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Two-particle excitations are investigated for the case of pairing with l = 2. Stability of the 
anisotropic state with respect to these excitations is proved. It is shown that the two-particle 
excitation spectrum satisfies the Landau superfluidity condition. 

1. INTRODUCTION 

COOPER pairs with orbital angular momentum 
l different from zero can be produced in a system 
of interacting Fermi particles. The usual methods 
of superconductivity theory lead in this case to 
solutions with anisotropic energy gap ~ (see, for 
example, [t] ), with the exception of the case of 
pairing with l = 1, when the solutions may also 
include isotropic ones l2J. Gor'kov and Galitskil [3] 

have proposed a new method for splitting the chain 
of equations for the Green's function and obtained 
a solution with ~ independent of the angles and 
with energy less than that obtained by Anderson 
and Morel m. However, this result cannot be re
garded as definitely proved, especially because 
in the exactly solvable model (which takes into 
account only interaction of particles with opposite 
momenta) the energy gap is anisotropic for 
l > 1 (the existence of anisotropic solution was 
proved in [4•5] and its uniqueness was proved in [G] ). 

It is of interest in this connection to investigate the 
stability of the anisotropic state in a more 
realistic model. 

Any infinitesimally small change in the state 
of a system can apparently be represented as an 
aggregate of single-particle and two-particle 
elementary excitations. We shall consider two
particle excitations in the case of pairing with 
l = 2, which should probably be realized in liquid 
He[3] .n Stability against single-particle and two
particle excitations denotes that the investigated 
state can exist at least as a metastable one. We 
therefore regard the stability of the anisotropic 
state, which we shall prove below, as an important 

l)Two-particle excitations in pairing with l = 2 were in
vestigated earlier by Vaks, Galitskii, and Larkin['], but they 
did not prove the existence of a stable solution. The method 
proposed in their paper will be used by us. 

additional argument in favor of the theory with 
anisotropic gap. 

The form of the spectrum of two-particle Bose 
excitations is essential for a clarification of super
fluidity properties. The spectrum which we ob
tain below satisfies the Landau criterion. 

We confine ourselves to the case of zero tern
perature. 

2. FORMULATION OF THE PROBLEM AND 
EQUATIONS FOR TWO-PARTICLE GREEN'S 
FUNCTIONS 

We start from the universally used model of a 
Fermi system with Hamiltonian 

where {; p is the kinetic energy of the particle 
with momentum p, reckoned from the Fermi 
level, afx, and 'apu are the fermion creation and 
annihilation operators, u and u' the spin indices, 
and V the volume of the system. The interaction 
"potential" V (p, p') is equal to zero in the 
model under consideration outside a narrow layer 
of thickness 2~ near the Fermi surface, in which 
layer it depends only on the angle between mo
menta p and p', that is, V(p,p') = V(nn'), 
n = p/ I pI . It is expanded in Legendre polynomials: 

V(nn') = ~ (2l + 1) VzP1(nn'). 

We shall also assume that the particles interact 
with one another only in a state with relative 
angular momentum l = 2 (that is, Vt = 0 when 
l "' 2), and this interaction is an attraction: v2 

(2) 

< 0. In addition, we assume that the interaction is 
weak. 

Anderson and Morel calculated the equation 
for the gap ~ ( p ) , [1] which coincides with the 
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ordinary equation of superconductivity theory2> 

where 

11 (p) = - (2:)4 ~ dp' v {p, p') 11 ~:.'), (3) 

Ep = ( 1;~ + I b. ( p) 12 )1/ 2 is the energy of the quasi
particle. Some solutions of Eq. (30), for the case 
of pairing with l = 2, were investigated in detail 
in [1]. The solution corresponding to the lowest 
energy is 3 > 

11 (n} = f • 2;;;'e-1/P1jJ (n), 
1 i 

'IJ(n) = 12X2o + 2 (Y22 + Y2,-2), 

where 

(4) 

mpol V2l 
p = (2n)2 ' lnr =- ~ dni1JJ(n) l2ln l'iJ(n) I= 1.154; 

m is the particle mass and Po the Fermi momen
tum. However, since not all the solutions of (3) 
were obtained in [1], there is no complete assur
ance that this solution corresponds to the ground 
state. At the same time, the latter is perfectly 
probable, since in the states with 

1 i 
11 ~--= Y2o +- {Y22 + Y2 -2) 

1'2 2 . 
the total angular momentum of the system is equal 
to zero and this state is stable, whereas states 
with lower energy are unstable[7J. 

The quantity I b. ( n) I has cubic symmetry. In 
terms of the direction cosines ( x, y, z) relative 
to the coordinate axes, the function I zp ( n ) 1 2 takes 
the form 

5 
l'iJ(n} 12 = Sn (x~ + y~+ z~ _ x2y2 _ y2z2 _ z2x2). (5) 

2)Recently Tareeva[•] obtained a different equation for the 
gap 1 

.1p, q-p =- 2V ~ V (p, p'} .1p',q-p•/ep., 
p' 

where the quantities 11p, q _ p differ from zero only when 

I PI= I q- P 1. 1.11• = ~ [.1p, q-p 12• 
q 

It is stated in [•] that it is possible to obtain from this equa
tion a solution with an isotropic gap in the case of pairing with 
l 1 0. However, an error has crept into this paper and 
Tareeva's conclusions are therefore incorrect. The point is that 
the summation in the right side of the equation for 11p, q _ p is 
carried out over the plane pq = I ql 2 /2, and not over the vol}lme. 
Such a two-dimensional summation gives rise to a factory/,, 
which does not cancel out the factor 1/V in the right side. 
Therefore the equation for 11q _ p has no nontrivial solutions 
when lql 1 0. This factor becomes perfectly obvious by writing 
out the equation for 11q _ p in the limit as V _, oo and going 
from summation with respect to p ' to integration. On the other 
hand, if we put lql = 0, in this equation we obtain Eq. (3). 

3 )In ['] the function ljJ (n) was written in a different form: 

1jl(n} = 2-'f,Y20 + 1/ 2 (Y22 - Y2 • _ 2). 

The difference lies in the choice of coordinate axes. Both solu
tions go over into each other when the coordinate system is 
rotated through an angle ±rr I 4 about the z axis. 

It vanishes at the point x2 = y2 = z2 = ';3• 

The frequencies of the two-particle excitations 
can be determined if one knows the poles of the 
Fourier components of the Green's function 

II 
Ga~; 'I'~ (x1, x2; Xa, X4) = (T'IJa (x1)1jJ~ (x2)11Jv+ {xa)1JJ~+(x4) ); (6) 

zp and zp + are the second-quantization operators 
in the coordinate representation. 

In the case of a small total momentum of the 
colliding particles, we can obtain a closed system 
of equations for this function by summing the so
called ''ladder'' diagrams. One such equation is 
shown graphically in the figure, where the light 
square denotes the bare vertex ff(o >: 

w(O) I I) w(O) I 
(f) a~; vo{P, -p; P, -p =(f) a~; v~(P, P) 

= V {p, p1 } { 6av6~~- 6a:~6~'1'}, 

(0) -(0) 
ff a~; yO (p, P1 ; p, P1 } == ff a~; yO {p, P1 } 

= Vo6a:v6~o - V {p, P1 ) 6ao6~v (7) 

(V0 = V(nn)) and new two-particle Green's func
tions have been introduced 

Ka~; vo (xt, x2; xa, x4) = (T¢a +(x1)¢~+ {x2) 'l,,,+(xa) ¢o+ (x4) ), 

L.x~;vdxt,Xz; xa,x~) = (T¢a+(x1)¢~(x2)¢v+(xa)¢o+(x4) ), 

(8) 

for which equations are set up in similar fashion 
and which form, together with the equation for 
Grr, a complete system. 

We have left out of the equation shown in the 
figure the terms that represent products of the 
single-particle Green's functions. These terms 
are insignificant near the poles corresponding to 
the bound states. The latter can be obtained from 
the conditions for the solvability of the homogen
eous system. We see from the figure that the 
second pair of indices ( xg, )'; x4, 6) of the func
tions GII, K, and L play the role of parameters 
in the equations and can be omitted. 

The system of equations for the Fourier com
ponents of the functions Grr, K, and L can be 
written in the explicit form 
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i 
X Lyo(P+', -p-')+ (2n)J(P+)G(-P-)<1a:p<u> 

In our case the excitations should have zero spin, 
that is, the poles corresponding to the bound states 
::_re possessed only by the components x2, f{l 2, and 
vo. It is convenient to consider in lieu of these 

X \ d'p 1 iif (O) ( I) T ( I I) J a~ llY; pG P, P ....,o P+ , -p_ ; (9) quantities the following: 

i 
Kap(P+, -P-) = ---F+(p+)F+(-p )<1a:p<u>crpTJ<lll 

2(2n) 4 -

X ~ d'p1 ff~~; yo (p, P1 ) Gyou (P+', -p-1 ) 

+ 2 (2~) 4 G(-P+)G(P-) ~ d4p1JT~~~ap(p, p1
) 

i 
X Kyo(P+1 , -P-1 ) + (2n)• F+(p+)G(p-)cra:p<lll 

X \ d• I QT,(O) ( I) L ( I I i J P (if PY; PO P, P yO P+, -p_)- --G(-P+) 
(2n) 4 

X \ -<o> 
F+(-P-)<1pp<Y) J d4p1 JJpy;ao(p, P1 )Lyo(P+1 , -p-1 ); 

i 
Lap(P+• -P-) = 2 (2n)• F+(p+)G(-p-)cra:p<11> 

X ~ d'p1 JT~~; yo (p, P1 ) Gyou (P+1 - P-1 )- __ i-
2(2n) 4 

X G(-P+)F(-p-)crpp<lll ~ d4p1 JT~~ ap(p, p1 ) 

i 
X Kyo(P+', -p-')- (2n)' G(-P+)G(-P-) 

(10) 

X \ d4 I (if (0) ( ') i J P "'llY;a:O P, P l-vo(P+'• -p-')---F+(p+) 
(2n) 4 

( ( \ -(0) 
X F ( -P-) <1a:p Yl <1flTJ Y) J d4P1 JT PY; TJO (p, p') Lyo (P+'• -p-'). 

Here P± = p ± k/2, k ={k, w}, aCy) is a Pauli 
matrix, and G, F, and p+ are single-particle 
Green's functions (p ={p, w}): 

G(p) = ro + ~P 
(ffi-Bp + i6) (ffi + Ep-ill) ' 

F (p) = i/1 (n) 
(ffi-Ep+ i6) (ffi+Ep- i6) ' 

(11) 

p+( )= i/1"(n) (12) 
p (ffi-ep+i6)(ro+ep-i6) · 

The function aJI has poles also when the mo
mentum transfer is small. The corresponding 
equations can be readily written out, but there is 
no need for them, since these poles coincide with 
the functions L, which are determined from (9)
(11). 

In order to disclose the spin structure of the 
excitations, we shall expand the functions aii, K, 
and L in a complete system of linearly independ

x(n)= ~ d4p 1 V(nn')x2(P+'. -p-1 ), 

cp (n) = ~ d4p' V (nn') (ji2 (P+' - P-'), 

v(n)= ~ d4p'[2Vo- V(nn'))vo(P+' -p-'). 

The system of equations for the functions x., cp, 
and v takes the form 

(14) 

x(n) = ( 2~) 4 ~ d4p1 V(nn1 ) {G(p+')G(-p-')x(n')-F(p+') 

X F(-P-')cp(n') + [G(P+1 )F(-P-') 

+ F(P+1 ) G( -p-')] v(n')}, (15) 

cp(n) = _t -~ d•p'V(nn1 ) {-F+(p+')F+(-p 1}x(n1 ) 
(2n) 4 -

+ G ( -p+') G (P-') cp (n') + [F+ (P+') G (P-1 ) + G ( -p+') 

X F+(-P-')] v (n') }, (16) 

v(n) = ( 2~)4 ~ d4p1 [2V0 - V(nn1)]{F+(p+')G(-p_1)x(n1
) 

+ G(-P+')F(-P-')cp(n')- [G(-p+1 )G(-P-') 
-F+(p+')F(-P-')]v(n1)}. (17) 

3. TWO-PARTICLE EXCITATION FREQUENCIES 
IN THE CASE jkJ = 0 

We shall show first that excitations with 
w = 0 exist when lkl = 0. To this end we inte
grate in (15)-(17) over the frequency component 
of the momentum p' and put lkl = w = 0, after 
which the system (15)-(17) is greatly simplified: 

x(n) =-_n_ ~ dp1 V(nn1 ) [( 2-~) x(n') 
2(2n) 4 e2 8 

!12 J +7cp(n') ' (18) 

n \ [ 11*2 
cp (n) = - 2 (2n) 4 J dp' V (nn') --;a X (n') 

+ ( 2 _ I~ 12 
) cp ~n') ] , (19) 

:n; \ j11j 2v (n') 
v (n) = - -- J dp' [2V0 - V (nn')] -'---'---'---'--

(2:rt)• e-3 
(20) 

The equation for v ( n ) has separated, and we 
can readily see that it has no nonvanishing solu
tion. On the other hand, the choice of x and cp in 
the form ent two-row matrices: 

- - - X1 = -cp1* = i/1 (21) 
Ga:pu = Xolla:p + JC;<1a:p<i>, Kap = cpoila:p + cp;<ia:p<il, 

Lap =vo6a:p + v;cra:p<i>. (13) satisfies Eqs. (18) and (19). To verify this, it is 
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necessary to compare these equations with Eq. 
( 3) for A ( n ) . We shall make use in addition of the 
fact that (3) is invariant against spatial rotations. 
At the same time, the solution A (n) is not in
variant. The invariance of (3) signifies that the 
new A, obtained as a result of rotation, should 
satisfy the same equation as the initial one. 
Making an infinitesimally small transformation 
n- n +Ex n, we find that the quantity var A 
= [ Ex n] EJA/Eln satisfies the equation 

var~ = __ n_ I dp' V(nn') [ (t-~) var~ 
(2:n;)d 2e2 e 

~2 J - 2e2 (var ~) • . (22) 

Comparing it with (18) and (19) we conclude that 
there are three other solutions 

{ 
(}'.3 + i) yz, 

%234 = -c:p2s•* = var ~ ~ (-y3- i)xz, 
2ixy. 

(23) 

By virtue of the linearity of the equations for x 
and <P, it is obvious that we can choose as a 
solution any linear combination of the solutions 
(21) and (23). The level w = 0 has fourfold de
generacy. The degeneracy is lifted when I k I "'- 0. 

We shall show further that in the case when 
lkl = 0 there are no poles at w "'- 0. These poles 
must be investigated to prove the stability of the 
state under consideration. In our model the un
stable states are the normal state and the state 
with A ~ Y2m, as manifest by the presence of a 
pole at the imaginary frequency. 

In the case lkl = 0, w "'- 0 the equation for 
v ( n ) no longer separates 

v(n) =- _n_ I dp'[2V0 - V(nn')1-·~---,-1~-=-----
(2:n;)4.l e(e2-(w/2)2-i<')] 

X r; [~*x(n')- ~c:p(n')] + l~l 2v(n') }, (24) 

but v is small compared with x and cp, so that 
we can put henceforth v = 0. This means that we 
neglect in (15) and (16) the terms of order p 2 

(see (4)). Thus, the system of equations which we 
must investigate is of the form 

:n; I d 'V ') e 
x(n)=- (2:n;)d p (nn e2-(w/2)2-i<')' 

X [(t-~)x(n')+~c:p(n') ], (25) 
2e2 2e2 

c:p(n) =- (2:)4 ~ dp' V(nn') e2 -(w;2)2- ib 

x[~::x(n'>+(t- ~~t)c:p(n')J. (26) 

We shall find useful the following relations 

which are valid for any function f ( n) that has 
the same symmetry as I A I : 

~ dn/(n)~ = ~ dnf(n)var1. = 0, 

~ dnf(n)~2 = ~ dnf(n)~* var ~ = ~ dnf(n)~ var ~ = 0, 

~ dnf(n) (var~)*~3 = ~ dnf(n)ImN = 0, 

~ dnf(n)Im(~*var~) 2 = 0, 

~ dn' V(nn')/(n')~(n'),.., ~(n), 

~ dn' V(nn')~(n') =- 4:rtl V2j~(n), 

~ dn' V(nn')/(n')var ~(n'),.., var ~(n), 

~ dn'V(nn')var~(n') = -4:n:IV21var~(n), 

~ dn' V(nn')/(n')~S(n'),.., ~*(n), 

~ dn' V(nn')/(n')~2(n')[var ~(n')]*,.., var ~(n). (27) 

On the basis of these relations we can seek solu
tions in the form 

%1 = -c:p1* = i~, 

)(234 = - c:p~ = var ~. 

%56= +c:p5a• = ~·. 

%7 = -cp7* = ~. 

XB91o = c:pa;1o = var ~. 

(28) 

(29) 

(30) 

(31) 

(32) 

We note that by expanding the functions x and 
cp in terms of the harmonics Y2m, we would ob
tain in lieu of (25) and (26) a system of ten linear 
homogeneous equations with respect to the coef
ficients in the expansion. By equating to zero the 
determinant of this system, we would get just as 
many equations with respect to w. On the other 
hand, by substituting in (25) and (26) the derived 
relations between x and cp, we obtain the same 
ten equations with respect to w. Thus, formulas 
(28)-(32) exhaust all the possible relations be
tween x and cp. 

Solutions of the form (28) and (29) with w = 0 
have already been found, but it is not excluded, 
generally speaking, that such solutions can exist 
also for a nonzero frequency. 

Substituting x = -cp* = iA, we get 

:n; I e 
~(n) =- (2:n;)4 .l dp' V(nn') e2 -(w/2)2- ib ~(n'). 

The right side in this equation is proportional to 
A ( n ), on the basis of one of their relations (27). 
Multiplying both parts of this equation by A*( n) 
and integrating with respect to the angles, we ob
tain 
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(28') 

We know that this equation has a solution for 
w = 0. If w2 is complex or positive, then the 
imaginary part on the right side differs from 
zero, that is, Eq. (28') cannot be satisfied for 
these values of w. On the other hand, if w2 < 0, 
then the right side decreases with increasing 
I w 12 and cannot be equal to the left side, since 
the equality is satisfied when w = 0. 

Substituting x and cp in accordance with (29)
(32), we obtain in similar fashion 

\ dn lvarAI2 = 12V
21 \ dp ; . [ JvarAiz 

J ( :n:)d e2-(w 2) 2-lb 

_ IAvarAI 2+Re(A*varA)2J 
2e2 ' (29') 

~ dn I A 12 = ~;; ~ z ~ dp ez - ( w /e2 )2 - ib [ I A lz 

- IAJ4=FReA4] (30') 
2e2 

\ dniAI 2 -~\d 8 (1- IAI 2 )!Aiz 
J - (2:n:) 2 J pe2 -(w/2)2-ib e2 ' 

( 31') 

(32') 

Taking account of the fact that the following rela
tions hold 

~ dn IAIZ = JVzl ~ dp~ 
(2:n:} 2 e ' 

~ dn I var A 12 = ~ ~ dp _!_ [ I var A 12 
(2:n:) 2 e 

_ IAvarAI 2+Re(A*varA)2 J 
2e2 

(33) 

(34) 

we can easily see that the right side in (29')-(31') 
is smaller than the left side when w2 < 0 and is 
complex for other values of w. In the case of 
w = 0, only Eq. (29') is satisfied. Thus, the equa
tions under consideration do not yield any new 
solutions. 

Finally, let us investigate Eq. ( 32'). In this 
case, as in the preceding ones, we can readily 
prove the absence of solutions for positive or 
complex values of w2, but the question of the 
existence of a solution for w2 < 0 is not so simple 
to solve as before, since the quantity 
Re (!::. * var!::. )2 reverses sign in the integration 
region. At the same time it is obvious, as before, 
that the right side of (32'), which we have desig-

nated f ( w2 ), decreases with increasing I w 12 

when w2 < 0. Therefore, in order for a solution to 
exist, the quantity f ( 0) must satisfy the inequality 

j(O)~ ~dn I varA 12• (35) 

Adding the expression for f ( 0 ) to the right side 
in (34), we obtain 

f(O)+ (" dn lvarAI 2 =~ \ dp~ (1-~l_z_) lvarAiz. J (2:n:)2 j e 2e2 

It follows from this that the inequality (35) is 
equivalent to 

(36) 

~dn lvarAI 2~~ ~dp~( 1- IAI 2
) lvarAiz. (37) 

(2:n:) 2 e \ 2e2 

We put 

varA ~ 'ljl'(n), ~ dn l'¢'(n) 12 = 1 

and integrate over the energy in (37). Then the 
condition of the existence of the sought solution 
will take the form 

(38) 

1+2Inr+M,;;;O, M= _,dnl'¢'(n)l 2 ln l'¢'(n)l 2, 

(39) 
where r and 1/J ( n) are defined by relations ( 4). 

Owing to the cubic symmetry of the functions 
1/J ( n ), the integral in (39) does not depend on the 
choice of var !::., according to the formulas in 
(23). It will be convenient in the calculation of M 
to take half the sum of the integrands for 
M2 ( var !::. ~ yz) and M3 ( var !::. ~ xz ). Then 

15 +1 2n 5 
M=-~ dx~ dcpx2(1-x2)In{-[(1-3x2)2 

8:n:_1 0 32:n: 

+3(1-x2) 2 co~2 2cp]~. (40) 
) 

After integration with respect to cp we can easily 
obtain the value of M by Simpson's rule. It turns 
out that 

l. + 2ln r + M = 0.6, (41) 

which contradicts the condition (39), so that there 
are no solutions of the form x = cp* = var !::.. 

Consequently, two-particle excitations have no 
gap in our system. 

4. SPECTRUM OF TWO-PARTICLE EXCITA
TIONS FOR SMALL I k I 
We have noted earlier that the level w = 0 is 

degenerate. For small lkl we can find the fre
quencies w ( k) and the "regular" zeroth-approx
imation eigenfunctions x and cp from the condi
tion of solvability of the next higher approxima
tion. We put 



158 I. A. PRIVOROTSKII and S. V. CHESNOKOV 

s=l. 

X= ~ Cs"f.s, 

s=4 

q; = ~ CsfPs· 
the indices r and s. Therefore, in the limit as 

(42) lkl - 0 and w- 0 we have 
s=1 s=i 

Expanding in (15)-(17) the quantities that de
pend on k and w in a series, we obtain the indi
cated condition (for a detailed derivation, see [TJ ): 

where v = vn is the velocity on the Fermi sur
face. We see then that w2 is positive. 

(43) 

The functions Xr and CfJr were chosen by us in 
such a way that Xr = - rp;. Therefore relations 
(43) can be rewritten in the form: 

~~ ArsCs = 0, 

(" w2- (kv)2 ( ~·2 \ 
Ars=Asr=.)dn l~l 2 Re 2:xr·:x.-TL\T2:Xr:Xs)· (44) 

The equation for the frequencies w ( k) is ob
tained by equating to zero the determinant made 
up of the coefficients Ars. We note that in the 
case when r > 1 and s > 1 the coefficients Ars 
contain the logarithmically diverging integral4 l 

I= J dn/ 161 2: 

A,"= Ars'I + ... , 
A23' = -'fztkxkyV2, Az{ = - 8/z7kxkzv2, 

A2z' = A3/ = A41.' = 8/g (ul 2 - 1/ 3 1 k j 2v2), 

A3,' = 8h1kyk2v2• (45) 

The presence of the divergence is connected with 
a fact that our series expansion cannot be used in 
the vicinity of points at which 161 vanishes. Were 
we to calculate the kernel in (44) more accurately, 
then we would find that when lkl -0 and 
w-0 

Irs= J(k, w)-+ oo (r > 1, s > 1)·. 

It is important that I ( k, w ) does not depend on 

4lin calculating the coefficients Ars it is necessary to dis
card in the integrand the terms that contain odd powers of x, 
y, or z. Further, by separating the diverging integrals, we can 
greatly simplify all the factors which contain even powers of 
x, y, and z and which do not vanish identically either at infin
ity or at the points where IDI = 0. Namely, it is necessary to 
put in these factors x2 ~ y2 ~ z 2 ~ 1/3 (these are the values of 
these quantities at the points 1~1 = 0). It then becomes obvious 
that the second term in (44), proportional to i\*2 , makes no 
contribution to the coefficient of I (see (27)). We thus obtain 
formulas ( 45). 

det Ars ::::::: f3 A11 det Ar.' = 0. ( 46) 

Putting A11 = 0 we obtain the frequency of the 
acoustic excitations 

1 
001=---=-lk!v. (47) 

1'3 
In the remaining excitations, the directions of the 
chosen axis oscillate. By equating to zero the de
terminant made up of A~s, we obtain the cubic 
equation 

x 3 - 1/g(kx2ky2 + k}ki + kx2k22)x + 2f21kx 2klki = 0, 

( 48) 

from which we can get the frequencies of the in
dicated excitations. They are equal to 

Wn+J = ~ V [I k j2 + 2_ (kx2ki + ky2k 22 Y3 Y3 . 

+ k 2k 2) 'h a+2nn l'/' 
x z cos J , n = 1, 2, 3, 

3 -

(49) 

It is essential that the velocity of these excita
tions never vanishes (this, generally speaking, is 
not a trivial matter [T] ) • Therefore the spectrum 
of the two-particle excitations satisfies the 
Landau superfluidity criterion. 

In conclusion we are grateful to A. I. Larkin 
for numerous discussions of the questions touched 
upon here, and L. P. Pitaevskil for discussion of 
the results . 
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