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A method of stabilizing the plasma two-stream instability is proposed; this method makes use 
of intense ion-acoustic oscillations in the plasma. It is shown that a "pulsating" spectrum can 
exist in a system consisting of a beam and a nonisothermal plasma. 

IT is well known that in the nonlinear theory an 
electron beam transmitted through a plasma is un
stable against excitation of longitudinal waves; [ 1J 

in turn, this instability leads to a very rapid re
tardation and smearing of the beam. [ 21 However, 
in a number of cases, (for example, in the gas 
betatron) the two-stream instability and the asso
ciated retardation and smearing of the beam are 
undesirable effects.U For this reason it is of in
terest to investigate ways of avoiding this insta
bility and possible means of stabilization. One such 
possibility based on the nonlinear interaction of 
plasma waves (nonlinear damping) has been noted 
earlier. [ 41 In the present note we wish to direct 
attention to another promising method in which the 
two-stream instability is stabilized by using the 
nonlinear interaction between the plasma waves 
and ion acoustic waves in a nonisothermal plasma. 
In addition we indicate certain new "oscillatory" 
regimes which can exist in a system consisting of 
a nonisothermal plasma and an electron beam; the 
conditions under which these modes appear are in
vestigated qualitatively. In analyzing the problems 
indicated above the basic nonlinear processes we 
consider are the induced scattering of Langmuir 
waves ( l) on plasma particles, leading to the pro
duction of ion acoustic waves (s), and vice 
versaY Using the expressions developed earlier 
for l s scattering[ 41 we can write a system of 
equations for the spectral energy density of the 

1 )The conditions for which the two-stream instability is 
not dangerous are treated in[•] (cf. also ['1). 

2)Estimates show that other nonlinear processes, in par
ticular the decay (addition) of plasma waves and acoustic 
waves, are not important under the present conditions. 

Langmuir waves Wz(k) and the ion acoustic waves 
Ws(k)Y 

dW1 & = [y!(k)- y/nl(k)J wl, 

dW. dt =- [y8 (k)- y,(nJ(k)] W 8 , 

Ys(nJ(k) = ( nZ"! )'1' Woe exp[-1/2(krne)2] 
2M I neTe !erne 

X ~ dk1 W1 (kt) cos2 kk1. (2) 

Here, 'Yl s(k) is the growth rate (damping) de-
' rived from the linear theory; Z and M are the 

charge and mass of the ion; woe is the plasma 
frequency; rne = [Woe/VTel-1 is the Debye radius; 
VTe = (Te/m)1 12 is the thermal velocity; m, Te, 
and ne are the mass, temperature and density of 
the electrons in the plasma and the quantities Wz 
and W s are normalized so that 

~ dk W.(k) = u., (3) 

where Uz and Us are the mean energy densities 
of the plasma waves and the ion acoustic waves. 

The last terms on the right sides of (1) and (2) 
are nonlinear in the energy and take account of the 
induced scattering of the plasma waves and the ion 
acoustic waves on plasma particles. Since the 
quantities 'YIn> and 'Y ~n> are inherently positive, 
it follows from (1) and (2) that taking account of the 

3 )For simplicity we limit ourselves here to a nonmagnetic 
weakly anisotropic plasma. 
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nonlinearity must always lead to stabilization of 
the high-frequency plasma oscillations and desta
bilization of the low-frequency ion acoustic oscil
lationsY 

It follows that by producing sufficiently strong 
ion acoustic fluctuations in the short-wave region, 
where krne ~ 1, it should be possible to stabilize 
the most dangerous high -frequency instabilities. 
A sufficient condition is the inequality 

- /'-. 

1 / :n; COoe \ cos2 kk1 [ 1 J 
vz(k) < V -2 -T J dk1 W.(ki) -k--exp - 2 (k )2 • 

ne e !rDe 1rDe 

(4) 
Here, the quantity n1 denotes the number density 
of particles in the beam, v0 is the mean velocity 
of these particles, !:l.v is the velocity spread in 
the beam, and it is assumed that the maximum 
value of the growth rate 'Y rax is of order 

in which case the instability condition (4) can be 
replaced by the simpler relation: 

where 

'\'lmax ~ :!2J ~ r < _!__~_>- (4') 
COoe ne \ 11v; 2 ne( TeTi) '/, ' 

u.<l> = ~ k2 dk ~ dQ w.(k) 

r-' De 

is the energy density of the ion acoustic fluctua
tions in the wave number range ri)~ .$ k .$ r Dl; 
Ti and rm = (Ti/ZTe)112 rne are the temperature 
and Debye radius of the plasma ions. It is then 
evident that if the noise is not too dense the sta
bility criterion is a relatively weak one. 

We note, in conclusion, that in certain cases the 
stabilization mechanism indicated above can evi
dently arise automatically in a plasma in an exter
nal electric field because this situation provides a 
mechanism for continuous acceleration of a small 
group of "runaway" electrons. 

We now consider the excitation of oscillations 
in a system consisting of a beam plus a plasma in 

4 ) This is a very general consequence of the original 
nonlinear equations for a weakly anisotropic plasma in 
which the scattering processes always lead to the transfer 
of energy from high-frequency plasmons to lower frequency 
plasmons.[•] It should be noted, however, that this statement 
does not hold[5] in the general case of a plasma that is not 
weakly anisotropic (in particular, a system of two interact
ing plasmas). 

which the parameters are such that the system is 
stable against the excitation of ion acoustic waves 
in the linear approximation, but unstable against 
the excitation of plasma waves. In other words, we 
consider the solution of the system consisting of 
(1) and (2) when the relation 'Yz > 0 holds in some 
region of wave numbers while the quantity 'Ys is 
always positive. We shall not try to find a rigorous 
solution of (1) and (2), but shall limit ourselves to 
a qualitative analysis. 

We denote by y"f"ax and ymin the maximum 
value of the growtli rate 'YZ an~ the damping 'Ys 
at the point at which the product krne'Y s(k) x 
exp [-1/2(krne)2] is a minimum. Analysis of (1) 
and (2) yields the following qualitative pattern of 
excitation by an electron beam in a nonisothermal 
plasma. In passing through the plasma the beam 
first excites plasma waves, whose amplitudes in
crease rapidly. As a result of nonlinear effects 
there follows a reduction of the effective damping 
of the ion-acoustic waves; then, when the intensity 
of the plas.ma waves becomes large enough (so that 
y~n> > y~m) the ion-acoustic waves are excited. 
On the other hand, the increasing amplitude of the 
acoustic waves leads to a retardation of the growth 
of the plasma waves so that (when y:U> > y z-ax) 
the plasma waves are damped. In turn, however, 
the reduction of the amplitude of the plasma waves 
retards the growth of the ion acoustic waves, which 
reach some maximum intensity, and then are also 
damped, approaching their initial value. The proc
ess then repeats itself. 

Thus, the energy densities of the plasma waves 
U z and the acoustic waves Us (which depend on 
the time in the case of an initial value problem, or 
on the spatial coordinate in the case of a stationary 
boundary-value problem) become bounded func
tions_which oscillate about certain mean values Uz 
and Us with a characteristic time T0 (or spatial 
period L0 f':j (vz vs) 112 T0 where vz. and vs are the 
group velocities of the plasma waves and the 
acoustic waves). The values of the quantities Uz 
and Us can be estimated and are of order 

min M ,1, - '\'s ( . \ 
Uz ~ --\-) neTe, 

COoe m , 
(5) 

The order of the characteristic pulsation time T0 

(or the period L0) is 

T ~ [.min max]'! 
0 ~ 'Vs '\'l '· (6) 

Thus, we see that taking account of the nonlin
ear interactions leads to a bound on the growth of 
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the plasma waves and to the establishment of sta
tionary pulsating spectra. s> 

One further remark should be made at this 
point. In analyzing (1) and (2) we have neglected 
completely the interaction of the beam with the 
plasma waves excited by the beam and the reduc
tion in the growth rate 'Y z caused by this interac
tion. Obviously we can neglect this interaction 
only when the characteristic time for the smear
ing of the beam TD (or the characteristic length 
LD ;:::; v0TD) is much larger than the pulsation time 
T0 (or the pulsation period L0). If this is not the 
case, so that TD «T0 (or LD « L0) because of the 
rapid smearing of the beam the nonlinear effects 
treated here are not important and the development 
of the instability (in any case the initial stage) can 
be described within the framework of the quasilin
ear theory. [ 2 J 

Assumingthatthetime TD;:::; nem(.6.v) 3/(w0ev0Uz) 
and taking account of (5) we can write the condi
tion for the existence of the pulsating solutions in 

5 >we note that static solutions are excluded. The condi
tion that must be satisfied for static solutions to exist is 
Yl, s (k)- Yl,nJ k = 0. It is evident that this situation cannot 
hold [cf. the definition of y~?) (k)]. 

the form 

for the initial value problem and 

(~lJ_)_3~ [1/_M Vre y;'in]'i• (LD";'>Lo) (8) 
VTe3 m Vo Y7laX 

for the stationary boundary-value problem. 
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