

It is easy to see that the function 4> ( p ) is 
periodic and, as a result, it can be expanded in a 
two-dimensional Fourier series in terms of the 
vectors of the plane reciprocal lattice b: 

K 

Direct calculation yields for CK the following ex-
pression 

CK= 2;: (k2--(k 11 +K)2( 1', (3.4) 

where S0 is the area of the unit cell. (The right 
side of (3.4) is defined for all K in such a way 
that each coefficient CK is either pure imaginary 
or pure real.) 

The series (3.3), when account is taken of (3.4), 
diverges when p - Pm, this being a direct con
sequence of the singularities of the function (3.2). 
It is natural therefore that a finite difference re
mains: 

( 'ljl(p)- Am-----,--1-------;--) = eikll Pm(1 +A£), 
I P - fim I P->-Pm 

£ = ~: [i~(k2-(k 11 +K)2 ( 1'- (:~)2 ~d:] .(3.5) 

The second term in the square brackets is the re
sult of the expansion of 1/ I p-Pm I in a two
dimensional Fourier integral. 

We know that as p - Pm we get in the general 
case 1/J = b0 + b/1 p - Pm I , and consequently the 
right side of (3.5) simply coincides with b0• Then, 
recognizing that Yo = b0/b1, we get 

(3.6) 

Substituting in (3.6) the relation (2.2), we arrive at 
(2.5) with the following expression for R: 

R = 1l2r1(£ I k- i). 

For the change in the width and for the shift we 
get, with account of (3.5), respectively, 

[ 2rt I 1 J 11r=r1 -~ -1 , 
kS0 K l'k2- (k11 + K)2 

(3.7 1 ) 

!1E =- r1n {~' 1 
kSo K l'(kll + K)2- k2 

S id2x} 
- 0-j -- . (3.7") 
(2n) 2 x 
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The prime at the summation sign denotes that the 
summation is only over those K which correspond 
to a positive radicand. 

The total elastic width q is determined simply 
by the first term in (3.7') and again, as in the case 
of the one-dimensional chain, q can be either 
larger or smaller than r 1• When ka « 1, the 
elastic width behaves like q ~ 2n(ka)- 2 r 1, that is, 
it increases in proportion to the number of nuclei 
an a surface element whose linear dimension is of 
the order of the wavelength. When ka > 1r, the 
value of .t.r begins to oscillate as a function of 
ka for. a fixed direction of the vector k, and as a 
function of the direction of this vector for a fixed 
value of ka. It is interesting that when k > 2n/a 
(we have in mind a simple square lattice) we en
counter directions of k which lead to very large 
values of .t.r. The corresponding condition is of 
the form 

k2 - (k11 + K) 2 ~ o. (3.8) 

It will be shown in the next section that the de
scribed behavior of q is in complete correlation 
with the probability of the decay of the collective 
excitation in the plane lattice. Thus, the ratio of 
the intensity of the elastic and inelastic channels 
again changes, and this ratio can again be either 
larger or smaller than the corresponding ratio for 
the isolated nucleus. All the changes become par
ticularly strong when the condition (3.8) is ap
proached; if the left side of (3.8) is larger than 
zero, then the width increases rapidly, and if it is 
smaller than zero, then a strong shift takes place 
towards lower energies. Although an account of 
the coherent factors does smear out the singular
ity itself, in all probability the sharp change of 
the resonance parameters still remains. 

We see from (3.7") that the shift itself also be
haves in a puzzling manner with change in k and, 
in particular, reverses sign. We shall not analyze 
this expression in detail, merely noting that the 
divergence of the first term in (3.7') at large 
values of K is strongly compensated for by the 
second term. 

Let us consider a bounded plane lattice and let 
us determine the scattering cross section in 
analogy with the procedure used for the one
dimensional chain. It is easy to show that 

da1 = lA 12 ~ I ~exp{i(ku- ku') Pml 12
dQk'· 

m 

Integration of this expression yields for the cross 
section, a value that coincides with (2.10), where 
the elastic part of the width q = r 1 + r 1 is deter
mined by formula (3.7'). Obviously, relation (2.11) 

likewise remains in force here, and as a conse
quence the ratio of the elastic and inelastic cross 
sections can change quite strongly simply with 
change in the angle of inclination of the incident 
beam (ka > 21r ). 

4. LIFETIME OF COLLECTIVE EXCITED STATES 

All the results of the preceding sections, con
nected with the change in the width and the ratio 
of the elastic and inelastic scattering cross sec
tions, become quite lucid if one takes into consid
eration the collective character of the resultant 
intermediate state. Indeed, if we denote by <Pm 
the state in which the m-th nucleus is excited and 
all others are in the normal state, then the wave 
function of the intermediate state should be written, 
for either a chain and or a plane, in the form 

(4.1) 

Let us consider the decay of such a state, ac
companied by emission of a primary particle. The 
system of nuclei returns in this case to the initial 
unexcited state, and we readily obtain for the 
probability of such a decay 

wi = !~ ~ IM12 11 ~ exp [i(k- k')rm] r 
m 

d3k' 
X 6(E0 -Ek') (2:rt) 3 • 

(4.2) 

Here M1 is the matrix element corresponding to 
the transition of the individual nucleus from the 
excited state into the normal state with emission 
of a primary particle. 

We consider first a one-dimensional chain. We 
represent the phase volume in the form 

d3k' = 2:n:k' _!k' dEk' dkz'. 
dEk' 

Integration with respect to dEk' is trivial, and the 
calculation of (4.2) reduces to the integral 

~ sin2 [ (kz- kz') aN /2] dk , = 2:rt NF 
Jk sin2 [ (kz- kz') a/2] z a ' 

where F is the number of different values of p 
(including p = 0) in (2.9) admitted by the limits of 
integration: 

= ka+i-{ (k+kz)a·}-{ (k-k.)a} 
:rt 2:rt 2:rt 

( [ x] is the integer part of x). As a result we get 

(4.3) 

' 
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where W~ is the decay probability, corresponding 
to the isolated nucleus. 

Analyzing formula (2.6), we can readily estab
lish that 

nW1 = rt' = r1 + .1r1 (nW1° = ri). (4.4) 

In the case of a plane lattice the phase-volume ele
ment will be transformed into 

here 

d3kl- 2 kl ddEkkl' dEk' d2klll· 
- (kl2- ku'2rj, 

4:t2 I 1 

= s;;-N ~ [k2- (ku + K)2]'" 

and we obtain for the decay probability 

W - W o 2n ~, 1 
1 - 1 S0k ~' [k2- (k11 + K)2]'i• · 

Comparing this result with (3.7'), we again 
arrive at relation (4.4). 

(4.5) 

Thus, the change in the width obtained in the 
analysis of the resonant scattering turns out to be 
uniquely related with the lifetime of the resultant 
collective excited state (4.1). This lifetime can be 
either smaller or larger than the lifetime of the 
excited state of the individual nucleus, and differs 
noticeably in magnitude (cf. [t] ). 

It is easy to verify that the probability of in
elastic decay of the state (4.1), in which fixation of 
the nucleus that experiences the transformation 
unavoidably takes place, remains exactly the same 
as in the case of the decay of an isolated excited 
nucleus. This is what determines the occurrence 
of relation (2.11). 

5. THREE-DIMENSIONAL CRYSTAL 

The picture of resonant interaction in a three
dimensional crystal differs essentially from the 
cases considered above. This is connected de
cisively with the fact that now the amplitude of the 
primary wave will have different values at nuclei 
of different crystal planes, decreasing along k. 
This raises great difficulties in determining the 
explicit form of the solution, especially if the 
crystal dimension l is comparable with the thick
ness of the transition layer, that is, if 

llfi/Vok;:s;;1 

( V0 is the volume of the unit cell). 
In the opposite limiting case l If I/V0k » 1, 

however, the problem simplifies because, on the 
one hand, we can ignore the finite dimensions of 

the crystal, and on the other we need take into ac
count the incident wave in fact only in the boundary 
condition. We confine ourselves to an examination 
of this last case only. 

Let us return to the general expression (2.1). 
We seek the coefficient in the form 

Am = Aei >crm, (5.1) 

where K is a complex vector. Then we get, after 
identical transformations 

'ljl(r) = eikr + 2iA ~ ei>erm sinl k II' -~m I 
m r-rm 

+ A~ eixrm exp (- ik I r - rm I) , 
m lr-rml 

(5.2) 

We shall use the relation 

sin k I r - rm I k i . 1 

lr _ rml = 4n J exp [1k (r- rm)] dQk,, 

the validity of which can be readily verified di
rectly. The second term in (5.2) is then written 
as 

A~: ~ eik'r ( ~ exp [i(x- k')rm]) dQk'· (5.3) 
m 

We represent the vector K in the form 

(5.4) 

and consider for simplicity the case when the flux 
is normally incident on the surface of the crystal, 
that is, q II k. Since the interaction with each 
crystal plane is assumed to be weak ( If I « a), 
we get 

lql <2n/ a. 

In this case, the sum in (5.3) can be replaced in 
standard fashion with an integral. As a result we 
find (it is assumed henceforth that there is no 
Bragg scattering) 

~ (2n)2 
;;;-' exp [i(x- k1)rm] ~ ---ir;- 6 (kx') 6 (ky') kz _ kz' + q 

(5.5) 
(the c axis is directed along k ). 

The presence of two a-functions in (5.5), in 
conjunction with the condition k 1 = k, leads to the 
equality k~ = kz and to k' = k. Then, substituting 
(5.5) in (5.3) and introducing the result in (5.2), 
we obtain ultimately 

'ljl(r) = eikr_ A ~eil<r 
V0kq 

+ Aeixr (~ eix(rm-rl exp (- ik II'- rm I)) . (5.6) 
m !r-rml 

The expression in the brackets in the last 
term of (5.6) has translational symmetry. Owing 
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to the factor exp ( iK ), the entire term as a whole 
continuously decreases with increasing crystal 
thickness ( Im q > 0 ). It is clear that in a suffi
ciently thick crystal the second term should can
eel the first, that is, 

2n 
A Vokq = 1, (5.7) 

and 

•h() A· (" ix(r -r)exp(-ik]r-rm\)) A. <D() 'f r ::.......:: ez.xr LJ e m ::::::::; etX.r r . 
I r --rm I 

m (5.8) 

Relation (5.7) determines in fact the constant 
A which figures in the solution (5.1). The condi
tion (2 .2) on each nucleus makes it possible to de
termine the equation for q by using (5.8). 

The function <I> ( r) is periodic, and we can ex
pand it in a Fourier series in terms of the vectors 
of the three-dimensional reciprocal lattice. Direct 
calculations lead to the expression 

4n: eiKr 

<D(r) = Vo ~ (x + K)2- k2 · (5 ·9) 

By separating in (5.9), the singularity when 
r - rm, in exactly the same way as was done in 
the derivation of (3.5) and (3.6), we arrive at are
lation which is in fact an equation for the determi
nation of K (see a similar analysis in [4] ) : 

4n [ 1 V0 \ d3q J 
Vo ~ (x +K)2- !c2- (2:rt)3 .l (ji- = '\'o. (5.10) 

Let the value of the wave vector of the incident 
particle be such that there is no Bragg scattering. 
Then the principal role is played in the left side of 
(5.10) by the term of the sum with K = 0. Using 
the explicit form of (2.2), we get 

Eo'= E0 - !'!_D 2k , 

D 4n [ .2J 1 Vo \ d3q J 
= Vo ~*0 (k + K)2- k2 - (2n)3 .l ---;}2- • (5.11) 

Assuming that q/k « 1, we have, using (5.4), 

Im q = _:n_ r1r2 
2V0k2 (E- Eo') 2 + f22/ 4 (5.12) 

It follows from the form of (5.11) and (5.12) 
that in a crystal the resonance nuclear parameters 
can change noticeably. Indeed, the energy depend
ence of the intensity of the transmitted beam 
ceases to depend on the elastic width r 1 com
pletely, and is determined entirely by r 2 • The 
position of the resonance level also changes at the 
same time. As a consequence, in the classical 
relation 

the total cross section CJt must be replaced for a 
crystal by 

that is' the total width r decreases to r 2. 

Thus, the difference in the character of the 
resonant interaction in a regular crystal and in an 
arbitrary irregular system will become manifest 
already in traditional transmission experiments. 

The vanishing of the elastic width can be 
clearly understood on physical grounds. Indeed, 
for this purpose it is sufficient to recall that the 
presence of translational symmetry in a nonab
sorbing system causes the momentum (more ac
curately, quasimomentum) of the particles to be 
conserved regardless of the magnitude of their 
interaction with the particles forming the system. 

Let us make in conclusion several general re
marks concerning the applicability of the results. 
If the particles in the crystal experience incoher
ent scattering, then this should entail a certain 
decrease in the change of the width and the shift 
of the resonance level, proportional in absolute 
magnitude to the decrease in the elastic -scattering 
amplitude. Such incoherent scattering, in particu
lar, appears if the oscillations of the nuclei be
come significant, that is, processes in which pho
nons are emitted or absorbed. The elastic-scatter
ing amplitude (see, for example, [5,6]) turns out to 
be proportional in the case of narrow resonances 
( r « Wo, Wo = characteristic frequency of the pho
non spectrum) to the probability of the Mossbauer 
effect, and in the case of broad resonances ( r 
» w0 ) it is proportional to the corresponding 
Debye-Waller factor. It is well known that for 
low-lying resonant levels of medium and heavy 
nuclei the probability of the Mossbauer effect and 
the value of the Debye-Waller factor are close to 
unity in many cases, not only at low temperatures 
but also at room temperatures. In all these cases 
the influence of the oscillations turns out to be 
weak. On the other hand, the following general 
tendency is also clear: all the effects should be
come weaker with rising temperature. In particu
lar, in the three-dimensional case the two widths 
will have an intermediate value between r 2 and 
r, tending in the high -temperature limit to r. We 
note that the presence of incoherent scattering 
due to the presence of spin in the ground state of 
the nucleus, also leads, without changing the qual
itative picture at all, to a certain increase of the 
width compared with r 2 (see [.6] ) • 

The authors are very grateful to A. I. Baz' for 
a valuable discussion. 
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